Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of axonal support by oligodendrocyte-derived extracellular vesicles

Abstract

Extracellular vesicles (EVs) have recently emerged as versatile elements of cell communication in the nervous system, mediating tissue homeostasis. EVs influence the physiology of their target cells via horizontal transfer of molecular cargo between cells and by triggering signalling pathways. In this Review, we discuss recent work revealing that EVs mediate interactions between oligodendrocytes and neurons, which are relevant for maintaining the structural integrity of axons. In response to neuronal activity, myelinating oligodendrocytes release EVs, which are internalized by neurons and provide axons with key factors that improve axonal transport, stress resistance and energy homeostasis. Glia-to-neuron transfer of EVs is thus a crucial facet of axonal preservation. When glial support is impaired, axonal integrity is progressively lost, as observed in myelin-related disorders, other neurodegenerative diseases and with normal ageing. We highlight the mechanisms that oligodendroglial EVs use to sustain axonal integrity and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Axon–glia interactions and proposed axon-supporting functions of oligodendrocytes.
Fig. 2: Exosomes in oligodendrocyte–axon communication.
Fig. 3: Functions of exosomes in axonal maintenance and integrity.
Fig. 4: Mechanisms of glial support: cooperation between exosome-dependent and metabolic support.

Similar content being viewed by others

References

  1. Fields, R. D. et al. Glial biology in learning and cognition. Neuroscientist 20, 426–431 (2014).

    PubMed  PubMed Central  Google Scholar 

  2. Allen, N. J. & Lyons, D. A. Glia as architects of central nervous system formation and function. Science 362, 181–185 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Stassart, R. M., Möbius, W., Nave, K.-A. & Edgar, J. M. The axon–myelin unit in development and degenerative disease. Front. Neurosci. 12, 467 (2018).

    PubMed  PubMed Central  Google Scholar 

  4. Duncan, G. J., Simkins, T. J. & Emery, B. Neuron-oligodendrocyte interactions in the structure and integrity of axons. Front. Cell Dev. Biol. 9, 653101 (2021).

    PubMed  PubMed Central  Google Scholar 

  5. Nave, K.-A. & Werner, H. B. Ensheathment and myelination of axons: evolution of glial functions. Annu. Rev. Neurosci. 44, 197–219 (2021).

    CAS  PubMed  Google Scholar 

  6. Zuchero, J. B. & Barres, B. A. Glia in mammalian development and disease. Development 142, 3805–3809 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Nave, K.-A. & Werner, H. B. Myelination of the nervous system: mechanisms and functions. Annu. Rev. Cell Dev. Biol. 30, 503–533 (2014).

    CAS  PubMed  Google Scholar 

  8. Stadelmann, C., Timmler, S., Barrantes-Freer, A. & Simons, M. Myelin in the central nervous system: structure, function, and pathology. Physiol. Rev. 99, 1381–1431 (2019).

    CAS  PubMed  Google Scholar 

  9. Lubetzki, C., Sol-Foulon, N. & Desmazières, A. Nodes of Ranvier during development and repair in the CNS. Nat. Rev. Neurol. 16, 426–439 (2020).

    PubMed  Google Scholar 

  10. Tasaki, I. The electro-saltatory transmission of the nerve impulse and the effect of narcosis upon the nerve fiber. Am. J. Physiol. Leg. Content 127, 211–227 (1939).

    Google Scholar 

  11. Hartline, D. K. & Colman, D. R. Rapid conduction and the evolution of giant axons and myelinated fibers. Curr. Biol. 17, R29–R35 (2007).

    CAS  PubMed  Google Scholar 

  12. Zalc, B. & Colman, D. R. Origins of vertebrate success. Science 288, 271–272 (2000).

    CAS  PubMed  Google Scholar 

  13. Weil, M.-T. et al. Axonal ensheathment in the nervous system of lamprey: implications for the evolution of myelinating glia. J. Neurosci. 38, 6586–6596 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Verkhratsky, A., Ho, M. S. & Parpura, V. Evolution of neuroglia. Adv. Exp. Med. Biol. 1175, 15–44 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bittern, J. et al. Neuron–glia interaction in the Drosophila nervous system. Dev. Neurobiol. 81, 438–452 (2021).

    PubMed  Google Scholar 

  16. Cuadras, J. & Marti-Subirana, A. Glial cells of the crayfish and their relationships with neurons. An ultrastructural study. J. Physiol. 82, 196–217 (1987).

    CAS  Google Scholar 

  17. Volkenhoff, A. et al. Glial glycolysis is essential for neuronal survival in Drosophila. Cell Metab. 22, 437–447 (2015).

    CAS  PubMed  Google Scholar 

  18. Bourke, A. M., Schwarz, A. & Schuman, E. M. De-centralizing the central dogma: mRNA translation in space and time. Mol. Cell 83, 452–468 (2023).

    CAS  PubMed  Google Scholar 

  19. Frühbeis, C., Fröhlich, D., Kuo, W. P. & Krämer-Albers, E.-M. Extracellular vesicles as mediators of neuron–glia communication. Front. Cell Neurosci. 7, 182 (2013).

    PubMed  PubMed Central  Google Scholar 

  20. Tytell, M., Lasek, R. J. & Gainer, H. Axonal maintenance, glia, exosomes, and heat shock proteins. F1000Res 5, F1000 Faculty Rev-205 (2016).

    PubMed  PubMed Central  Google Scholar 

  21. Buchheit, T. E. & Tytell, M. Transfer of molecules from glia to axon in the squid may be mediated by glial vesicles. J. Neurobiol. 23, 217–230 (1992). This study provided the first evidence of vesicular transfer of molecules from ensheathing glia to giant axons in squid.

    CAS  PubMed  Google Scholar 

  22. Saab, A. S. & Nave, K.-A. Myelin dynamics: protecting and shaping neuronal functions. Curr. Opin. Neurobiol. 47, 104–112 (2017).

    CAS  PubMed  Google Scholar 

  23. Philips, T. & Rothstein, J. D. Oligodendroglia: metabolic supporters of neurons. J. Clin. Investig. 127, 3271–3280 (2017).

    PubMed  PubMed Central  Google Scholar 

  24. Welte, M. A. Expanding roles for lipid droplets. Curr. Biol. 25, R470–R481 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Smolič, T., Zorec, R. & Vardjan, N. Pathophysiology of lipid droplets in neuroglia. Antioxidants 11, 22 (2021).

    PubMed  PubMed Central  Google Scholar 

  26. Olguín-Albuerne, M. & Morán, J. Redox signaling mechanisms in nervous system development. Antioxid. Redox Signal. 28, 1603–1625 (2018).

    PubMed  Google Scholar 

  27. Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21, 363–383 (2020).

    CAS  PubMed  Google Scholar 

  28. van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).

    PubMed  Google Scholar 

  29. Mathieu, M., Martin-Jaular, L., Lavieu, G. & Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 21, 9–17 (2019).

    CAS  PubMed  Google Scholar 

  30. Lo Cicero, A., Stahl, P. D. & Raposo, G. Extracellular vesicles shuffling intercellular messages: for good or for bad. Curr. Opin. Cell Biol. 35, 69–77 (2015).

    CAS  PubMed  Google Scholar 

  31. van Niel, G. et al. Challenges and directions in studying cell–cell communication by extracellular vesicles. Nat. Rev. Mol. Cell Biol. 23, 369–382 (2022).

    PubMed  Google Scholar 

  32. Budnik, V., Ruiz-Cañada, C. & Wendler, F. Extracellular vesicles round off communication in the nervous system. Nat. Rev. Neurosci. 17, 160–172 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Krämer-Albers, E.-M. & Hill, A. F. Extracellular vesicles: interneural shuttles of complex messages. Curr. Opin. Neurobiol. 39, 101–107 (2016).

    PubMed  Google Scholar 

  34. Holm, M. M., Kaiser, J. & Schwab, M. E. Extracellular vesicles: multimodal envoys in neural maintenance and repair. Trends Neurosci. 41, 360–372 (2018).

    CAS  PubMed  Google Scholar 

  35. Schnatz, A., Müller, C., Brahmer, A. & Krämer-Albers, E.-M. Extracellular vesicles in neural cell interaction and CNS homeostasis. FASEB Bioadv. 3, 577–592 (2021).

    PubMed  PubMed Central  Google Scholar 

  36. Saint-Pol, J., Gosselet, F., Duban-Deweer, S., Pottiez, G. & Karamanos, Y. Targeting and crossing the blood–brain barrier with extracellular vesicles. Cells 9, E851 (2020).

    Google Scholar 

  37. Krämer-Albers, E.-M. Extracellular vesicles at CNS barriers: mode of action. Curr. Opin. Neurobiol. 75, 102569 (2022).

    PubMed  Google Scholar 

  38. Korkut, C. et al. Regulation of postsynaptic retrograde signaling by presynaptic exosome release. Neuron 77, 1039–1046 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Pastuzyn, E. D. et al. The neuronal gene arc encodes a repurposed retrotransposon Gag protein that mediates intercellular RNA transfer. Cell 172, 275–288.e18 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ashley, J. et al. Retrovirus-like Gag protein Arc1 binds RNA and traffics across synaptic boutons. Cell 172, 262–274.e11 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Men, Y. et al. Exosome reporter mice reveal the involvement of exosomes in mediating neuron to astroglia communication in the CNS. Nat. Commun. 10, 4136 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Delpech, J.-C., Herron, S., Botros, M. B. & Ikezu, T. Neuroimmune crosstalk through extracellular vesicles in health and disease. Trends Neurosci. 42, 361–372 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Dickens, A. M. et al. Astrocyte-shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions. Sci. Signal. 10, eaai7696 (2017).

    PubMed  PubMed Central  Google Scholar 

  44. Hill, A. F. Extracellular vesicles and neurodegenerative diseases. J. Neurosci. 39, 9269–9273 (2019).

    PubMed  PubMed Central  Google Scholar 

  45. Croese, T. & Furlan, R. Extracellular vesicles in neurodegenerative diseases. Mol. Asp. Med. 60, 52–61 (2018).

    CAS  Google Scholar 

  46. O’Hara, B. A., Morris-Love, J., Gee, G. V., Haley, S. A. & Atwood, W. J. JC virus infected choroid plexus epithelial cells produce extracellular vesicles that infect glial cells independently of the virus attachment receptor. PLoS Pathog. 16, e1008371 (2020).

    PubMed  PubMed Central  Google Scholar 

  47. Bello-Morales, R. et al. Role of microvesicles in the spread of herpes simplex virus 1 in oligodendrocytic cells. J. Virol. 92, e00088-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. Rufino-Ramos, D. et al. Extracellular vesicles: novel promising delivery systems for therapy of brain diseases. J. Control. Rel. 262, 247–258 (2017).

    CAS  Google Scholar 

  49. Cheng, L. & Hill, A. F. Therapeutically harnessing extracellular vesicles. Nat. Rev. Drug Discov. 21, 379–399 (2022).

    CAS  PubMed  Google Scholar 

  50. Rasband, M. N. & Peles, E. Mechanisms of node of Ranvier assembly. Nat. Rev. Neurosci. 22, 7–20 (2021).

    CAS  PubMed  Google Scholar 

  51. Fünfschilling, U. et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485, 517–521 (2012).

    PubMed  PubMed Central  Google Scholar 

  52. Lee, Y. et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487, 443–448 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Frühbeis, C. et al. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte–neuron communication. PLoS Biol. 11, e1001604 (2013). This study demonstrates exosomal oligodendrocyte-to-neuron transfer of cargo that exerts biological activity in receiving cells.

    PubMed  PubMed Central  Google Scholar 

  54. Hsu, C. et al. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J. Cell Biol. 189, 223–232 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Krämer-Albers, E.-M. et al. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: trophic support for axons? Proteom. Clin. Appl. 1, 1446–1461 (2007).

    Google Scholar 

  56. Edgar, J. M. et al. Río-Hortega’s drawings revisited with fluorescent protein defines a cytoplasm-filled channel system of CNS myelin. J. Anat. 239, 1241–1255 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Káradóttir, R., Cavelier, P., Bergersen, L. H. & Attwell, D. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438, 1162–1166 (2005).

    PubMed  PubMed Central  Google Scholar 

  58. Micu, I. et al. The molecular physiology of the axo-myelinic synapse. Exp. Neurol. 276, 41–50 (2016).

    CAS  PubMed  Google Scholar 

  59. Alix, J. J. P., Dolphin, A. C. & Fern, R. Vesicular apparatus, including functional calcium channels, are present in developing rodent optic nerve axons and are required for normal node of Ranvier formation. J. Physiol. 586, 4069–4089 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hines, J. H., Ravanelli, A. M., Schwindt, R., Scott, E. K. & Appel, B. Neuronal activity biases axon selection for myelination in vivo. Nat. Neurosci. 18, 683–689 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Mensch, S. et al. Synaptic vesicle release regulates myelin sheath number of individual oligodendrocytes in vivo. Nat. Neurosci. 18, 628–630 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Micu, I., Plemel, J. R., Caprariello, A. V., Nave, K.-A. & Stys, P. K. Axo-myelinic neurotransmission: a novel mode of cell signalling in the central nervous system. Nat. Rev. Neurosci. 19, 49–58 (2018).

    CAS  PubMed  Google Scholar 

  63. Savina, A., Fader, C. M., Damiani, M. T. & Colombo, M. I. Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic 6, 131–143 (2005).

    CAS  PubMed  Google Scholar 

  64. Verweij, F. J. et al. ER membrane contact sites support endosomal small GTPase conversion for exosome secretion. J. Cell Biol. 221, e202112032 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Feldmann, A. et al. Transport of the major myelin proteolipid protein is directed by VAMP3 and VAMP7. J. Neurosci. 31, 5659–5672 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lam, M. et al. CNS myelination requires VAMP2/3-mediated membrane expansion in oligodendrocytes. Nat. Commun. 13, 5583 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Yergert, K. M., Doll, C.A., O’Rouke, R., Hines, J. H. & Appel, B. Identification of 3′ UTR motifs required for mRNA localization to myelin sheaths in vivo. PLoS Biol. https://doi.org/10.1371/journal.pbio.3001053 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Thakurela, S. et al. The transcriptome of mouse central nervous system myelin. Sci. Rep. 6, 25828 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ainger, K. et al. Transport and localization of exogenous myelin basic protein mRNA microinjected into oligodendrocytes. J. Cell Biol. 123, 431–441 (1993).

    CAS  PubMed  Google Scholar 

  70. Waxman, S. G. & Sims, T. J. Specificity in central myelination: evidence for local regulation of myelin thickness. Brain Res. 292, 179–185 (1984).

    CAS  PubMed  Google Scholar 

  71. White, R. et al. Activation of oligodendroglial Fyn kinase enhances translation of mRNAs transported in hnRNP A2-dependent RNA granules. J. Cell Biol. 181, 579–586 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wake, H., Lee, P. R. & Fields, R. D. Control of local protein synthesis and initial events in myelination by action potentials. Science 333, 1647–1651 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Krämer-Albers, E.-M. & White, R. From axon–glial signalling to myelination: the integrating role of oligodendroglial Fyn kinase. Cell Mol. Life Sci. 68, 2003–2012 (2011).

    PubMed  Google Scholar 

  74. Saab, A. S. et al. Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron 91, 119–132 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Looser, Z. J. et al. Potassium regulates axon-oligodendrocyte signaling and metabolic coupling in white matter. Preprint at bioRxiv https://doi.org/10.1101/2022.11.08.515614 (2022).

    Article  Google Scholar 

  76. Baietti, M. F. et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat. Cell Biol. 14, 677–685 (2012).

    CAS  PubMed  Google Scholar 

  77. Trajkovic, K. et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247 (2008).

    CAS  PubMed  Google Scholar 

  78. Larios, J., Mercier, V., Roux, A. & Gruenberg, J. ALIX- and ESCRT-III-dependent sorting of tetraspanins to exosomes. J. Cell Biol. 219, e201904113 (2020).

    PubMed  PubMed Central  Google Scholar 

  79. van Niel, G. et al. The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev. Cell 21, 708–721 (2011).

    PubMed  PubMed Central  Google Scholar 

  80. Mukherjee, C. et al. Oligodendrocytes provide antioxidant defense function for neurons by secreting ferritin heavy chain. Cell Metab. 32, 259–272 (2020). This study identifies ferritin as an exosomal cargo that is conserved between insect ensheathing glia and mammalian oligodendrocytes and facilitates antioxidant defence to prevent neurodegeneration.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Coetzee, T., Suzuki, K. & Popko, B. New perspectives on the function of myelin galactolipids. Trends Neurosci. 21, 126–130 (1998).

    CAS  PubMed  Google Scholar 

  82. Villarroya-Beltri, C. et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat. Commun. 4, 2980 (2013).

    PubMed  Google Scholar 

  83. Kunadt, M. et al. Extracellular vesicle sorting of α-synuclein is regulated by sumoylation. Acta Neuropathol. 129, 695–713 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Carnino, J. M., Ni, K. & Jin, Y. Post-translational modification regulates formation and cargo-loading of extracellular vesicles. Front. Immunol. 11, 948 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Perez-Hernandez, D. et al. The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. J. Biol. Chem. 288, 11649–11661 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Frühbeis, C. et al. Oligodendrocytes support axonal transport and maintenance via exosome secretion. PLoS Biol. 18, e3000621 (2020). This study shows how impaired oligodendroglial exosomes fail to support axonal transport and axonal preservation in two mouse models of severe neurodegenerative disease in humans.

    PubMed  PubMed Central  Google Scholar 

  87. Iraci, N. et al. Extracellular vesicles are independent metabolic units with asparaginase activity. Nat. Chem. Biol. 13, 951–955 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Fröhlich, D. et al. Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130510 (2014).

    PubMed  PubMed Central  Google Scholar 

  89. Simons, M., Krämer, E. M., Thiele, C., Stoffel, W. & Trotter, J. Assembly of myelin by association of proteolipid protein with cholesterol- and galactosylceramide-rich membrane domains. J. Cell Biol. 151, 143–154 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Werner, H. B. et al. A critical role for the cholesterol-associated proteolipids PLP and M6B in myelination of the central nervous system. GLIA 61, 567–586 (2013).

    PubMed  Google Scholar 

  91. Werner, H. B. et al. Proteolipid protein is required for transport of sirtuin 2 into CNS myelin. J. Neurosci. 27, 7717–7730 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Snaidero, N. et al. Antagonistic functions of MBP and CNP establish cytosolic channels in CNS myelin. Cell Rep. 18, 314–323 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Edgar, J. et al. Oligodendroglial modulation of fast axonal transport in a mouse model of hereditary spastic paraplegia. J. Cell Biol. 166, 121–131 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Chamberlain, K. A. et al. Oligodendrocytes enhance axonal energy metabolism by deacetylation of mitochondrial proteins through transcellular delivery of SIRT2. Neuron 109, 3456–3472.e8 (2021). This study reveals that exosomal oligodendrocyte-to-axon transfer of SIRT2 increases axonal energy production by deacetylation of mitochondrial proteins ANT1 and ANT2.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Krämer-Albers, E.-M. Superfood for axons: glial exosomes boost axonal energetics by delivery of SIRT2. Neuron 109, 3397–3400 (2021).

    PubMed  Google Scholar 

  96. Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Gargareta, V. et al. Conservation and divergence of myelin proteome and oligodendrocyte transcriptome profiles between humans and mice. eLife 11, e77019 (2022).

    CAS  Google Scholar 

  98. Liu, G. et al. Loss of NAD-dependent protein deacetylase Sirtuin-2 alters mitochondrial protein acetylation and dysregulates mitophagy. Antioxid. Redox Signal. 26, 849–863 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Fourcade, S. et al. Loss of SIRT2 leads to axonal degeneration and locomotor disability associated with redox and energy imbalance. Aging Cell 16, 1404–1413 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Tytell, M., Greenberg, S. G. & Lasek, R. J. Heat shock-like protein is transferred from glia to axon. Brain Res. 363, 161–164 (1986).

    CAS  PubMed  Google Scholar 

  101. Wei, Z., Batagov, A. O., Carter, D. R. F. & Krichevsky, A. M. Fetal bovine serum RNA interferes with the cell culture derived extracellular RNA. Sci. Rep. 6, 31175 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Auber, M., Fröhlich, D., Drechsel, O., Karaulanov, E. & Krämer-Albers, E.-M. Serum-free media supplements carry miRNAs that co-purify with extracellular vesicles. J. Extracell. Vesicles 8, 1656042 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Verweij, F. J. et al. The power of imaging to understand extracellular vesicle biology in vivo. Nat. Methods 18, 1013–1026 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Wan, C., Stowell, M. H. B. & Shen, J. Progress and gaps of extracellular vesicle-mediated intercellular cargo transfer in the central nervous system. Commun. Biol. 5, 1223 (2022).

    PubMed  PubMed Central  Google Scholar 

  105. Saugier-Veber, P. et al. X-linked spastic paraplegia and Pelizaeus–Merzbacher disease are allelic disorders at the proteolipid protein locus. Nat. Genet. 6, 257–262 (1994).

    CAS  PubMed  Google Scholar 

  106. Garbern, J. Y. et al. Patients lacking the major CNS myelin protein, proteolipid protein 1, develop length-dependent axonal degeneration in the absence of demyelination and inflammation. Brain 125, 551–561 (2002).

    PubMed  Google Scholar 

  107. Novarino, G. et al. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science 343, 506–511 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Lossos, A. et al. Myelin-associated glycoprotein gene mutation causes Pelizaeus–Merzbacher disease-like disorder. Brain 138, 2521–2536 (2015).

    PubMed  PubMed Central  Google Scholar 

  109. Steyer, A. M. et al. Focused ion beam-scanning electron microscopy links pathological myelin outfoldings to axonal changes in mice lacking Plp1 or Mag. Glia 71, 509–523 (2023).

    CAS  PubMed  Google Scholar 

  110. Lappe-Siefke, C. et al. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat. Genet. 33, 366–374 (2003).

    CAS  PubMed  Google Scholar 

  111. Edgar, J. M. et al. Early ultrastructural defects of axons and axon–glia junctions in mice lacking expression of Cnp1. GLIA 57, 1815–1824 (2009).

    PubMed  Google Scholar 

  112. Patzig, J. et al. Septin/anillin filaments scaffold central nervous system myelin to accelerate nerve conduction. eLife 5, e17119 (2016).

    PubMed  PubMed Central  Google Scholar 

  113. Al-Abdi, L. et al. CNP deficiency causes severe hypomyelinating leukodystrophy in humans. Hum. Genet. 139, 615–622 (2020).

    CAS  PubMed  Google Scholar 

  114. Jahn, O. et al. The CNS myelin proteome: deep profile and persistence after post-mortem delay. Front. Cell. Neurosci. 14, 239 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Trapp, B. D. et al. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 338, 278–285 (1998).

    CAS  PubMed  Google Scholar 

  116. Chen, J.-F. et al. Enhancing myelin renewal reverses cognitive dysfunction in a murine model of Alzheimer’s disease. Neuron 109, 2292–2307.e5 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Depp, C. et al. Ageing-associated myelin dysfunction drives amyloid deposition in mouse models of Alzheimer’s disease. Preprint at bioRxiv https://doi.org/10.1101/2021.07.31.454562 (2021).

    Article  Google Scholar 

  118. Nguyen, M. V. C. et al. Oligodendrocyte lineage cells contribute unique features to Rett syndrome neuropathology. J. Neurosci. 33, 18764–18774 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Kang, S. H. et al. Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat. Neurosci. 16, 571–579 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Baecher-Allan, C., Kaskow, B. J. & Weiner, H. L. Multiple sclerosis: mechanisms and immunotherapy. Neuron 97, 742–768 (2018).

    CAS  PubMed  Google Scholar 

  121. Franklin, R. J. M. Why does remyelination fail in multiple sclerosis? Nat. Rev. Neurosci. 3, 705–714 (2002).

    CAS  PubMed  Google Scholar 

  122. Franklin, R. J. M. & Ffrench-Constant, C. Regenerating CNS myelin — from mechanisms to experimental medicines. Nat. Rev. Neurosci. 18, 753–769 (2017).

    CAS  PubMed  Google Scholar 

  123. Lubetzki, C., Zalc, B., Williams, A., Stadelmann, C. & Stankoff, B. Remyelination in multiple sclerosis: from basic science to clinical translation. Lancet Neurol. 19, 678–688 (2020).

    PubMed  Google Scholar 

  124. Osorio-Querejeta, I., Alberro, A., Muñoz-Culla, M., Mäger, I. & Otaegui, D. Therapeutic potential of extracellular vesicles for demyelinating diseases; challenges and opportunities. Front. Mol. Neurosci. 11, 434 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhang, J. et al. Exosomes derived from bone marrow mesenchymal stromal cells promote remyelination and reduce neuroinflammation in the demyelinating central nervous system. Exp. Neurol. 347, 113895 (2022).

    CAS  PubMed  Google Scholar 

  126. Osorio-Querejeta, I. et al. MiR-219a-5p enriched extracellular vesicles induce OPC differentiation and EAE improvement more efficiently than liposomes and polymeric nanoparticles. Pharmaceutics 12, E186 (2020).

    Google Scholar 

  127. Casella, G. et al. Extracellular vesicles containing IL-4 modulate neuroinflammation in a mouse model of multiple sclerosis. Mol. Ther. 26, 2107–2118 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Casella, G. et al. Oligodendrocyte-derived extracellular vesicles as antigen-specific therapy for autoimmune neuroinflammation in mice. Sci. Transl. Med. 12, eaba0599 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Tanabe, K. et al. Generation of functional human oligodendrocytes from dermal fibroblasts by direct lineage conversion. Development 149, dev199723 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Ehrlich, M. et al. Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors. Proc. Natl Acad. Sci. USA 114, E2243–E2252 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhuang, X. et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol. Ther. 19, 1769–1779 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Philips, T. et al. MCT1 deletion in oligodendrocyte lineage cells causes late-onset hypomyelination and axonal degeneration. Cell Rep. 34, 108610 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Trevisiol, A. et al. Structural myelin defects are associated with low axonal ATP levels but rapid recovery from energy deprivation in a mouse model of spastic paraplegia. PLoS Biol. 18, e3000943 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Griffiths, I. et al. Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 280, 1610–1613 (1998).

    CAS  PubMed  Google Scholar 

  135. Moffett, J. R., Ross, B., Arun, P., Madhavarao, C. N. & Namboodiri, A. M. A. N-acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog. Neurobiol. 81, 89–131 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Mersmann, N. et al. Aspartoacylase-lacZ knockin mice: an engineered model of Canavan disease. PLoS ONE 6, e20336 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Kassmann, C. M. et al. Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nat. Genet. 39, 969–976 (2007).

    CAS  PubMed  Google Scholar 

  138. Buscham, T. J. et al. Progressive axonopathy when oligodendrocytes lack the myelin protein CMTM5. eLife 11, e75523 (2022).

    CAS  Google Scholar 

  139. De Monasterio-Schrader, P. et al. Uncoupling of neuroinflammation from axonal degeneration in mice lacking the myelin protein tetraspanin-2. GLIA 61, 1832–1847 (2013).

    PubMed  Google Scholar 

  140. Peters, A. The effects of normal aging on myelin and nerve fibers: a review. J. Neurocytol. 31, 581–593 (2002).

    PubMed  Google Scholar 

  141. Sturrock, R. R. Changes in neuroglia and myelination in the white matter of aging mice. J. Gerontol. 31, 513–522 (1976).

    CAS  PubMed  Google Scholar 

  142. Lasiene, J., Matsui, A., Sawa, Y., Wong, F. & Horner, P. J. Age-related myelin dynamics revealed by increased oligodendrogenesis and short internodes. Aging Cell 8, 201–213 (2009).

    CAS  PubMed  Google Scholar 

  143. Marshall-Phelps, K. L. H. et al. Neuronal activity disrupts myelinated axon integrity in the absence of NKCC1b. J. Cell Biol. 219, e201909022 (2020).

    PubMed  PubMed Central  Google Scholar 

  144. Neusch, C. et al. Lack of the Kir4.1 channel subunit abolishes K + buffering properties of astrocytes in the ventral respiratory group: impact on extracellular K + regulation. J. Neurophysiol. 95, 1843–1852 (2006).

    CAS  PubMed  Google Scholar 

  145. Kapell, H. et al. Neuron–oligodendrocyte potassium shuttling at nodes of Ranvier protects against inflammatory demyelination. J. Clin. Invest. 133, e164223 (2023).

    PubMed  PubMed Central  Google Scholar 

  146. Xin, W. et al. Oligodendrocytes support neuronal glutamatergic transmission via expression of glutamine synthetase. Cell Rep. 27, 2262–2271.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Lundgaard, I. et al. Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes. PLoS Biol. 11, e1001743 (2013).

    PubMed  PubMed Central  Google Scholar 

  148. Fernandez, P. A. et al. Evidence that axon-derived neuregulin promotes oligodendrocyte survival in the developing rat optic nerve. Neuron 28, 81–90 (2000).

    CAS  PubMed  Google Scholar 

  149. Goebbels, S. et al. A neuronal PI(3,4,5)P3-dependent program of oligodendrocyte precursor recruitment and myelination. Nat. Neurosci. 20, 10–15 (2017).

    CAS  PubMed  Google Scholar 

  150. Krämer-Albers, E.-M. Extracellular vesicles in the oligodendrocyte microenvironment. Neurosci. Lett. 725, 134915 (2020).

    PubMed  Google Scholar 

  151. Singer, M. & Salpeter, M. M. Transport of tritium-labelled l-histidine through the Schwann and myelin sheaths into the axon of peripheral nerves. Nature 210, 1225–1227 (1966).

    CAS  PubMed  Google Scholar 

  152. Giuditta, A., Dettbarn, W. D. & Brzin, M. Protein synthesis in the isolated giant axon of the squid. Proc. Natl Acad. Sci. USA 59, 1284–1287 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Gainer, H., Tasaki, I. & Lasek, R. J. Evidence for the glia–neuron protein transfer hypothesis from intracellular perfusion studies of squid giant axons. J. Cell Biol. 74, 524–530 (1977).

    CAS  PubMed  Google Scholar 

  154. Lasek, R. J., Gainer, H. & Barker, J. L. Cell-to-cell transfer of glial proteins to the squid giant axon. The glia–neuron protein transfer hypothesis. J. Cell Biol. 74, 501–523 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Tytell, M. & Lasek, R. J. Glial polypeptides transferred into the squid giant axon. Brain Res. 324, 223–232 (1984).

    CAS  PubMed  Google Scholar 

  156. Mathur, C. et al. Demonstration of ion channel synthesis by isolated squid giant axon provides functional evidence for localized axonal membrane protein translation. Sci. Rep. 8, 2207 (2018).

    PubMed  PubMed Central  Google Scholar 

  157. Hafner, A.-S., Donlin-Asp, P. G., Leitch, B., Herzog, E. & Schuman, E. M. Local protein synthesis is a ubiquitous feature of neuronal pre- and postsynaptic compartments. Science 364, eaau3644 (2019).

    CAS  PubMed  Google Scholar 

  158. Biever, A. et al. Monosomes actively translate synaptic mRNAs in neuronal processes. Science 367, eaay4991 (2020).

    CAS  PubMed  Google Scholar 

  159. Yáñez-Mó, M. et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 4, 27066 (2015).

    PubMed  Google Scholar 

  160. Colombo, M., Raposo, G. & Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30, 255–289 (2014).

    CAS  PubMed  Google Scholar 

  161. Théry, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018). This study establishes a technical guideline for conducting rigorous and reproducible extracellular vesicle research.

    PubMed  PubMed Central  Google Scholar 

  162. Krämer-Albers, E.-M. & Frühbeis, C. Delivery on call: exosomes as ‘care packages’ from glial cells for stressed neurons. e-Neuroforum 19, 85–91 (2013).

    Google Scholar 

Download references

Acknowledgements

The authors dedicate this article to the memory of Marie T. Filbin and Steven E. Pfeiffer in appreciation of their pioneering work on the cell biology of oligodendrocytes. The authors thank J. Trotter and K.-A. Nave for discussions. E.-M.K.-A. is supported by the Deutsche Forschungsgemeinschaft (grants KR 3668/1-2 and KR 3668/2-2). H.B.W. is supported by the Deutsche Forschungsgemeinschaft (grants WE 2720/2-2, WE 2720/4-1 and WE 2720/5-1).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Eva-Maria Krämer-Albers.

Ethics declarations

Competing interest

The authors declare no competing interests.

Peer review

Referee accreditation

Nature Reviews Neuroscience thanks D. Lecca; B. Zuchero, who co-reviewed with M. Lam; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

2′,3′-Cyclic nucleotide 3′-phosphodiesterase

(CNP). The third-most abundant protein of CNS myelin.

Endosomal sorting complex required for transport

A multicomponent protein complex facilitating various steps of membrane remodelling.

Exosomal escape

A mechanism by which exosomal cargo fuses with and integrates into the target cell and acquires biological activity.

Exosomes

A subclass of extracellular vesicles released by fusion of multivesicular endosomes with the plasma membrane and are the endosomal intraluminal vesicles that are formed by inward budding of the limiting membrane.

Extracellular vesicles

(EVs). Umbrella term for different types of vesicle released by cells comprising cytoplasmic content and membrane surface-expressed epitopes.

Fluorescence resonance energy transfer-sensor imaging

Biosensors that allow visualization of dynamic molecular events in living cells, including the generation of ATP from ADP or changes in cytosolic calcium levels.

Hereditary spastic paraplegia

(SPG). A heterogenous group of progressive gait disorders caused by dysfunction or degeneration of long-projecting axons in the spinal cord.

Hypomyelinating leukodystrophy

(HLD). Umbrella term for a heterogenous group of severe neurodegenerative disorders primarily affecting white matter physiology.

Multivesicular endosomes

Spherical organelles of the late endosomal system that are packed with internal vesicles and can either fuse with lysosomes to degrade the internal material or fuse with the plasma membrane to release their content into the extracellular space.

Non-compacted cytoplasmic myelin subcompartment

Cytosolic sub-compartments of myelin including the adaxonal myelin layer, paranodal myelin and myelinic channels through otherwise compact myelin.

Periaxonal space

Extracellular space between the plasma membrane of an axon and the adjacent adaxonal myelin membrane.

Proteolipid protein

(PLP). A cholesterol-associated, tetraspan-transmembrane protein; the most abundant protein of CNS myelin.

Reducing equivalent

Chemical species that transfer electrons in a redox reaction.

Sirtuin-2

(SIRT2). An NAD+-dependent deacetylase that is highly expressed in oligodendrocytes.

Sphingomyelinase

An enzyme that cleaves the phosphodiester bond of sphingomyelin generating ceramide and phosphocholine.

Tetraspanins

A protein family containing four transmembrane domains and two extracellular domains that organize proteins and lipids in membrane subdomains (tetraspanin-enriched microdomains).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krämer-Albers, EM., Werner, H.B. Mechanisms of axonal support by oligodendrocyte-derived extracellular vesicles. Nat. Rev. Neurosci. 24, 474–486 (2023). https://doi.org/10.1038/s41583-023-00711-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-023-00711-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing