Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Central regulation of stress-evoked peripheral immune responses

Abstract

Stress-linked psychiatric disorders, including anxiety and major depressive disorder, are associated with systemic inflammation. Recent studies have reported stress-induced alterations in haematopoiesis that result in monocytosis, neutrophilia, lymphocytopenia and, consequently, in the upregulation of pro-inflammatory processes in immunologically relevant peripheral tissues. There is now evidence that this peripheral inflammation contributes to the development of psychiatric symptoms as well as to common co-morbidities of psychiatric disorders such as metabolic syndrome and immunosuppression. Here, we review the specific brain and spinal regions, and the neuronal populations within them, that respond to stress and transmit signals to peripheral tissues via the autonomic nervous system or neuroendocrine pathways to influence immunological function. We comprehensively summarize studies that have employed retrograde tracing to define neurocircuits linking the brain to the bone marrow, spleen, gut, adipose tissue and liver. Moreover, we highlight studies that have used chemogenetic or optogenetic manipulation or intracerebroventricular administration of peptide hormones to control somatic immune responses. Collectively, this growing body of literature illustrates potential mechanisms through which stress signals are conveyed from the CNS to immune cells to regulate stress-relevant behaviours and comorbid pathophysiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CNS innervation of immunologically relevant peripheral tissues.
Fig. 2: Control of peripheral immunity by central stress centres.
Fig. 3: Breakdown of body barriers during stress.

Similar content being viewed by others

References

  1. O’Connor, D. B., Thayer, J. F. & Vedhara, K. Stress and health: a review of psychobiological processes. Annu. Rev. Psychol. 72, 663–688 (2021).

    Article  PubMed  Google Scholar 

  2. Savitz, J. & Harrison, N. A. Interoception and inflammation in psychiatric disorders. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3, 514–524 (2018).

    PubMed  PubMed Central  Google Scholar 

  3. GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiat. 9, 137–150 (2022).

    Article  Google Scholar 

  4. Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W. & Kelley, K. W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci. 9, 46–56 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dantzer, R. Neuroimmune Interactions: from the brain to the immune system and vice versa. Physiol. Rev. 98, 477–504 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Hodes, G. E., Kana, V., Menard, C., Merad, M. & Russo, S. J. Neuroimmune mechanisms of depression. Nat. Neurosci. 18, 1386–1393 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Menard, C. et al. Social stress induces neurovascular pathology promoting depression. Nat. Neurosci. 20, 1752–1760 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Oines, E., Murison, R., Mrdalj, J., Grønli, J. & Milde, A. M. Neonatal maternal separation in male rats increases intestinal permeability and affects behavior after chronic social stress. Physiol. Behav. 105, 1058–1066 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Margaretten, M., Julian, L., Katz, P. & Yelin, E. Depression in patients with rheumatoid arthritis: description, causes and mechanisms. Int. J. Clin. Rheumatol. 6, 617–623 (2011).

    Article  Google Scholar 

  10. Halaris, A. Inflammation-associated co-morbidity between depression and cardiovascular disease. Curr. Top. Behav. Neurosci. 31, 45–70 (2017).

    Article  PubMed  Google Scholar 

  11. Chan, K. L., Cathomas, F. & Russo, S. J. Central and peripheral inflammation link metabolic syndrome and major depressive disorder. Physiology 34, 123–133 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barberio, B., Zamani, M., Black, C. J., Savarino, E. V. & Ford, A. C. Prevalence of symptoms of anxiety and depression in patients with inflammatory bowel disease: a systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 6, 359–370 (2021).

    Article  PubMed  Google Scholar 

  13. Katze, M. G., He, Y. & Gale, M. Viruses and interferon: a fight for supremacy. Nat. Rev. Immunol. 2, 675–687 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Renault, P. F. et al. Psychiatric complications of long-term interferon alfa therapy. Arch. Intern. Med. 147, 1577–1580 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Benros, M. E. et al. Autoimmune diseases and severe infections as risk factors for mood disorders: a nationwide study. JAMA Psychiatry 70, 812–820 (2013).

    Article  PubMed  Google Scholar 

  16. Wolfe, F. & Michaud, K. Predicting depression in rheumatoid arthritis: the signal importance of pain extent and fatigue, and comorbidity. Arthritis Rheum. 61, 667–673 (2009).

    Article  PubMed  Google Scholar 

  17. Bzdok, D. & Dunbar, R. I. M. Social isolation and the brain in the pandemic era. Nat. Hum. Behav. 6, 1333–1343 (2022).

    Article  PubMed  Google Scholar 

  18. Blume, J., Douglas, S. D. & Evans, D. L. Immune suppression and immune activation in depression. Brain Behav. Immun. 25, 221–229 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Andersson, N. W. et al. Depression and the risk of severe infections: prospective analyses on a nationwide representative sample. Int. J. Epidemiol. 45, 131–139 (2016).

    Article  PubMed  Google Scholar 

  20. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5 (APA, 2013).

  21. Dowlati, Y. et al. A meta-analysis of cytokines in major depression. Biol. Psychiatry 67, 446–457 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Leighton, S. P. et al. Chemokines in depression in health and in inflammatory illness: a systematic review and meta-analysis. Mol. Psychiatry 23, 48–58 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Maes, M. et al. Increased serum IL-6 and IL-1 receptor antagonist concentrations in major depression and treatment resistant depression. Cytokine 9, 853–858 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Simon, N. M. et al. A detailed examination of cytokine abnormalities in major depressive disorder. Eur. Neuropsychopharmacol. 18, 230–233 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Hodes, G. E. et al. Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress. Proc. Natl Acad. Sci. USA 111, 16136–16141 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pace, T. W. W. et al. Increased stress-induced inflammatory responses in male patients with major depression and increased early life stress. Am. J. Psychiatry 163, 1630–1633 (2006).

    Article  PubMed  Google Scholar 

  27. Brydon, L. et al. Psychological stress activates interleukin-1beta gene expression in human mononuclear cells. Brain Behav. Immun. 19, 540–546 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Stewart, A. M. et al. Cytokine and endocrine parameters in mouse chronic social defeat: implications for translational ‘cross-domain’ modeling of stress-related brain disorders. Behav. Brain Res. 276, 84–91 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Tagliari, B. et al. Chronic variable stress alters inflammatory and cholinergic parameters in hippocampus of rats. Neurochem. Res. 36, 487–493 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Deonaraine, K. K. et al. Sex-specific peripheral and central responses to stress-induced depression and treatment in a mouse model. J. Neurosci. Res. 98, 2541–2553 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Harpaz, I. et al. Chronic exposure to stress predisposes to higher autoimmune susceptibility in C57BL/6 mice: glucocorticoids as a double-edged sword. Eur. J. Immunol. 43, 758–769 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Gao, X. et al. Chronic stress promotes colitis by disturbing the gut microbiota and triggering immune system response. Proc. Natl Acad. Sci. USA 115, E2960–E2969 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Heidt, T. et al. Chronic variable stress activates hematopoietic stem cells. Nat. Med. 20, 754–758 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van der Kooij, M. A. et al. Chronic social stress-induced hyperglycemia in mice couples individual stress susceptibility to impaired spatial memory. Proc. Natl Acad. Sci. USA 115, E10187–E10196 (2018).

    PubMed  PubMed Central  Google Scholar 

  35. Felten, D. L. & Felten, S. Y. Sympathetic noradrenergic innervation of immune organs. Brain Behav. Immun. 2, 293–300 (1988).

    Article  CAS  PubMed  Google Scholar 

  36. Saleeba, C., Dempsey, B., Le, S., Goodchild, A. & McMullan, S. A student’s guide to neural circuit tracing. Front. Neurosci. 13, 897 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dénes, A. et al. Central autonomic control of the bone marrow: multisynaptic tract tracing by recombinant pseudorabies virus. Neuroscience 134, 947–963 (2005).

    Article  PubMed  Google Scholar 

  38. Wee, N. K. Y., Lorenz, M. R., Bekirov, Y., Jacquin, M. F. & Scheller, E. L. Shared autonomic pathways connect bone marrow and peripheral adipose tissues across the central neuraxis. Front. Endocrinol. 10, 668 (2019).

    Article  Google Scholar 

  39. Zhong, P. et al. HCN2 channels in the ventral tegmental area regulate behavioral responses to chronic stress. eLife 7, e32420 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Russo, S. J. & Nestler, E. J. The brain reward circuitry in mood disorders. Nat. Rev. Neurosci. 14, 609–625 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Kumar, P. et al. Impaired reward prediction error encoding and striatal-midbrain connectivity in depression. Neuropsychopharmacology 43, 1581–1588 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nestler, E. J. & Carlezon, W. A. The mesolimbic dopamine reward circuit in depression. Biol. Psychiatry 59, 1151–1159 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Li, L. et al. Social trauma engages lateral septum circuitry to occlude social reward. Nature 613, 696–703 (2023).

    Article  CAS  PubMed  Google Scholar 

  44. Hahn, M. K. & Bannon, M. J. Stress-induced C-fos expression in the rat locus coeruleus is dependent on neurokinin 1 receptor activation. Neuroscience 94, 1183–1188 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, H. et al. α1- and β3-adrenergic receptor-mediated mesolimbic homeostatic plasticity confers resilience to social stress in susceptible mice. Biol. Psychiatry 85, 226–236 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Isingrini, E. et al. Resilience to chronic stress is mediated by noradrenergic regulation of dopamine neurons. Nat. Neurosci. 19, 560–563 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Senba, E., Matsunaga, K., Tohyama, M. & Noguchi, K. Stress-induced c-fos expression in the rat brain: activation mechanism of sympathetic pathway. Brain Res. Bull. 31, 329–344 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. de Medeiros, M. A., Carlos Reis, L. & Eugênio Mello, L. Stress-induced c-Fos expression is differentially modulated by dexamethasone, diazepam and imipramine. Neuropsychopharmacology 30, 1246–1256 (2005).

    Article  PubMed  Google Scholar 

  49. Gomes-de-Souza, L., Costa-Ferreira, W., Mendonça, M. M., Xavier, C. H. & Crestani, C. C. Lateral hypothalamus involvement in control of stress response by bed nucleus of the stria terminalis endocannabinoid neurotransmission in male rats. Sci. Rep. 11, 16133 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yuan, Y. et al. Reward inhibits paraventricular CRH neurons to relieve stress. Curr. Biol. 29, 1243–1251 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Kwon, M.-S. et al. The differential effects of emotional or physical stress on pain behaviors or on c-Fos immunoreactivity in paraventricular nucleus or arcuate nucleus. Brain Res. 1190, 122–131 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Herman, J. P. et al. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr. Physiol. 6, 603–621 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lebow, M. A. & Chen, A. Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders. Mol. Psychiatry 21, 450–463 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Numa, C. et al. Social defeat stress-specific increase in c-Fos expression in the extended amygdala in mice: involvement of dopamine D1 receptor in the medial prefrontal cortex. Sci. Rep. 9, 16670 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Keifer, O. P., Hurt, R. C., Ressler, K. J. & Marvar, P. J. The physiology of fear: reconceptualizing the role of the central amygdala in fear learning. Physiology 30, 389–401 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Engler, H., Bailey, M. T., Engler, A. & Sheridan, J. F. Effects of repeated social stress on leukocyte distribution in bone marrow, peripheral blood and spleen. J. Neuroimmunol. 148, 106–115 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Pfau, M. L. et al. Role of monocyte-derived microRNA106b25 in resilience to social stress. Biol. Psychiatry 86, 474–482 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Seidel, A. et al. Major depressive disorder is associated with elevated monocyte counts. Acta Psychiatr. Scand. 94, 198–204 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. McKim, D. B. et al. Social stress mobilizes hematopoietic stem cells to establish persistent splenic myelopoiesis. Cell Rep. 25, 2552–2562.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hanoun, M., Maryanovich, M., Arnal-Estapé, A. & Frenette, P. S. Neural regulation of hematopoiesis, inflammation, and cancer. Neuron 86, 360–373 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cosentino, M., Marino, F. & Maestroni, G. J. M. Sympathoadrenergic modulation of hematopoiesis: a review of available evidence and of therapeutic perspectives. Front. Cell. Neurosci. 9, 302 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Eash, K. J., Means, J. M., White, D. W. & Link, D. C. CXCR4 is a key regulator of neutrophil release from the bone marrow under basal and stress granulopoiesis conditions. Blood 113, 4711–4719 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chong, S. Z. et al. CXCR4 identifies transitional bone marrow premonocytes that replenish the mature monocyte pool for peripheral responses. J. Exp. Med. 213, 2293–2314 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Jung, H., Mithal, D. S., Park, J. E. & Miller, R. J. Localized CCR2 activation in the bone marrow niche mobilizes monocytes by desensitizing CXCR4. PLoS ONE 10, e0128387 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Niraula, A., Wang, Y., Godbout, J. P. & Sheridan, J. F. Corticosterone production during repeated social defeat causes monocyte mobilization from the bone marrow, glucocorticoid resistance, and neurovascular adhesion molecule expression. J. Neurosci. 38, 2328–2340 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Won, E. & Kim, Y.-K. Stress, the autonomic nervous system, and the immune-kynurenine pathway in the etiology of depression. Curr. Neuropharmacol. 14, 665–673 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jones, B. E. & Yang, T. Z. The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat. J. Comp. Neurol. 242, 56–92 (1985).

    Article  CAS  PubMed  Google Scholar 

  68. Kenney, M. J., Weiss, M. L. & Haywood, J. R. The paraventricular nucleus: an important component of the central neurocircuitry regulating sympathetic nerve outflow. Acta Physiol. Scand. 177, 7–15 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Poller, W. C. et al. Brain motor and fear circuits regulate leukocytes during acute stress. Nature 607, 578–584 (2022). Identifies brain circuits controlling monocyte, neutrophil and lymphocyte retention and mobilization from the bone marrow into circulation during acute stress.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wohleb, E. S., McKim, D. B., Sheridan, J. F. & Godbout, J. P. Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior. Front. Neurosci. 8, 447 (2014).

    PubMed  Google Scholar 

  71. Sawant, K. V. et al. Chemokine CXCL1 mediated neutrophil recruitment: role of glycosaminoglycan interactions. Sci. Rep. 6, 33123 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ben-Shaanan, T. L. et al. Activation of the reward system boosts innate and adaptive immunity. Nat. Med. 22, 940–944 (2016). Shows that stimulating VTA neurons enhances peripheral bactericidal function and improves social behaviour.

    Article  CAS  PubMed  Google Scholar 

  73. Kaster, M. P., Gadotti, V. M., Calixto, J. B., Santos, A. R. S. & Rodrigues, A. L. S. Depressive-like behavior induced by tumor necrosis factor-α in mice. Neuropharmacology 62, 419–426 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Dudek, K. A. et al. Molecular adaptations of the blood-brain barrier promote stress resilience vs. depression. Proc. Natl Acad. Sci. USA 117, 3326–3336 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Garcia-Oscos, F. et al. Vagal nerve stimulation blocks interleukin 6-dependent synaptic hyperexcitability induced by lipopolysaccharide-induced acute stress in the rodent prefrontal cortex. Brain Behav. Immun. 43, 149–158 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Russo, S. et al. Peripheral immune-derived matrix metalloproteinase promotes stress susceptibility. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-1647827/v1 (2023).

  77. Zhang, K. et al. Splenic NKG2D confers resilience versus susceptibility in mice after chronic social defeat stress: beneficial effects of (R)-ketamine. Eur. Arch. Psychiatry Clin. Neurosci. 271, 447–456 (2021).

    Article  PubMed  Google Scholar 

  78. De Silva, N. S. & Klein, U. Dynamics of B cells in germinal centres. Nat. Rev. Immunol. 15, 137–148 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wei, Y. et al. Brain-spleen axis in health and diseases: a review and future perspective. Brain Res. Bull. 182, 130–140 (2022).

    Article  PubMed  Google Scholar 

  80. Zhang, X. et al. Brain control of humoral immune responses amenable to behavioural modulation. Nature 581, 204–208 (2020). Shows that optogenetic stimulation of stress-responsive CNS regions influences splenic plasma cell production.

    Article  CAS  PubMed  Google Scholar 

  81. Cano, G., Sved, A. F., Rinaman, L., Rabin, B. S. & Card, J. P. Characterization of the central nervous system innervation of the rat spleen using viral transneuronal tracing. J. Comp. Neurol. 439, 1–18 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Strehl, C., Ehlers, L., Gaber, T. & Buttgereit, F. Glucocorticoids-all-rounders tackling the versatile players of the immune system. Front. Immunol. 10, 1744 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kressel, A. M. et al. Identification of a brainstem locus that inhibits tumor necrosis factor. Proc. Natl Acad. Sci. USA 117, 29803–29810 (2020). Investigates the role of parasympathetic spleen innervation in regulating TNF production to limit inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Breit, S., Kupferberg, A., Rogler, G. & Hasler, G. Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders. Front. Psychiatry 9, 44 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Monteiro, S. et al. Splenic sympathetic signaling contributes to acute neutrophil infiltration of the injured spinal cord. J. Neuroinflammation 17, 282 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Geerling, J. C., Shin, J.-W., Chimenti, P. C. & Loewy, A. D. Paraventricular hypothalamic nucleus: axonal projections to the brainstem. J. Comp. Neurol. 518, 1460–1499 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Gray, T. S. & Magnuson, D. J. Neuropeptide neuronal efferents from the bed nucleus of the stria terminalis and central amygdaloid nucleus to the dorsal vagal complex in the rat. J. Comp. Neurol. 262, 365–374 (1987).

    Article  CAS  PubMed  Google Scholar 

  88. Abe, C. et al. C1 neurons mediate a stress-induced anti-inflammatory reflex in mice. Nat. Neurosci. 20, 700–707 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rosas-Ballina, M. et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98–101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. He, Z.-G. et al. Neuroanatomical autonomic substrates of brainstem-gut circuitry identified using transsynaptic tract-tracing with pseudorabies virus recombinants. Am. J. Clin. Exp. Immunol. 7, 16–24 (2018).

    PubMed  PubMed Central  Google Scholar 

  91. Muller, P. A. et al. Microbiota modulate sympathetic neurons via a gut-brain circuit. Nature 583, 441–446 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Parker, C. G., Dailey, M. J., Phillips, H. & Davis, E. A. Central sensory-motor crosstalk in the neural gut-brain axis. Auton. Neurosci. Basic. Clin. 225, 102656 (2020).

    Article  CAS  Google Scholar 

  93. Matsuda, S. et al. Persistent c-fos expression in the brains of mice with chronic social stress. Neurosci. Res. 26, 157–170 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Foster, J. A., Rinaman, L. & Cryan, J. F. Stress & the gut-brain axis: regulation by the microbiome. Neurobiol. Stress 7, 124–136 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Zhu, X. et al. Dectin-1 signaling on colonic γδ T cells promotes psychosocial stress responses. Nat. Immunol. 24, 625–636 (2023).

    Article  CAS  PubMed  Google Scholar 

  96. Fadgyas-Stanculete, M., Buga, A.-M., Popa-Wagner, A. & Dumitrascu, D. L. The relationship between irritable bowel syndrome and psychiatric disorders: from molecular changes to clinical manifestations. J. Mol. Psychiatry 2, 4 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Million, M., Taché, Y. & Anton, P. Susceptibility of lewis and fischer rats to stress-induced worsening of TNB-colitis: protective role of brain CRF. Am. J. Physiol. 276, G1027–G1036 (1999).

    CAS  PubMed  Google Scholar 

  98. Sherman, J. E. & Kalin, N. H. ICV-CRH alters stress-induced freezing behavior without affecting pain sensitivity. Pharmacol. Biochem. Behav. 30, 801–807 (1988).

    Article  CAS  PubMed  Google Scholar 

  99. Yamada, H., Tanno, S., Takakusaki, K. & Okumura, T. Intracisternal injection of orexin-A prevents ethanol-induced gastric mucosal damage in rats. J. Gastroenterol. 42, 336–341 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Schneider, K. M. et al. The enteric nervous system relays psychological stress to intestinal inflammation. Cell 186, 2823–2838.e20 (2023). Characterizes an HPA axis-based pathway in which enteric glia become activated by stress to exacerbate DSS-induced colitis.

    Article  CAS  PubMed  Google Scholar 

  101. Koren, T. et al. Insular cortex neurons encode and retrieve specific immune responses. Cell 184, 5902–5915.e17 (2021). Demonstrates that the insular cortex can encode and re-activate immunological memory of peripheral inflammation in the gut.

    Article  CAS  PubMed  Google Scholar 

  102. Cardoso, V. et al. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature 549, 277–281 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Xu, H. et al. Transcriptional atlas of intestinal immune cells reveals that neuropeptide α-CGRP modulates group 2 innate lymphoid cell responses. Immunity 51, 696–708 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gross Margolis, K. et al. Enteric serotonin and oxytocin: endogenous regulation of severity in a murine model of necrotizing enterocolitis. Am. J. Physiol. Gastrointest. Liver Physiol. 313, G386–G398 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Udit, S., Blake, K. & Chiu, I. M. Somatosensory and autonomic neuronal regulation of the immune response. Nat. Rev. Neurosci. 23, 157–171 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Santos, J., Yang, P. C., Söderholm, J. D., Benjamin, M. & Perdue, M. H. Role of mast cells in chronic stress induced colonic epithelial barrier dysfunction in the rat. Gut 48, 630–636 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Demaude, J., Salvador-Cartier, C., Fioramonti, J., Ferrier, L. & Bueno, L. Phenotypic changes in colonocytes following acute stress or activation of mast cells in mice: implications for delayed epithelial barrier dysfunction. Gut 55, 655–661 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Stevens, B. R. et al. Increased human intestinal barrier permeability plasma biomarkers zonulin and FABP2 correlated with plasma LPS and altered gut microbiome in anxiety or depression. Gut 57, 1555–1557 (2017).

    Google Scholar 

  109. Vaure, C. & Liu, Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front. Immunol. 5, 316 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Costi, S. et al. Peripheral immune cell reactivity and neural response to reward in patients with depression and anhedonia. Transl. Psychiatry 11, 565 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hung, Y.-Y., Kang, H.-Y., Huang, K.-W. & Huang, T.-L. Association between toll-like receptors expression and major depressive disorder. Psychiatry Res 220, 283–286 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Dunbar, J. A. et al. Depression: an important comorbidity with metabolic syndrome in a general population. Diabetes Care 31, 2368–2373 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Donath, M. Y. & Shoelson, S. E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 11, 98–107 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Grant, R. W. & Dixit, V. D. Adipose tissue as an immunological organ. Obesity 23, 512–518 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Talukdar, S. et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat. Med. 18, 1407–1412 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Liu, J. et al. Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat. Med. 15, 940–945 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. O’Sullivan, T. E. et al. Adipose-resident group 1 innate lymphoid cells promote obesity-associated insulin resistance. Immunity 45, 428–441 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Winer, D. A. et al. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat. Med. 17, 610–617 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wu, H. et al. T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation 115, 1029–1038 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Wu, D. et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332, 243–247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Misumi, I. et al. Obesity expands a distinct population of t cells in adipose tissue and increases vulnerability to infection. Cell Rep. 27, 514–524 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15, 930–939 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Brestoff, J. R. et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519, 242–246 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Li, P. et al. Functional heterogeneity of CD11c-positive adipose tissue macrophages in diet-induced obese mice. J. Biol. Chem. 285, 15333–15345 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Motoyama, S. et al. Social stress increases vulnerability to high-fat diet-induced insulin resistance by enhancing neutrophil elastase activity in adipose tissue. Cells 9, 996 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Guilherme, A., Henriques, F., Bedard, A. H. & Czech, M. P. Molecular pathways linking adipose innervation to insulin action in obesity and diabetes mellitus. Nat. Rev. Endocrinol. 15, 207–225 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Adler, E. S., Hollis, J. H., Clarke, I. J., Grattan, D. R. & Oldfield, B. J. Neurochemical characterization and sexual dimorphism of projections from the brain to abdominal and subcutaneous white adipose tissue in the rat. J. Neurosci. 32, 15913–15921 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Stanley, S. et al. Identification of neuronal subpopulations that project from hypothalamus to both liver and adipose tissue polysynaptically. Proc. Natl Acad. Sci. USA 107, 7024–7029 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Shi, H. & Bartness, T. J. Neurochemical phenotype of sympathetic nervous system outflow from brain to white fat. Brain Res. Bull. 54, 375–385 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Tang, L. et al. Sympathetic nerve activity maintains an anti-inflammatory state in adipose tissue in male mice by inhibiting TNF-α gene expression in macrophages. Endocrinology 156, 3680–3694 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Cardoso, F. et al. Neuro-mesenchymal units control ILC2 and obesity via a brain-adipose circuit. Nature 597, 410–414 (2021). Identifies a role for the PVH in regulating adipose tissue ILC2s and metabolism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Marik, P. E. & Bellomo, R. Stress hyperglycemia: an essential survival response! Crit. Care Med. 41, e93–e94 (2013).

    Article  PubMed  Google Scholar 

  135. Liu, Y.-Z. et al. Chronic stress induces steatohepatitis while decreases visceral fat mass in mice. BMC Gastroenterol. 14, 106 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Swain, M. G. I. Stress and hepatic inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 279, G1135–G1138 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Shukla, P. K. et al. Chronic stress and corticosterone exacerbate alcohol-induced tissue injury in the gut-liver-brain axis. Sci. Rep. 11, 826 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Morinaga, H. et al. Characterization of distinct subpopulations of hepatic macrophages in HFD/obese mice. Diabetes 64, 1120–1130 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Kreier, F. et al. Tracing from fat tissue, liver, and pancreas: a neuroanatomical framework for the role of the brain in type 2 diabetes. Endocrinology 147, 1140–1147 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Mizuno, K. & Ueno, Y. Autonomic nervous system and the liver. Hepatol. Res. 47, 160–165 (2017).

    Article  PubMed  Google Scholar 

  141. Tsuneki, H. et al. Hypothalamic orexin prevents non-alcoholic steatohepatitis and hepatocellular carcinoma in obesity. Cell Rep. 41, 111497 (2022). Shows that administration of intracerebroventricular orexin or chemogenetic activation of orexin-expressing neurons in the LH dampens hepatic endoplasmic reticulum stress and non-alcoholic steatohepatitis.

    Article  CAS  PubMed  Google Scholar 

  142. Tsuneki, H. et al. Hypothalamic orexin prevents hepatic insulin resistance via daily bidirectional regulation of autonomic nervous system in mice. Diabetes 64, 459–470 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. Lutter, M. et al. Orexin signaling mediates the antidepressant-like effect of calorie restriction. J. Neurosci. 28, 3071–3075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Chung, H.-S., Kim, J.-G., Kim, J.-W., Kim, H.-W. & Yoon, B.-J. Orexin administration to mice that underwent chronic stress produces bimodal effects on emotion-related behaviors. Regul. Pept. 194–195, 16–22 (2014).

    Article  PubMed  Google Scholar 

  145. Kim, J. G., Ea, J. Y. & Yoon, B.-J. Orexinergic neurons modulate stress coping responses in mice. Front. Mol. Neurosci. 16, 1140672 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Dergacheva, O., Yamanaka, A., Schwartz, A. R., Polotsky, V. Y. & Mendelowitz, D. Direct projections from hypothalamic orexin neurons to brainstem cardiac vagal neurons. Neuroscience 339, 47–53 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Nishio, T. et al. Hepatic vagus nerve regulates Kupffer cell activation via α7 nicotinic acetylcholine receptor in nonalcoholic steatohepatitis. J. Gastroenterol. 52, 965–976 (2017). Demonstrates that vagal stimulation of the liver decreases hepatic macrophage counts and cytokine expression in a model of non-alcoholic steatohepatitis.

    Article  CAS  PubMed  Google Scholar 

  148. Hur, M. H. et al. Chemogenetic stimulation of the parasympathetic nervous system lowers hepatic lipid accumulation and inflammation in a nonalcoholic steatohepatitis mouse model. Life Sci. 321, 121533 (2023).

    Article  CAS  PubMed  Google Scholar 

  149. Segerstrom, S. C. & Miller, G. E. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol. Bull. 130, 601–630 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Kiank, C. et al. Stress susceptibility predicts the severity of immune depression and the failure to combat bacterial infections in chronically stressed mice. Brain. Behav. Immun. 20, 359–368 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Luo, Z. et al. Novel insights into stress-induced susceptibility to influenza: corticosterone impacts interferon-β responses by Mfn2-mediated ubiquitin degradation of MAVS. Signal. Transduct. Target. Ther. 5, 202 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Dhabhar, F. S. Enhancing versus suppressive effects of stress on immune function: implications for immunoprotection and immunopathology. Neuroimmunomodulation 16, 300–317 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Russo, S. J., Murrough, J. W., Han, M.-H., Charney, D. S. & Nestler, E. J. Neurobiology of resilience. Nat. Neurosci. 15, 1475–1484 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Quatrini, L. & Ugolini, S. New insights into the cell- and tissue-specificity of glucocorticoid actions. Cell. Mol. Immunol. 18, 269–278 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Li, S.-B. et al. Hypothalamic circuitry underlying stress-induced insomnia and peripheral immunosuppression. Sci. Adv. 6, eabc2590 (2020). Profiles circulating leukocyte populations following PVH stimulation and reports an immunosuppressed phenotypic switch.

    Article  CAS  PubMed  Google Scholar 

  156. Bourhy, L. et al. Silencing of amygdala circuits during sepsis prevents the development of anxiety-related behaviours. Brain J. Neurol. 145, 1391–1409 (2022).

    Article  Google Scholar 

  157. Chai, H.-H. et al. The chemokine CXCL1 and its receptor CXCR2 contribute to chronic stress-induced depression in mice. FASEB J. 33, 8853–8864 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Korolkova, O. Y., Myers, J. N., Pellom, S. T., Wang, L. & M’Koma, A. E. Characterization of serum cytokine profile in predominantly colonic inflammatory bowel disease to delineate ulcerative and Crohn’s colitides. Clin. Med. Insights Gastroenterol. 8, 29–44 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Singh, U. P. et al. Chemokine and cytokine levels in inflammatory bowel disease patients. Cytokine 77, 44–49 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Sanchez-Munoz, F., Dominguez-Lopez, A. & Yamamoto-Furusho, J.-K. Role of cytokines in inflammatory bowel disease. World J. Gastroenterol. 14, 4280–4288 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Tatsuki, M. et al. Serological cytokine signature in paediatric patients with inflammatory bowel disease impacts diagnosis. Sci. Rep. 10, 14638 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Martinez-Fierro, M. L. et al. Serum cytokine, chemokine, and growth factor profiles and their modulation in inflammatory bowel disease. Medicine 98, e17208 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Alex, P. et al. Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflamm. Bowel Dis. 15, 341–352 (2009).

    Article  PubMed  Google Scholar 

  164. Xing, L. et al. The anti-inflammatory effect of bovine bone-gelatin-derived peptides in LPS-induced RAW264.7 macrophages cells and dextran sulfate sodium-induced C57BL/6 mice. Nutrients 14, 1479 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Aygun, A. D., Gungor, S., Ustundag, B., Gurgoze, M. K. & Sen, Y. Proinflammatory cytokines and leptin are increased in serum of prepubertal obese children. Mediators Inflamm. 2005, 180–183 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Bastard, J. P. et al. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J. Clin. Endocrinol. Metab. 85, 3338–3342 (2000).

    CAS  PubMed  Google Scholar 

  167. Catalán, V. et al. Proinflammatory cytokines in obesity: impact of type 2 diabetes mellitus and gastric bypass. Obes. Surg. 17, 1464–1474 (2007).

    Article  PubMed  Google Scholar 

  168. Jung, C., Gerdes, N., Fritzenwanger, M. & Figulla, H. R. Circulating levels of interleukin-1 family cytokines in overweight adolescents. Mediators Inflamm. 2010, 958403 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Schmidt, F. M. et al. Inflammatory cytokines in general and central obesity and modulating effects of physical activity. PLoS ONE 10, e0121971 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Kim, C.-S. et al. Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters. Int. J. Obes. 30, 1347–1355 (2006).

    Article  CAS  Google Scholar 

  171. Kopasov, A. E., Blokhin, S. N., Volkova, E. N. & Morozov, S. G. Chemokine expression in neutrophils and subcutaneous adipose tissue cells obtained during abdominoplasty from patients with obesity and normal body weight. Bull. Exp. Biol. Med. 167, 728–731 (2019).

    Article  CAS  PubMed  Google Scholar 

  172. Kim, K.-A., Gu, W., Lee, I.-A., Joh, E.-H. & Kim, D.-H. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS ONE 7, e47713 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Chavey, C. et al. CXC ligand 5 is an adipose-tissue derived factor that links obesity to insulin resistance. Cell Metab. 9, 339–349 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Nunemaker, C. S. et al. Increased serum CXCL1 and CXCL5 are linked to obesity, hyperglycemia, and impaired islet function. J. Endocrinol. 222, 267–276 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. O’Neill, C. M. et al. Circulating levels of IL-1B+IL-6 cause ER stress and dysfunction in islets from prediabetic male mice. Endocrinology 154, 3077–3088 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Kępczyńska, M. A. et al. Circulating levels of the cytokines IL10, IFNγ and resistin in an obese mouse model of developmental programming. J. Dev. Orig. Health Dis. 4, 491–498 (2013).

    Article  PubMed  Google Scholar 

  177. Takahashi, K. et al. Adiposity elevates plasma MCP-1 levels leading to the increased CD11b-positive monocytes in mice. J. Biol. Chem. 278, 46654–46660 (2003).

    Article  CAS  PubMed  Google Scholar 

  178. Xu, Y. et al. Ginsenoside Rg1 protects against non-alcoholic fatty liver disease by ameliorating lipid peroxidation, endoplasmic reticulum stress, and inflammasome activation. Biol. Pharm. Bull. 41, 1638–1644 (2018).

    Article  CAS  PubMed  Google Scholar 

  179. Min, X. et al. Serum cytokine profile in relation to the severity of coronary artery disease. BioMed. Res. Int. 2017, 4013685 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Mirhafez, S. R. et al. Relationship between serum cytokine and growth factor concentrations and coronary artery disease. Clin. Biochem. 48, 575–580 (2015).

    Article  CAS  PubMed  Google Scholar 

  181. Hasdai, D. et al. Increased serum concentrations of interleukin-1 beta in patients with coronary artery disease. Heart 76, 24–28 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Koh, S. J. et al. Association of serum RANTES concentrations with established cardiovascular risk markers in middle-aged subjects. Int. J. Cardiol. 132, 102–108 (2009).

    Article  PubMed  Google Scholar 

  183. Ye, Y. et al. Serum chemokine CCL17/thymus activation and regulated chemokine is correlated with coronary artery diseases. Atherosclerosis 238, 365–369 (2015).

    Article  CAS  PubMed  Google Scholar 

  184. Versteylen, M. O. et al. CC chemokine ligands in patients presenting with stable chest pain: association with atherosclerosis and future cardiovascular events. Neth. Heart J. 24, 722–729 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Yin, M., Zhang, L., Sun, X., Mao, L. & Pan, J. Lack of apoE causes alteration of cytokines expression in young mice liver. Mol. Biol. Rep. 37, 2049–2054 (2010).

    Article  CAS  PubMed  Google Scholar 

  186. Naura, A. S. et al. High-fat diet induces lung remodeling in ApoE-deficient mice: an association with an increase in circulatory and lung inflammatory factors. Lab. Invest. 89, 1243–1251 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Lv, J. et al. Amygdalin ameliorates the progression of atherosclerosis in LDL receptor-deficient mice. Mol. Med. Rep. 16, 8171–8179 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Soehnlein, O. et al. Distinct functions of chemokine receptor axes in the atherogenic mobilization and recruitment of classical monocytes. EMBO Mol. Med. 5, 471–481 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Berton, O. et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311, 864–868 (2006).

    Article  CAS  PubMed  Google Scholar 

  190. Bondi, C. O., Rodriguez, G., Gould, G. G., Frazer, A. & Morilak, D. A. Chronic unpredictable stress induces a cognitive deficit and anxiety-like behavior in rats that is prevented by chronic antidepressant drug treatment. Neuropsychopharmacology 33, 320–331 (2008).

    Article  CAS  PubMed  Google Scholar 

  191. Wallace, D. L. et al. CREB regulation of nucleus accumbens excitability mediates social isolation-induced behavioral deficits. Nat. Neurosci. 12, 200–209 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Takahashi, A. et al. Establishment of a repeated social defeat stress model in female mice. Sci. Rep. 7, 12838 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  193. LeClair, K. B. et al. Individual history of winning and hierarchy landscape influence stress susceptibility in mice. eLife 10, e71401 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Liu, J. et al. Impaired adult myelination in the prefrontal cortex of socially isolated mice. Nat. Neurosci. 15, 1621–1623 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Labonté, B. et al. Sex-specific transcriptional signatures in human depression. Nat. Med. 23, 1102–1111 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Chuang, J.-C. et al. A beta3-adrenergic-leptin-melanocortin circuit regulates behavioral and metabolic changes induced by chronic stress. Biol. Psychiatry 67, 1075–1082 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Krishnan, V. et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131, 391–404 (2007).

    Article  CAS  PubMed  Google Scholar 

  198. McCullough, K. M. et al. Nucleus accumbens medium spiny neuron subtypes differentially regulate stress-associated alterations in sleep architecture. Biol. Psychiatry 89, 1138–1149 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Warren, B. L., Mazei-Robison, M. S., Robison, A. J. & Iñiguez, S. D. Can I get a witness? Using vicarious defeat stress to study mood-related illnesses in traditionally understudied populations. Biol. Psychiatry 88, 381–391 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Harris, A. Z. et al. A novel method for chronic social defeat stress in female mice. Neuropsychopharmacology 43, 1276–1283 (2018).

    Article  PubMed  Google Scholar 

  201. Newman, E. L. et al. Fighting females: neural and behavioral consequences of social defeat stress in female mice. Biol. Psychiatry 86, 657–668 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Barrot, M. et al. Regulation of anxiety and initiation of sexual behavior by CREB in the nucleus accumbens. Proc. Natl Acad. Sci. USA 102, 8357–8362 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Scarpa, J. R. et al. Shared transcriptional signatures in major depressive disorder and mouse chronic stress models. Biol. Psychiatry 88, 159–168 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Hodes, G. E. et al. Sex differences in nucleus accumbens transcriptome profiles associated with susceptibility versus resilience to subchronic variable stress. J. Neurosci. 35, 16362–16376 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Pothula, S. et al. Positive modulation of NMDA receptors by AGN-241751 exerts rapid antidepressant-like effects via excitatory neurons. Neuropsychopharmacology 46, 799–808 (2021).

    Article  CAS  PubMed  Google Scholar 

  206. Liu, J., Dietz, K., Hodes, G. E., Russo, S. J. & Casaccia, P. Widespread transcriptional alternations in oligodendrocytes in the adult mouse brain following chronic stress. Dev. Neurobiol. 78, 152–162 (2018).

    Article  CAS  PubMed  Google Scholar 

  207. Willner, P. Reliability of the chronic mild stress model of depression: a user survey. Neurobiol. Stress. 6, 68–77 (2017).

    Article  PubMed  Google Scholar 

  208. Ducottet, C. & Belzung, C. Correlations between behaviours in the elevated plus-maze and sensitivity to unpredictable subchronic mild stress: evidence from inbred strains of mice. Behav. Brain Res. 156, 153–162 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all authors who contributed to the work collected and summarized in this Review. This Review was supported by a Postdoctoral Fellowship from the Canadian Institutes of Health Research (201811MFE-414896-231226), a NARSAD Young Investigator Award from the Brain and Behaviour Research Foundation (30894), and a Pathway to Independence Award from the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health (K99DK137037) to K.L.C., a research grant from the Cure Alzheimer’s Fund to W.C.P., National Institutes of Health grants R35HL135752, P01HL131478 and 1P01HL142494 to F.K.S., and R01MH104559 and R01MH127820 to S.J.R. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

K.L.C. and S.J.R. researched data for the article and wrote the article. All authors contributed substantially to the discussion of content and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Kenny L. Chan or Scott J. Russo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Jonathan Godbout and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Chemogenetics

An approach in which specific cellular pathways are activated or inhibited using engineered protein receptors that respond to previously unrecognized small molecules.

Chemokines

Chemotactic cytokines that stimulate the migration of cells.

Cytokines

Secreted proteins that act as signalling molecules for the immune system.

Granulocyte

Leukocytes containing cytoplasmic secretory granules such as neutrophils, basophils and eosinophils.

Leukocytes

A type of blood cell made in the bone marrow and found within blood and lymphoid tissue as part of the immune system.

Lymphocytopenia

A reduction in the number of lymphocytes in the blood.

Lymphopoiesis

The production of lymphocytes from progenitor cells.

Monocytosis

An increase in the number of monocytes in the blood.

Myelopoiesis

The production of myeloid cells from progenitor cells.

Neutrophilia

An increase in the number of neutrophils in the blood.

Optogenetics

An approach in which light-sensitive ion channels, pumps or enzymes are used to regulate the activity of specific neurons in the brain or periphery.

Plasma cells

Effector B lymphocytes that produce antibodies.

Resilience

The ability to maintain normal physiological and behavioural function in the face of severe stress.

Reward

A positive emotional stimulus. In psychological terms, a reward is reinforcing — it promotes repeated responses to obtain the same stimulus.

Splenomegaly

An enlargement of the spleen.

Susceptible

Having increased vulnerability to succumb to the deleterious effects of stress.

Ventral tegmental area

VTA. A ventral midbrain site containing dopaminergic neurons that are an essential component of the reward circuitry in the brain.

Viral tracing

The use of trans-synaptic self-replicating viruses to identify neural pathways.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, K.L., Poller, W.C., Swirski, F.K. et al. Central regulation of stress-evoked peripheral immune responses. Nat. Rev. Neurosci. 24, 591–604 (2023). https://doi.org/10.1038/s41583-023-00729-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-023-00729-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing