Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuroimmune mechanisms and therapies mediating post-ischaemic brain injury and repair

Abstract

The nervous and immune systems control whole-body homeostasis and respond to various types of tissue injury, including stroke, in a coordinated manner. Cerebral ischaemia and subsequent neuronal cell death activate resident or infiltrating immune cells, which trigger neuroinflammation that affects functional prognosis after stroke. Inflammatory immune cells exacerbate ischaemic neuronal injury after the onset of brain ischaemia; however, some of the immune cells thereafter change their function to neural repair. The recovery processes after ischaemic brain injury require additional and close interactions between the nervous and immune systems through various mechanisms. Thus, the brain controls its own inflammation and repair processes after injury via the immune system, which provides a promising therapeutic opportunity for stroke recovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of events in neuro-immune interaction after ischaemic stroke.
Fig. 2: Time-dependent functional changes of immune cells in ischaemic stroke.
Fig. 3: Immune mechanisms in acute harmful inflammation.
Fig. 4: Long-term neuro-immune interactions for stroke recovery.
Fig. 5: New brain homeostasis after long-term neuro-immune interaction.

Similar content being viewed by others

References

  1. GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 20, 795–820 (2021).

    Article  Google Scholar 

  2. Tsao, C. W. et al. Heart disease and stroke statistics — 2022 update: a report from the American Heart Association. Circulation 145, e153–e639 (2022).

    Article  PubMed  Google Scholar 

  3. Akbik, F. et al. Trends in reperfusion therapy for in-hospital ischemic stroke in the endovascular therapy era. JAMA Neurol. 77, 1486–1495 (2020).

    Article  PubMed  Google Scholar 

  4. Toyoda, K. et al. Twenty-year change in severity and outcome of ischemic and hemorrhagic strokes. JAMA Neurol. 79, 61–69 (2022).

    Article  PubMed  Google Scholar 

  5. del Zoppo, G. J. Stroke and neurovascular protection. N. Engl. J. Med. 354, 553–555 (2006).

    Article  PubMed  Google Scholar 

  6. Iadecola, C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96, 17–42 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Knowland, D. et al. Stepwise recruitment of transcellular and paracellular pathways underlies blood–brain barrier breakdown in stroke. Neuron 82, 603–617 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mestre, H. et al. Cerebrospinal fluid influx drives acute ischemic tissue swelling. Science 367, eaax7171 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Astrup, J., Siesjö, B. K. & Symon, L. Thresholds in cerebral ischemia — the ischemic penumbra. Stroke 12, 723–725 (2018).

    Article  Google Scholar 

  10. Zoppo, G. J., del, Sharp, F. R., Heiss, W.-D. & Albers, G. W. Heterogeneity in the penumbra. J. Cereb. Blood Flow. Metab. 31, 1836–1851 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Garcia, J. H. The neuropathology of stroke. Hum. Pathol. 6, 583–598 (1975).

    Article  CAS  PubMed  Google Scholar 

  12. Kwakkel, G., Kollen, B. & Twisk, J. Impact of time on improvement of outcome after stroke. Stroke 37, 2348–2353 (2006).

    Article  PubMed  Google Scholar 

  13. Langhorne, P., Bernhardt, J. & Kwakkel, G. Stroke rehabilitation. Lancet 377, 1693–1702 (2011).

    Article  PubMed  Google Scholar 

  14. Endres, M. et al. Immune pathways in etiology, acute phase, and chronic sequelae of ischemic stroke. Circ. Res. 130, 1167–1186 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Drieu, A., Levard, D., Vivien, D. & Rubio, M. Anti-inflammatory treatments for stroke: from bench to bedside. Ther. Adv. Neurol. Disord. 11, 1756286418789854 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Buckley, C., Gilroy, D., Serhan, C., Stockinger, B. & Tak, P. The resolution of inflammation. Nat. Rev. Immunol. 13, 59–66 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Kono, H. & Rock, K. L. How dying cells alert the immune system to danger. Nat. Rev. Immunol. 8, 279–289 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Neugebauer, H. et al. Outcomes of hypothermia in addition to decompressive hemicraniectomy in treatment of malignant middle cerebral artery stroke. JAMA Neurol. 76, 571–579 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang, S., Shang, D., Shi, H., Teng, W. & Tian, L. Function of astrocytes in neuroprotection and repair after ischemic stroke. Eur. Neurol. 84, 426–434 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Shen, X.-Y. et al. Activation and role of astrocytes in ischemic stroke. Front. Cell Neurosci. 15, 755955 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Becerra-Calixto, A. & Cardona-Gómez, G. P. The role of astrocytes in neuroprotection after brain stroke: potential in cell therapy. Front. Mol. Neurosci. 10, 88 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hayakawa, K. et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535, 551–555 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Silasi, G. & Murphy, T. H. Stroke and the connectome: how connectivity guides therapeutic intervention. Neuron 83, 1354–1368 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Joy, M. T. & Carmichael, S. T. Encouraging an excitable brain state: mechanisms of brain repair in stroke. Nat. Rev. Neurosci. 22, 38–53 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Murphy, T. H. & Corbett, D. Plasticity during stroke recovery: from synapse to behaviour. Nat. Rev. Neurosci. 10, 861–872 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Grefkes, C. et al. Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann. Neurol. 63, 236–246 (2008).

    Article  PubMed  Google Scholar 

  27. Morris, R. S. et al. Relationships between selective neuronal loss and microglial activation after ischaemic stroke in man. Brain 141, 2098–2111 (2018).

    Article  PubMed  Google Scholar 

  28. Saleh, A. et al. Iron oxide particle-enhanced MRI suggests variability of brain inflammation at early stages after ischemic stroke. Stroke 38, 2733–2737 (2007).

    Article  PubMed  Google Scholar 

  29. Narayan, S. K. et al. Preclinical animal studies in ischemic stroke: challenges and some solutions. Anim. Model. Exp. Med. 4, 104–115 (2021).

    Article  Google Scholar 

  30. Iadecola, C. & Anrather, J. The immunology of stroke: from mechanisms to translation. Nat. Med. 17, 796–808 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Moskowitz, M., Lo, E. & Iadecola, C. The science of stroke: mechanisms in search of treatments. Neuron 67, 181–198 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Boutin, H. et al. Role of IL-1α and IL-1β in ischemic brain damage. J. Neurosci. 21, 5528–5534 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barone, F. C. & Feuerstein, G. Z. Inflammatory mediators and stroke: new opportunities for novel therapeutics. J. Cereb. Blood Flow. Metab. 19, 819–834 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Shichita, T. et al. MAFB prevents excess inflammation after ischemic stroke by accelerating clearance of damage signals through MSR1. Nat. Med. 23, 723–732 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Mastorakos, P. et al. Temporally distinct myeloid cell responses mediate damage and repair after cerebrovascular injury. Nat. Neurosci. 24, 245–258 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lalancette-Hebert, M., Gowing, G., Simard, A., Weng, Y. & Kriz, J. Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J. Neurosci. 27, 2596–2605 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ito, M. et al. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 565, 246–250 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Bernhardt, J. et al. Agreed definitions and a shared vision for new standards in stroke recovery research: the stroke recovery and rehabilitation roundtable taskforce. Neurorehabil. Neural Repair 31, 793–799 (2017).

    Article  PubMed  Google Scholar 

  39. Neumann, J. et al. Very-late-antigen-4 (VLA-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke. Acta Neuropathol. 129, 259–277 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Chu, H. X. et al. Immune cell infiltration in malignant middle cerebral artery infarction: comparison with transient cerebral ischemia. J. Cereb. Blood Flow. Metab. 34, 450–459 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Perez-de-Puig, I. et al. Neutrophil recruitment to the brain in mouse and human ischemic stroke. Acta Neuropathol. 129, 239–257 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Iadecola, C. Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci. 20, 132–139 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Terpolilli, N. A., Moskowitz, M. A. & Plesnila, N. Nitric oxide: considerations for the treatment of ischemic stroke. J. Cereb. Blood Flow. Metab. 32, 1332–1346 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Garcia-Bonilla, L. et al. Inducible nitric oxide synthase in neutrophils and endothelium contributes to ischemic brain injury in mice. J. Immunol. 193, 2531–2537 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Gelderblom, M. et al. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 40, 1849–1857 (2009).

    Article  PubMed  Google Scholar 

  46. Liesz, A. et al. The spectrum of systemic immune alterations after murine focal ischemia. Stroke 40, 2849–2858 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Kim, S.-W., Lee, H., Lee, H.-K., Kim, I.-D. & Lee, J.-K. Neutrophil extracellular trap induced by HMGB1 exacerbates damages in the ischemic brain. Acta Neuropathol. Commun. 7, 94 (2019).

    Article  PubMed  Google Scholar 

  48. Laridan, E. et al. Neutrophil extracellular traps in ischemic stroke thrombi. Ann. Neurol. 82, 223–232 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Hayakawa, K., Qiu, J. & Lo, E. Biphasic actions of HMGB1 signaling in inflammation and recovery after stroke. Ann. N. Y. Acad. Sci. 1207, 50–57 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Qiu, J. et al. Early release of HMGB-1 from neurons after the onset of brain ischemia. J. Cereb. Blood Flow. Metab. 28, 927–938 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Shichita, T. et al. Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat. Med. 18, 911–917 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Nakamura, K. et al. Extracellular DJ-1 induces sterile inflammation in the ischemic brain. PLoS Biol. 19, e3000939 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tsuyama, J., Nakamura, A., Ooboshi, H., Yoshimura, A. & Shichita, T. Pivotal role of innate myeloid cells in cerebral post-ischemic sterile inflammation. Semin. Immunopathol. 40, 523–538 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Muhammad, S. et al. The HMGB1 receptor RAGE mediates ischemic brain damage. J. Neurosci. 28, 12023–12031 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Grønberg, N. V., Johansen, F. F., Kristiansen, U. & Hasseldam, H. Leukocyte infiltration in experimental stroke. J. Neuroinflammation 10, 892 (2013).

    Article  Google Scholar 

  56. Yang, Y. & Rosenberg, G. A. Blood–brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke 42, 3323–3328 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jiang, X. et al. Blood–brain barrier dysfunction and recovery after ischemic stroke. Prog. Neurobiol. 163, 144–171 (2018).

    Article  PubMed  Google Scholar 

  58. Kang, L. et al. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat. Commun. 11, 2488 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sas, A. R. et al. A new neutrophil subset promotes CNS neuron survival and axon regeneration. Nat. Immunol. 21, 1496–1505 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cuartero, M. I. I. et al. N2 neutrophils, novel players in brain inflammation after stroke: modulation by the PPARγ agonist rosiglitazone. Stroke 44, 3498–3508 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. García-Culebras, A. et al. Role of TLR4 (Toll-like receptor 4) in N1/N2 neutrophil programming after stroke. Stroke 50, 2922–2932 (2019).

    Article  PubMed  Google Scholar 

  62. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hanisch, U.-K. & Kettenmann, H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 10, 1387–1394 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Huang, Y. et al. Repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion. Nat. Neurosci. 21, 530–540 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Malipiero, U. V., Frei, K. & Fontana, A. Production of hemopoietic colony-stimulating factors by astrocytes. J. Immunol. 144, 3816–3821 (1990).

    Article  CAS  PubMed  Google Scholar 

  66. Verma, R. et al. Deletion of the P2X4 receptor is neuroprotective acutely, but induces a depressive phenotype during recovery from ischemic stroke. Brain Behav. Immun. 66, 302–312 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Brown, G. C. & Neher, J. J. Microglial phagocytosis of live neurons. Nat. Rev. Neurosci. 15, 209–216 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Neher, J. J. et al. Phagocytosis executes delayed neuronal death after focal brain ischemia. Proc. Natl Acad. Sci. USA 110, E4098–E4107 (2013). This article describes phagoptosis in the ischaemic brain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Beek, J., van, Elward, K. & Gasque, P. Activation of complement in the central nervous system: roles in neurodegeneration and neuroprotection. Ann. N. Y. Acad. Sci. 992, 56–71 (2003).

    Article  PubMed  Google Scholar 

  70. Lehrman, E. K. et al. CD47 protects synapses from excess microglia-mediated pruning during development. Neuron 100, 120–134.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, L. et al. SHPS-1 deficiency induces robust neuroprotection against experimental stroke by attenuating oxidative stress. J. Neurochem. 122, 834–843 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Cipriani, R. et al. CX3CL1 is neuroprotective in permanent focal cerebral ischemia in rodents. J. Neurosci. 31, 16327–16335 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nakahashi-Oda, C. et al. CD300a blockade enhances efferocytosis by infiltrating myeloid cells and ameliorates neuronal deficit after ischemic stroke. Sci. Immunol. 6, eabe7915 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Tang, S.-C. et al. Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc. Natl Acad. Sci. USA 104, 13798–13803 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim, J.-B. et al. HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J. Neurosci. 26, 6413–6421 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gliem, M. et al. Macrophages prevent hemorrhagic infarct transformation in murine stroke models. Ann. Neurol. 71, 743–752 (2012). This study shows that infiltration of macrophages prevents the exacerbation of stroke pathology.

    Article  CAS  PubMed  Google Scholar 

  77. Mildner, A. et al. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat. Neurosci. 10, 1544–1553 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Michaud, J.-P., Pimentel-Coelho, P. M., Tremblay, Y. & Rivest, S. The impact of Ly6Clow monocytes after cerebral hypoxia-ischemia in adult mice. J. Cereb. Blood Flow. Metab. 34, e1–e9 (2014).

    Article  PubMed  Google Scholar 

  79. Masuda, T. et al. Specification of CNS macrophage subsets occurs postnatally in defined niches. Nature 604, 740–748 (2022).

    Article  CAS  PubMed  Google Scholar 

  80. Kierdorf, K., Masuda, T., Jordão, M. J. C. & Prinz, M. Macrophages at CNS interfaces: ontogeny and function in health and disease. Nat. Rev. Neurosci. 20, 547–562 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. Mrdjen, D. et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48, 380–395.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Gerganova, G., Riddell, A. & Miller, A. A. CNS border-associated macrophages in the homeostatic and ischaemic brain. Pharmacol. Ther. 240, 108220 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Rajan, W. D. et al. Defining molecular identity and fates of CNS-border associated macrophages after ischemic stroke in rodents and humans. Neurobiol. Dis. 137, 104722 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Pedragosa, J. et al. CNS-border associated macrophages respond to acute ischemic stroke attracting granulocytes and promoting vascular leakage. Acta Neuropathol. Commun. 6, 76 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Drieu, A. et al. Alcohol exposure-induced neurovascular inflammatory priming impacts ischemic stroke and is linked with brain perivascular macrophages. JCI Insight 5, e129226 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ito, M. et al. Bruton’s tyrosine kinase is essential for NLRP3 inflammasome activation and contributes to ischaemic brain injury. Nat. Commun. 6, 7360 (2015).

    Article  PubMed  Google Scholar 

  87. Roth, S. et al. Post-injury immunosuppression and secondary infections are caused by an AIM2 inflammasome-driven signaling cascade. Immunity 54, 648–659.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Garcia-Bonilla, L. et al. Role of microglial and endothelial CD36 in post-ischemic inflammasome activation and interleukin-1β-induced endothelial activation. Brain Behav. Immun. 95, 489–501 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ransohoff, R. M. A polarizing question: do M1 and M2 microglia exist? Nat. Neurosci. 19, 987–991 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Estevez, A. G. et al. Arginase 1 regulation of nitric oxide production is key to survival of trophic factor-deprived motor neurons. J. Neurosci. 26, 8512–8516 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ooboshi, H. et al. Postischemic gene transfer of interleukin-10 protects against both focal and global brain ischemia. Circulation 111, 913–919 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, R. et al. RGMa mediates reactive astrogliosis and glial scar formation through TGFβ1/Smad2/3 signaling after stroke. Cell Death Differ. 25, 1503–1516 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kim, C. C., Nakamura, M. C. & Hsieh, C. L. Brain trauma elicits non-canonical macrophage activation states. J. Neuroinflammation 13, 117 (2016). This study demonstrates that infiltrating macrophages in the injured brain express both M1 and M2 markers.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Spiteri, A. G., Wishart, C. L., Pamphlett, R., Locatelli, G. & King, N. J. C. Microglia and monocytes in inflammatory CNS disease: integrating phenotype and function. Acta Neuropathol. 143, 179–224 (2022).

    Article  CAS  PubMed  Google Scholar 

  96. Li, X. et al. Single-cell transcriptomic analysis of the immune cell landscape in the aged mouse brain after ischemic stroke. J. Neuroinflammation 19, 83 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zheng, K. et al. Single-cell RNA-seq reveals the transcriptional landscape in ischemic stroke. J. Cereb. Blood Flow. Metab. 42, 56–73 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Beuker, C. et al. Stroke induces disease-specific myeloid cells in the brain parenchyma and pia. Nat. Commun. 13, 945 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kleinschnitz, C. et al. Early detrimental T-cell effects in experimental cerebral ischemia are neither related to adaptive immunity nor thrombus formation. Blood 115, 3835–3842 (2010). According to this study, the antigen-specific reactions through T cell receptors are not implicated in ischaemic neuronal injury.

    Article  CAS  PubMed  Google Scholar 

  100. Zhang, D. et al. T Cell response in ischemic stroke: from mechanisms to translational insights. Front. Immunol. 12, 707972 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Langhauser, F. et al. Blocking of α4 integrin does not protect from acute ischemic stroke mice. Stroke 45, 1799–1806 (2018).

    Article  Google Scholar 

  102. Benakis, C. et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat. Med. 22, 516–523 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Llovera, G. et al. The choroid plexus is a key cerebral invasion route for T cells after stroke. Acta Neuropathol. 134, 851–868 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Yilmaz, G., Arumugam, T. V., Stokes, K. Y. & Granger, D. N. Role of T lymphocytes and interferon-γ in ischemic stroke. Circulation 113, 2105–2112 (2006).

    Article  PubMed  Google Scholar 

  105. Shichita, T. et al. Pivotal role of cerebral interleukin-17-producing γδ T cells in the delayed phase of ischemic brain injury. Nat. Med. 15, 946–950 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Liesz, A. et al. Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. Brain 134, 704–720 (2011).

    Article  PubMed  Google Scholar 

  107. Clarkson, B. D. S. et al. T cell-derived interleukin (IL)-21 promotes brain injury following stroke in mice. J. Exp. Med. 211, 595–604 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kebir, H. et al. Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nat. Med. 13, 1173–1175 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Arunachalam, P. et al. CCR6 (CC chemokine receptor 6) is essential for the migration of detrimental natural interleukin-17–producing γδ T cells in stroke. Stroke 48, 1957–1965 (2017).

    Article  CAS  PubMed  Google Scholar 

  110. Mracsko, E. et al. Antigen dependently activated cluster of differentiation 8-positive T cells cause perforin-mediated neurotoxicity in experimental stroke. J. Neurosci. 34, 16784–16795 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Stubbe, T. et al. Regulatory T cells accumulate and proliferate in the ischemic hemisphere for up to 30 days after MCAO. J. Cereb. Blood Flow. Metab. 33, 37–47 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Planas, A. M. Role of immune cells migrating to the ischemic brain. Stroke 49, 2261–2267 (2018).

    Article  PubMed  Google Scholar 

  113. Sandvig, I., Augestad, I. L., Håberg, A. K. & Sandvig, A. Neuroplasticity in stroke recovery. The role of microglia in engaging and modifying synapses and networks. Eur. J. Neurosci. 47, 1414–1428 (2018).

    Article  PubMed  Google Scholar 

  114. Szalay, G. et al. Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat. Commun. 7, 11499 (2016). This article demonstrates the reparative roles of microglia after ischaemic stroke.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Jin, W.-N. et al. Depletion of microglia exacerbates postischemic inflammation and brain injury. J. Cereb. Blood Flow. Metab. 37, 2224–2236 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Xie, L., Li, W., Hersh, J., Liu, R. & Yang, S.-H. Experimental ischemic stroke induces long-term T cell activation in the brain. J. Cereb. Blood Flow. Metab. 39, 2268–2276 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Heindl, S. et al. Chronic T cell proliferation in brains after stroke could interfere with the efficacy of immunotherapies. J. Exp. Med. 218, e20202411 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhang, B. et al. B cell-derived GABA elicits IL-10+ macrophages to limit anti-tumour immunity. Nature 599, 471–476 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Liesz, A., Karcher, S. & Veltkamp, R. Spectratype analysis of clonal T cell expansion in murine experimental stroke. J. Neuroimmunol. 257, 46–52 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Planas, A. M. et al. Brain-derived antigens in lymphoid tissue of patients with acute stroke. J. Immunol. 188, 2156–2163 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Darling, T. K. & Lamb, T. J. Emerging roles for Eph receptors and ephrin ligands in immunity. Front. Immunol. 10, 1473 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hallenbeck, J. M. The many faces of tumor necrosis factor in stroke. Nat. Med. 8, 1363–1368 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Ellison, J. A., Barone, F. C. & Feuerstein, G. Z. Matrix remodeling after stroke: de novo expression of matrix proteins and integrin receptors. Ann. N. Y. Acad. Sci. 890, 204–222 (1999).

    Article  CAS  PubMed  Google Scholar 

  124. Boato, F. et al. Interleukin-1β and neurotrophin-3 synergistically promote neurite growth in vitro. J. Neuroinflammation 8, 183 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gertz, K. et al. Essential role of interleukin-6 in post-stroke angiogenesis. Brain 135, 1964–1980 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Hayakawa, K. et al. Inhibition of reactive astrocytes with fluorocitrate retards neurovascular remodeling and recovery after focal cerebral ischemia in mice. J. Cereb. Blood Flow. Metab. 30, 871–882 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Rao, X. et al. Dual roles of interleukin-33 in cognitive function by regulating central nervous system inflammation. J. Transl. Med. 20, 369 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yang, Y. et al. ST2/IL-33-dependent microglial response limits acute ischemic brain injury. J. Neurosci. 37, 4692–4704 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhao, X. et al. Neuronal interleukin-4 as a modulator of microglial pathways and ischemic brain damage. J. Neurosci. 35, 11281–11291 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Liu, X. et al. Interleukin-4 is essential for microglia/macrophage M2 polarization and long-term recovery after cerebral ischemia. Stroke 47, 498–504 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Puig, I. P. et al. IL-10 deficiency exacerbates the brain inflammatory response to permanent ischemia without preventing resolution of the lesion. J. Cereb. Blood Flow. Metab. 33, 1955–1966 (2013).

    Article  Google Scholar 

  132. Zhou, X., Spittau, B. & Krieglstein, K. TGFβ signalling plays an important role in IL4-induced alternative activation of microglia. J. Neuroinflammation 9, 210 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang, H. et al. Circulating pro-inflammatory exosomes worsen stroke outcomes in aging. Circ. Res. 129, e121–e140 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Mahjoubin-Tehran, M. et al. New epigenetic players in stroke pathogenesis: from non-coding RNAs to exosomal non-coding RNAs. Biomed. Pharmacother. 140, 111753 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wendeln, A.-C. et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556, 332–338 (2018). This study investigates the role of innate immune memory in ischaemic stroke.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Smirkin, A. et al. Iba1+/NG2+ macrophage-like cells expressing a variety of neuroprotective factors ameliorate ischemic damage of the brain. J. Cereb. Blood Flow. Metab. 30, 603–615 (2009). This study describes the characteristics of the reparative microglia in ischaemic stroke.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Llorente, I. L. et al. Patient-derived glial enriched progenitors repair functional deficits due to white matter stroke and vascular dementia in rodents. Sci. Transl. Med. 13, eaaz6747 (2021).

    Article  CAS  PubMed  Google Scholar 

  138. Kohno, K. et al. A spinal microglia population involved in remitting and relapsing neuropathic pain. Science 376, 86–90 (2022).

    Article  CAS  PubMed  Google Scholar 

  139. Crotti, A. & Ransohoff, R. M. Microglial physiology and pathophysiology: insights from genome-wide transcriptional profiling. Immunity 44, 505–515 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Du, H., Xu, Y. & Zhu, L. Role of semaphorins in ischemic stroke. Front. Mol. Neurosci. 15, 848506 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Rogalewski, A. et al. Semaphorin 6A improves functional recovery in conjunction with motor training after cerebral ischemia. PLoS ONE 5, e10737 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Garcia-Bonilla, L. et al. Spatio-temporal profile, phenotypic diversity, and fate of recruited monocytes into the post-ischemic brain. J. Neuroinflammation 13, 285 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Wang, R. et al. RNA sequencing reveals novel macrophage transcriptome favoring neurovascular plasticity after ischemic stroke. J. Cereb. Blood Flow. Metab. 40, 720–738 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Pedragosa, J. et al. CCR2 deficiency in monocytes impairs angiogenesis and functional recovery after ischemic stroke in mice. J. Cereb. Blood Flow. Metab. 40, S98–S116 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Krupinski, J., Kaluza, J., Kumar, P., Kumar, S. & Wang, J. M. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke 25, 1794–1798 (2018).

    Article  Google Scholar 

  146. Sugiyama, Y. et al. Granulocyte colony-stimulating factor enhances arteriogenesis and ameliorates cerebral damage in a mouse model of ischemic stroke. Stroke 42, 770–775 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Manoonkitiwongsa, P. S., Jackson-Friedman, C., McMillan, P. J., Schultz, R. L. & Lyden, P. D. Angiogenesis after stroke is correlated with increased numbers of macrophages: the clean-up hypothesis. J. Cereb. Blood Flow. Metab. 21, 1223–1231 (2001).

    Article  CAS  PubMed  Google Scholar 

  148. Kanazawa, M. et al. Inhibition of VEGF signaling pathway attenuates hemorrhage after tPA treatment. J. Cereb. Blood Flow. Metab. 31, 1461–1474 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Liesz, A. et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat. Med. 15, 192–199 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Shi, L. et al. Treg cell-derived osteopontin promotes microglia-mediated white matter repair after ischemic stroke. Immunity 54, 1527–1542.e8 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Li, P. et al. Essential role of program death 1-ligand 1 in regulatory T-cell-afforded protection against blood–brain barrier damage after stroke. Stroke 45, 857–864 (2018).

    Article  Google Scholar 

  152. Liesz, A. & Kleinschnitz, C. Regulatory T cells in post-stroke immune homeostasis. Transl. Stroke Res. 7, 313–321 (2016).

    Article  CAS  PubMed  Google Scholar 

  153. Kleinschnitz, C. et al. Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature. Blood 121, 679–691 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Selvaraj, U. M. et al. Delayed diapedesis of CD8 T cells contributes to long-term pathology after ischemic stroke in male mice. Brain Behav. Immun. 95, 502–513 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Cai, W. et al. Neuroprotection against ischemic stroke requires a specific class of early responder T cells in mice. J. Clin. Invest. 132, e157678 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ren, X. et al. Regulatory B cells limit CNS inflammation and neurologic deficits in murine experimental stroke. J. Neurosci. 31, 8556–8563 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Schuhmann, M. K., Langhauser, F., Kraft, P. & Kleinschnitz, C. B cells do not have a major pathophysiologic role in acute ischemic stroke in mice. J. Neuroinflammation 14, 112 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Doyle, K. P. et al. B-Lymphocyte-mediated delayed cognitive impairment following stroke. J. Neurosci. 35, 2133–2145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ortega, S. B. et al. B cells migrate into remote brain areas and support neurogenesis and functional recovery after focal stroke in mice. Proc. Natl Acad. Sci. USA 117, 4983–4993 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wong, C. H. Y., Jenne, C. N., Lee, W.-Y., Léger, C. & Kubes, P. Functional innervation of hepatic iNKT cells is immunosuppressive following stroke. Science 334, 101–105 (2011).

    Article  CAS  PubMed  Google Scholar 

  161. Iadecola, C., Buckwalter, M. S. & Anrather, J. Immune responses to stroke: mechanisms, modulation, and therapeutic potential. J. Clin. Invest. 130, 2777–2788 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Meisel, C. & Meisel, A. Suppressing immunosuppression after stroke. N. Engl. J. Med. 365, 2134–2136 (2011). This article is valuable for developing immunomodulatory therapeutics for stroke.

    Article  CAS  PubMed  Google Scholar 

  163. Offner, H. et al. Splenic atrophy in experimental stroke is accompanied by increased regulatory T cells and circulating macrophages. J. Immunol. 176, 6523–6531 (2006).

    Article  CAS  PubMed  Google Scholar 

  164. Meisel, C., Schwab, J. M., Prass, K., Meisel, A. & Dirnagl, U. Central nervous system injury-induced immune deficiency syndrome. Nat. Rev. Neurosci. 6, 775–786 (2005).

    Article  CAS  PubMed  Google Scholar 

  165. Prass, K. et al. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J. Exp. Med. 198, 725–736 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Smith, C. J. et al. SCIL-STROKE (Subcutaneous Interleukin-1 Receptor Antagonist in Ischemic Stroke): a randomized controlled phase 2 trial. Stroke 49, 1210–1216 (2018).

    Article  CAS  PubMed  Google Scholar 

  167. Fu, Y. et al. Impact of an immune modulator fingolimod on acute ischemic stroke. Proc. Natl Acad. Sci. USA 111, 18315–18320 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zhu, Z. et al. Combination of the immune modulator fingolimod with alteplase in acute ischemic stroke: a pilot trial. Circulation 132, 1104–1112 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Joy, M. T. et al. CCR5 is a therapeutic target for recovery after stroke and traumatic brain injury. Cell 176, 1143–1157.e13 (2019). This study reveals the importance of immunological receptors in stroke recovery.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Yurchenko, E. et al. CCR5-dependent homing of naturally occurring CD4+ regulatory T cells to sites of Leishmania major infection favors pathogen persistence. J. Exp. Med. 203, 2451–2460 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Enlimomab Acute Stroke Trial Investigators. Use of anti-ICAM-1 therapy in ischemic stroke: results of the Enlimomab Acute Stroke Trial. Neurology 57, 1428–1434 (2001).

    Article  Google Scholar 

  172. Elkins, J. et al. Safety and efficacy of natalizumab in patients with acute ischaemic stroke (ACTION): a randomised, placebo-controlled, double-blind phase 2 trial. Lancet Neurol. 16, 217–226 (2017).

    Article  CAS  PubMed  Google Scholar 

  173. Levard, D. et al. Filling the gaps on stroke research: focus on inflammation and immunity. Brain Behav. Immun. 91, 649–667 (2021). This review summarizes well the current problems of stroke immunology and recovery.

    Article  CAS  PubMed  Google Scholar 

  174. Sommer, C. J. Ischemic stroke: experimental models and reality. Acta Neuropathol. 133, 245–261 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Cassidy, J. M. & Cramer, S. C. Spontaneous and therapeutic-induced mechanisms of functional recovery after stroke. Transl. Stroke Res. 8, 33–46 (2017).

    Article  CAS  PubMed  Google Scholar 

  176. Markus, H. S. Cerebral perfusion and stroke. J. Neurol. Neurosurg. Psychiatry 75, 353–361 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Nadareishvili, Z., Simpkins, A. N., Hitomi, E., Reyes, D. & Leigh, R. Post-stroke blood–brain barrier disruption and poor functional outcome in patients receiving thrombolytic therapy. Cerebrovasc. Dis. 47, 135–142 (2019).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to the discussion of content, writing, reviewing and editing of the manuscript before submission. In addition, T.S. and A.Y. researched data for the article.

Corresponding author

Correspondence to Takashi Shichita.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks C. Stary and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Endovascular therapy

Recanalization therapy using microcatheters that remove a blood clot or deliver thrombolytic drugs.

Ischaemic core

The centre of the infarct region in which cerebral blood flow is most decreased.

Reperfusion therapy

Treatment to restore cerebral blood flow, including intravenous administration of tissue plasminogen activator and endovascular therapy.

Stenosis

Narrowing of a vascular lumen (for example, of the cerebral arteries) due to atherosclerosis or vasospasm.

Transcytosis

A vesicular transport system that transfers the molecules from one side of a cell to the other.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shichita, T., Ooboshi, H. & Yoshimura, A. Neuroimmune mechanisms and therapies mediating post-ischaemic brain injury and repair. Nat Rev Neurosci 24, 299–312 (2023). https://doi.org/10.1038/s41583-023-00690-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-023-00690-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing