Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A biophysical perspective on the resilience of neuronal excitability across timescales

Abstract

Neuronal membrane excitability must be resilient to perturbations that can take place over timescales from milliseconds to months (or even years in long-lived animals). A great deal of attention has been paid to classes of homeostatic mechanisms that contribute to long-term maintenance of neuronal excitability through processes that alter a key structural parameter: the number of ion channel proteins present at the neuronal membrane. However, less attention has been paid to the self-regulating ‘automatic’ mechanisms that contribute to neuronal resilience by virtue of the kinetic properties of ion channels themselves. Here, we propose that these two sets of mechanisms are complementary instantiations of feedback control, together enabling resilience on a wide range of temporal scales. We further point to several methodological and conceptual challenges entailed in studying these processes — both of which involve enmeshed feedback control loops — and consider the consequences of these mechanisms of resilience.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Resilience of excitability by feedback regulation of channel protein expression.
Fig. 2: Examples of changes in spiking behaviour owing to kinetic-based regulation of channels and receptors.
Fig. 3: A hierarchy of closed loops, operating at different timescales.
Fig. 4: Stability of the pyloric circuit of crustacean stomatogastric ganglion at extreme temperatures correlates with changes in ocean temperature.

Similar content being viewed by others

References

  1. Cannon, W. B. Organization for physiological homeostasis. Physiol. Rev. 9, 399–431 (1929).

    Article  Google Scholar 

  2. Braun, E. The unforeseen challenge: from genotype-to-phenotype in cell populations. Rep. Prog. Phys. 78, 036602 (2015).

    Article  PubMed  Google Scholar 

  3. Gerhart, J. & Kirschner, M. Cells, Embryos, and Evolution (Blackwell Science, 1997).

  4. Davis, G. W. Homeostatic control of neural activity: from phenomenology to molecular design. Annu. Rev. Neurosci. 29, 307–323 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Marder, E. & Goaillard, J.-M. Variability, compensation and homeostasis in neuron and network function. Nat. Rev. Neurosci. 7, 563–574 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Marom, S. Neural timescales or lack thereof. Prog. Neurobiol. 90, 16–28 (2010).

    Article  PubMed  Google Scholar 

  7. O’Leary, T. & Wyllie, D. J. A. Neuronal homeostasis: time for a change? J. Physiol. 589, 4811–4826 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Davis, G. W. & Müller, M. Homeostatic control of presynaptic neurotransmitter release. Annu. Rev. Physiol. 77, 251–270 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Styr, B. & Slutsky, I. Imbalance between firing homeostasis and synaptic plasticity drives early-phase Alzheimer’s disease. Nat. Neurosci. 21, 463–473 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ziv, N. E. & Brenner, N. Synaptic tenacity or lack thereof: spontaneous remodeling of synapses. Trends Neurosci. 41, 89–99 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Goaillard, J.-M. & Marder, E. Ion channel degeneracy, variability, and covariation in neuron and circuit resilience. Annu. Rev. Neurosci. 44, 335–357 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Almog, M. & Korngreen, A. Is realistic neuronal modeling realistic? J. Neurophysiol. 116, 2180–2209 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Defelice, L. J. & Isaac, A. Chaotic states in a random world: relationship between the nonlinear differential equations of excitability and the stochastic properties of ion channels. J. Stat. Phys. 70, 339–354 (1993).

    Article  Google Scholar 

  15. Herz, A. V. M., Gollisch, T., Machens, C. K. & Jaeger, D. Modeling single-neuron dynamics and computations: a balance of detail and abstraction. Science 314, 80–85 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Koch, C. Biophysics of Computation: Information Processing in Single Neurons (Oxford Univ. Press, 2004).

  17. Schneidman, E., Freedman, B. & Segev, I. Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural Comput. 10, 1679–1703 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Noble, D. How the Hodgkin cycle became the principle of biological relativity. J. Physiol. 600, 5171–5177 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Jack, J. J. B., Noble, D. & Tsien, R. W. Electric Current Flow in Excitable Cells (Clarendon, 1975).

  20. Fitzhugh, R. Thresholds and plateaus in the Hodgkin–Huxley nerve equations. J. Gen. Physiol. 43, 867–896 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gerstner, W., Kistler, W. M., Naud, R. & Paninski, L. Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition (Cambridge Univ. Press, 2014).

  22. Izhikevich, E. M. Dynamical Systems in Neuroscience (MIT Press, 2007).

  23. Izhikevich, E. M. Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15, 1063–1070 (2004).

    Article  PubMed  Google Scholar 

  24. Marom, S. Adaptive transition rates in excitable membranes. Front. Comput. Neurosci. 3, 2 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Meisel, C., Klaus, A., Kuehn, C. & Plenz, D. Critical slowing down governs the transition to neuron spiking. PLoS Comput. Biol. 11, e1004097 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ori, H., Marder, E. & Marom, S. Cellular function given parametric variation in the Hodgkin and Huxley model of excitability. Proc. Natl Acad. Sci. USA 115, E8211–E8218 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rinzel, J. & Ermentrout, G. B. Analysis of neural excitability and oscillations. Methods Neuronal Model. 2, 135–169 (1989).

    Google Scholar 

  28. Soudry, D. & Meir, R. The neuronal response at extended timescales: long-term correlations without long-term memory. Front. Comput. Neurosci. 8, 35 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Xu, T. & Barak, O. Dynamical timescale explains marginal stability in excitability dynamics. J. Neurosci. 37, 4508–4524 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. FitzHugh, R. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tóth, K. & Okun, M. Seventy years later: the legacy of the Hodgkin and Huxley model in computational neuroscience. J. Physiol. https://doi.org/10.1113/JP284606 (2023).

    Article  PubMed  Google Scholar 

  32. Marom, S. Emergence and maintenance of excitability: kinetics over structure. Curr. Opin. Neurobiol. 40, 66–71 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Sepulchre, R., Drion, G. & Franci, A. Control across scales by positive and negative feedback. Annu. Rev. Control. Robot. Auton. Syst. 2, 89–113 (2019).

    Article  Google Scholar 

  34. LeMasson, G., Marder, E. & Abbott, L. F. Activity-dependent regulation of conductances in model neurons. Science 259, 1915 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Liu, Z., Golowasch, J., Marder, E. & Abbott, L. F. A model neuron with activity-dependent conductances regulated by multiple calcium sensors. J. Neurosci. 18, 2309–2320 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Turrigiano, G. G. & Nelson, S. B. Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci. 5, 97–107 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Turrigiano, G. Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annu. Rev. Neurosci. 34, 89–103 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Edelman, G. M. & Gally, J. A. Degeneracy and complexity in biological systems. Proc. Natl Acad. Sci. USA 98, 13763–13768 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ransdell, J. L., Nair, S. S. & Schulz, D. J. Rapid homeostatic plasticity of intrinsic excitability in a central pattern generator network stabilizes functional neural network output. J. Neurosci. 32, 9649–9658 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ransdell, J. L., Nair, S. S. & Schulz, D. J. Neurons within the same network independently achieve conserved output by differentially balancing variable conductance magnitudes. J. Neurosci. 33, 9950–9956 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Norris, B. J., Wenning, A., Wright, T. M. & Calabrese, R. L. Constancy and variability in the output of a central pattern generator. J. Neurosci. 31, 4663–4674 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Roffman, R. C., Norris, B. J. & Calabrese, R. L. Animal-to-animal variability of connection strength in the leech heartbeat central pattern generator. J. Neurophysiol. 107, 1681–1693 (2012).

    Article  PubMed  Google Scholar 

  43. Lamb, D. G. & Calabrese, R. L. Correlated conductance parameters in leech heart motor neurons contribute to motor pattern formation. PLoS ONE 8, e79267 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  44. O’Hara, T., Virág, L., Varró, A. & Rudy, Y. Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS Comput. Biol. 7, e1002061 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schutter, E. D. Computational Neuroscience: Realistic Modeling for Experimentalists (CRC, 2000).

  46. Bucher, D. & Goaillard, J.-M. Beyond faithful conduction: short-term dynamics, neuromodulation, and long-term regulation of spike propagation in the axon. Prog. Neurobiol. 94, 307–346 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Duménieu, M., Oulé, M., Kreutz, M. R. & Lopez-Rojas, J. The segregated expression of voltage-gated potassium and sodium channels in neuronal membranes: functional implications and regulatory mechanisms. Front. Cell. Neurosci. 11, 115 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Liu, H., Wang, H.-G., Pitt, G. & Liu, Z. Direct observation of compartment-specific localization and dynamics of voltage-gated sodium channels. J. Neurosci. 42, 5482–5498 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Buchholtz, F., Golowasch, J., Epstein, I. R. & Marder, E. Mathematical model of an identified stomatogastric ganglion neuron. J. Neurophysiol. 67, 332–340 (1992).

    Article  CAS  PubMed  Google Scholar 

  50. Connor, J. A. & Stevens, C. F. Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma. J. Physiol. 213, 31–53 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Traub, R. D., Wong, R. K. S., Miles, R. & Michelson, H. A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J. Neurophysiol. 66, 635–650 (1991).

    Article  CAS  PubMed  Google Scholar 

  52. Abbott, L. F. & LeMasson, G. Analysis of neuron models with dynamically regulated conductances. Neural Comput. 5, 823–842 (1993).

    Article  Google Scholar 

  53. Teichner, R. et al. Identifying regulation with adversarial surrogates. Proc. Natl Acad. Sci. USA 120, e2216805120 (2023).

    Article  CAS  PubMed  Google Scholar 

  54. Transtrum, M. K. et al. Sloppiness and emergent theories in physics, biology, and beyond. J. Chem. Phys. 143, 010901 (2015).

    Article  PubMed  Google Scholar 

  55. Pratt, K. G. & Aizenman, C. D. Homeostatic regulation of intrinsic excitability and synaptic transmission in a developing visual circuit. J. Neurosci. 27, 8268–8277 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zenke, F., Gerstner, W. & Ganguli, S. The temporal paradox of Hebbian learning and homeostatic plasticity. Curr. Opin. Neurobiol. 43, 166–176 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Mishra, P. & Narayanan, R. Stable continual learning through structured multiscale plasticity manifolds. Curr. Opin. Neurobiol. 70, 51–63 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Marder, E., O’Leary, T. & Shruti, S. Neuromodulation of circuits with variable parameters: small circuits reveal principles of state-dependent and robust neuromodulation. Annu. Rev. Neurosci. 37, 329–346 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Hazan, L. & Ziv, N. E. Activity dependent and independent determinants of synaptic size diversity. J. Neurosci. 40, 2828–2848 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Parker, A. R., Forster, L. A. & Baro, D. J. Modulator-gated, SUMOylation-mediated, activity-dependent regulation of ionic current densities contributes to short-term activity homeostasis. J. Neurosci. 39, 596–611 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Trojanowski, N. F., Bottorff, J. & Turrigiano, G. G. Activity labeling in vivo using CaMPARI2 reveals intrinsic and synaptic differences between neurons with high and low firing rate set points. Neuron 109, 663–676.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Orr, B. O., Fetter, R. D. & Davis, G. W. Activation and expansion of presynaptic signaling foci drives presynaptic homeostatic plasticity. Neuron 110, 3743–3759.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Shomar, A., Geyrhofer, L., Ziv, N. E. & Brenner, N. Cooperative stochastic binding and unbinding explain synaptic size dynamics and statistics. PLoS Comput. Biol. 13, e1005668 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pellizzari, S., Hu, M., Amaral-Silva, L., Saunders, S. E. & Santin, J. M. Neuron populations use variable combinations of short-term feedback mechanisms to stabilize firing rate. PLoS Biol. 21, e3001971 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kaczmarek, L. K. Modulation of potassium conductances optimizes fidelity of auditory information. Proc. Natl Acad. Sci. USA 120, e2216440120 (2023).

    Article  CAS  PubMed  Google Scholar 

  66. Alonso, L. M., Rue, M. C. P. & Marder, E. Gating of homeostatic regulation of intrinsic excitability produces cryptic long-term storage of prior perturbations. Proc. Natl Acad. Sci. USA 120, e2222016120 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  67. O’Leary, T., Williams, A. H., Caplan, J. S. & Marder, E. Correlations in ion channel expression emerge from homeostatic tuning rules. Proc. Natl Acad. Sci. USA 110, 2645–2654 (2013).

    Google Scholar 

  68. O’Leary, T., Williams, A. H., Franci, A. & Marder, E. Cell types, network homeostasis, and pathological compensation from a biologically plausible ion channel expression model. Neuron 82, 809–821 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. O’Leary, T. & Marder, E. Temperature-robust neural function from activity-dependent ion channel regulation. Curr. Biol. 26, 2935–2941 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Schulz, D. J., Goaillard, J.-M. & Marder, E. Variable channel expression in identified single and electrically coupled neurons in different animals. Nat. Neurosci. 9, 356–362 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Schulz, D. J., Goaillard, J.-M. & Marder, E. Quantitative expression profiling of identified neurons reveals cell-specific constraints on highly variable levels of gene expression. Proc. Natl Acad. Sci. USA 104, 13187–13191 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Temporal, S. et al. Neuromodulation independently determines correlated channel expression and conductance levels in motor neurons of the stomatogastric ganglion. J. Neurophysiol. 107, 718–727 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Tobin, A.-E., Cruz-Bermúdez, N. D., Marder, E. & Schulz, D. J. Correlations in ion channel mRNA in rhythmically active neurons. PLoS ONE 4, e6742 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Yang, J., Shakil, H., Ratté, S. & Prescott, S. A. Minimal requirements for a neuron to coregulate many properties and the implications for ion channel correlations and robustness. eLife 11, e72875 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Maffei, A. & Fontanini, A. Network homeostasis: a matter of coordination. Curr. Opin. Neurobiol. 19, 168–173 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Desai, N. S., Rutherford, L. C. & Turrigiano, G. G. Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nat. Neurosci. 2, 515–520 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Swensen, A. M. & Bean, B. P. Robustness of burst firing in dissociated Purkinje neurons with acute or long-term reductions in sodium conductance. J. Neurosci. 25, 3509–3520 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Alonso, L. M. & Marder, E. Visualization of currents in neural models with similar behavior and different conductance densities. eLife 8, e42722 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Goldman, M. S., Golowasch, J., Marder, E. & Abbott, L. F. Global structure, robustness, and modulation of neuronal models. J. Neurosci. 21, 5229–5238 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Alonso, L. M. & Marder, E. Temperature compensation in a small rhythmic circuit. eLife 9, e55470 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Golowasch, J., Buchholtz, F., Epstein, I. R. & Marder, E. Contribution of individual ionic currents to activity of a model stomatogastric ganglion neuron. J. Neurophysiol. 67, 341–349 (1992).

    Article  CAS  PubMed  Google Scholar 

  82. Ma, M. & Koester, J. The role of K+currents in frequency-dependent spike broadening in Aplysia R20 neurons: a dynamic-clamp analysis. J. Neurosci. 16, 4089–4101 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cuello, L. G., Jogini, V., Cortes, D. M. & Perozo, E. Structural mechanism of C-type inactivation in K+ channels. Nature 466, 203–208 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fleidervish, I. A., Friedman, A. & Gutnick, M. J. Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and guinea-pig neocortical neurones in slices. J. Physiol. 493, 83–97 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Naundorf, B., Wolf, F. & Volgushev, M. Unique features of action potential initiation in cortical neurons. Nature 440, 1060–1063 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Nekouzadeh, A., Silva, J. R. & Rudy, Y. Modeling subunit cooperativity in opening of tetrameric ion channels. Biophys. J. 95, 3510–3520 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Silva, J. R. & Goldstein, S. A. N. Voltage-sensor movements describe slow inactivation of voltage-gated sodium channels I: wild-type skeletal muscle NAv1.4. J. Gen. Physiol. 141, 309–321 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ulbricht, W. Sodium channel inactivation: molecular determinants and modulation. Physiol. Rev. 85, 1271–1301 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Toib, A., Lyakhov, V. & Marom, S. Interaction between duration of activity and time course of recovery from slow inactivation in mammalian brain Na channels. J. Neurosci. 18, 1893–1903 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ellerkmann, R. K., Riazanski, V., Elger, C. E., Urban, B. W. & Beck, H. Slow recovery from inactivation regulates the availability of voltage-dependent sodium channels in hippocampal granule cells, hilar neurons and basket cells. J. Physiol. 532, 385–397 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Goychuk, I. & Hänggi, P. Fractional diffusion modeling of ion channel gating. Phys. Rev. E 70, e051915 (2004).

    Article  Google Scholar 

  92. Millhauser, G. L., Salpetert, E. E. & Oswald, R. E. Diffusion models of ion-channel gating and the origin of power-law distributions from single-channel recording. Proc. Natl Acad. Sci. USA 85, 1503–1507 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Silva, J. R. in Voltage Gated Sodium Channels. Handbook of Experimental Pharmacology, Vol. 221 (ed. Ruben, P. C.) 33–49 (Springer, 2014).

  94. Vilin, Y. Y. & Ruben, P. C. Slow inactivation in voltage-gated sodium channels: molecular substrates and contributions to channelopathies. Cell Biochem. Biophys. 35, 171–190 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Adrian, E. The impulses produced by sensory nerve endings: part I. J. Physiol. 61, 49–72 (1926).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Adrian, E. D. & Zotterman, Y. The impulses produced by sensory nerve-endings: part II. The response of a single end-organ. J. Physiol. 61, 151–171 (1926).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Adrian, E. D. & Zotterman, Y. The impulses produced by sensory nerve endings: part III. impulses set up by touch and pressure. J. Physiol. 61, 465–483 (1926).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Marom, S. & Abbott, L. F. Modeling state-dependent inactivation of membrane currents. Biophys. J. 67, 515–520 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Melamed-Frank, M. & Marom, S. A global defect in scaling relationship between electrical activity and availability of muscle sodium channels in hyperkalemic periodic paralysis. Pflug. Arch. 438, 213–217 (1999).

    Article  CAS  Google Scholar 

  100. Ruben, P. C., Starkus, J. G. & Rayner, M. Steady-state availability of sodium channels. Interactions between activation and slow inactivation. Biophys. J. 61, 941–955 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Catterall, W. A. & Zheng, N. Deciphering voltage-gated Na+ and Ca++ channels by studying prokaryotic ancestors. Trends Biochem. Sci. 40, 526–534 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rudy, B. Slow inactivation of the sodium conductance in squid giant axons. Pronase resistance. J. Physiol. 283, 1–21 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chatterjee, S. et al. The voltage-gated sodium channel pore exhibits conformational flexibility during slow inactivation. J. Gen. Physiol. 150, 1333–1347 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bülow, P., Murphy, T. J., Bassell, G. J. & Wenner, P. Homeostatic intrinsic plasticity is functionally altered in Fmr1 KO cortical neurons. Cell Rep. 26, 1378–1388.e3 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Gal, A. & Marom, S. Self-organized criticality in single-neuron excitability. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 88, e062717 (2013).

    Article  Google Scholar 

  106. Gal, A. & Marom, S. Entrainment of the intrinsic dynamics of single isolated neurons by natural-like input. J. Neurosci. 33, 7912–7918 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gal, A. et al. Dynamics of excitability over extended timescales in cultured cortical neurons. J. Neurosci. 30, 16332–16342 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Marom, S. Slow changes in the availability of voltage-gated ion channels: effects on the dynamics of excitable membranes. J. Membr. Biol. 161, 105–113 (1998).

    Article  CAS  PubMed  Google Scholar 

  109. Marom, S., Salman, H., Lyakhov, V. & Braun, E. Effects of density and gating of delayed-rectifier potassium channels on resting membrane potential and its fluctuations. J. Membr. Biol. 154, 267–274 (1996).

    Article  CAS  PubMed  Google Scholar 

  110. Marom, S. & Levitan, I. B. State-dependent inactivation of the Kv3 potassium channel. Biophys. J. 67, 579–589 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ori, H., Hazan, H., Marder, E. & Marom, S. Dynamic clamp constructed phase diagram for the Hodgkin and Huxley model of excitability. Proc. Natl Acad. Sci. USA 117, 3575–3582 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sánchez-Aguilera, A., Sánchez-Alonso, J. L., Vicente-Torres, M. A. & Colino, A. A novel short-term plasticity of intrinsic excitability in the hippocampal CA1 pyramidal cells. J. Physiol. 592, 2845–2864 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Wu, W. W., Chan, C. S., Surmeier, D. J. & Disterhoft, J. F. Coupling of L-type Ca2+ channels to KV7/KCNQ channels creates a novel, activity-dependent, homeostatic intrinsic plasticity. J. Neurophysiol. 100, 1897–1908 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhang, H. Y. & Sillar, K. T. Short-term memory of motor network performance via activity-dependent potentiation of Na+/K+ pump function. Curr. Biol. 22, 526–531 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Zang, Y., Marder, E. & Marom, S. Sodium channel slow inactivation normalizes firing in axons with uneven conductance distributions. Curr. Biol. 33, 1818–1824 (2023).

    Article  CAS  PubMed  Google Scholar 

  116. Gal, A. & Marom, S. in Criticality in Neural Systems 255–272 (Wiley, 2014).

  117. Lundstrom, B. N., Higgs, M. H., Spain, W. J. & Fairhall, A. L. Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 11, 1335–1342 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Radivojevic, M. et al. Tracking individual action potentials throughout mammalian axonal arbors. eLife 6, e30198 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Sanders, S. J. et al. Progress in understanding and treating SCN2A-mediated disorders. Trends Neurosci. 41, 442–456 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wisedchaisri, G., Gamal El-Din, T. M., Zheng, N. & Catterall, W. A. Structural basis for severe pain caused by mutations in the S4-S5 linkers of voltage-gated sodium channel NaV1.7. Proc. Natl Acad. Sci. USA 120, e2219624120 (2023).

    Article  CAS  PubMed  Google Scholar 

  121. Waxman, S. G., Cummins, T. R., Dib-Hajj, S., Fjell, J. & Black, J. A. Sodium channels, excitability of primary sensory neurons, and the molecular basis of pain. Muscle Nerve 22, 1177–1187 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. Ghovanloo, M.-R. et al. Nav1.7-P610T mutation in 2 siblings with persistent ocular pain after corneal axon transection: impaired slow-inactivation and hyperexcitable trigeminal neurons. J. Neurophysiol. 129, 609–618 (2023).

    Article  CAS  PubMed  Google Scholar 

  123. Marom, S. Science, Psychoanalysis, and the Brain: Space for Dialogue (Cambridge Univ. Press, 2015).

  124. Wallach, A., Marom, S. & Ahissar, E. in Closed Loop Neuroscience 93–100 (Academic, 2016).

  125. Dewey, J. The reflex arc concept in psychology. Psychol. Rev. 3, 357–370 (1896).

    Article  Google Scholar 

  126. Sepulchre, R. Noble use of feedback [from the editor]. IEEE Control. Syst. Mag. 40, 3–4 (2020).

    Google Scholar 

  127. Black, H. S. Stabilized feed-back amplifiers. Electr. Eng. 53, 114–120 (1934).

    Article  Google Scholar 

  128. Sharp, A. A., O’Neil, M. B., Abbott, L. F. & Marder, E. Dynamic clamp: computer-generated conductances in real neurons. J. Neurophysiol. 69, 992–995 (1993).

    Article  CAS  PubMed  Google Scholar 

  129. Kaufman, M., Reinartz, S. & Ziv, N. E. Adaptation to prolonged neuromodulation in cortical cultures: an invariable return to network synchrony. BMC Biol. 12, 83 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Keren, H. & Marom, S. Controlling neural network responsiveness: tradeoffs and constraints. Front. Neuroeng. 7, e6 (2014).

    Google Scholar 

  131. Marom, S. & Wallach, A. Relational dynamics in perception: impacts on trial-to-trial variation. Front. Comput. Neurosci. 5, e16 (2011).

    Article  Google Scholar 

  132. Wallach, A., Eytan, D., Gal, A., Zrenner, C. & Marom, S. Neuronal response clamp. Front. Neuroeng. 4, 3 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Goaillard, J. M., Taylor, A. L., Schulz, D. J. & Marder, E. Functional consequences of animal-to-animal variation in circuit parameters. Nat. Neurosci. 12, 1424–1430 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Prinz, A. A., Bucher, D. & Marder, E. Similar network activity from disparate circuit parameters. Nat. Neurosci. 7, 1345–1352 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Haddad, S. A. & Marder, E. Circuit robustness to temperature perturbation is altered by neuromodulators. Neuron 100, 609–623 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Tang, L. S. et al. Precise temperature compensation of phase in a rhythmic motor pattern. PLoS Biol. 8, e1000469 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Tang, L. S., Taylor, A. L., Rinberg, A. & Marder, E. Robustness of a rhythmic circuit to short- and long-term temperature changes. J. Neurosci. 32, 10075–10085 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Powell, D., Haddad, S. A., Gorur-Shandilya, S. & Marder, E. Coupling between fast and slow oscillator circuits in Cancer borealis is temperature-compensated. eLife 10, e60454 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Rinberg, A., Taylor, A. L. & Marder, E. The effects of temperature on the stability of a neuronal oscillator. PLoS Comput. Biol. 9, e1002857 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Marder, E. & Rue, M. C. P. From the neuroscience of individual variability to climate change. J. Neurosci. 41, 10213–10221 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Storm, J. F. Temporal integration by a slowly inactivating K+ current in hippocampal neurons. Nature 336, 379–381 (1988).

    Article  CAS  PubMed  Google Scholar 

  142. Turrigiano, G. G., Marder, E. & Abbott, L. F. Cellular short-term memory from a slow potassium conductance. J. Neurophysiol. 75, 963–966 (1996).

    Article  CAS  PubMed  Google Scholar 

  143. Goaillard, J.-M., Taylor, A. L., Pulver, S. R. & Marder, E. Slow and persistent postinhibitory rebound acts as an intrinsic short-term memory mechanism. J. Neurosci. 30, 4687–4692 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

E.M. is supported by NIH Grants R35NS097343 and R01MH046742. S.M. is supported by grants from the Israel Science Foundation (ISF 806/19) and the Schaefer Scholars Program at Columbia University’s Vagelos College of Physicians and Surgeons.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Shimon Marom or Eve Marder.

Ethics declarations

Competing interests

The authors declare no competing or financial interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Bruce Bean, Niraj Desai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marom, S., Marder, E. A biophysical perspective on the resilience of neuronal excitability across timescales. Nat. Rev. Neurosci. 24, 640–652 (2023). https://doi.org/10.1038/s41583-023-00730-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-023-00730-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing