Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Replay, the default mode network and the cascaded memory systems model

Abstract

The spontaneous replay of patterns of activity related to past experiences and memories is a striking feature of brain activity, as is the coherent activation of sets of brain areas — particularly those comprising the default mode network (DMN) — during rest. We propose that these two phenomena are strongly intertwined and that their potential functions overlap. In the ‘cascaded memory systems model’ that we outline here, we hypothesize that the DMN forms the backbone for the propagation of replay, mediating interactions between the hippocampus and the neocortex that enable the consolidation of new memories. The DMN may also independently ignite replay cascades, which support reactivation of older memories or high-level semantic representations. We suggest that transient cortical activations, inducing long-range correlations across the neocortex, are a key mechanism supporting a hierarchy of representations that progresses from simple percepts to semantic representations of causes and, finally, to whole episodes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Memory reactivation as a brain-wide phenomenon.
Fig. 2: Cortical gradients: connectivity and characteristic timescales.
Fig. 3: Modes of cortical activations in the CMS model.

Similar content being viewed by others

References

  1. Shulman, R. G., Rothman, D. L., Behar, K. L. & Hyder, F. Energetic basis of brain activity: implications for neuroimaging. Trends Neurosci. 27, 489–495 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Roy, S. & Llinás, R. Dynamic geometry, brain function modeling, and consciousness. Prog. Brain Res. 168, 133–144 (2008).

    Article  PubMed  Google Scholar 

  3. Genzel, L., Kroes, M. C. W., Dresler, M. & Battaglia, F. P. Light sleep versus slow wave sleep in memory consolidation: a question of global versus local processes? Trends Neurosci. 37, 10–19 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Ólafsdóttir, H. F., Bush, D. & Barry, C. The role of hippocampal replay in memory and planning. Curr. Biol. 28, R37–R50 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. O’Neill, J., Pleydell-Bouverie, B., Dupret, D. & Csicsvari, J. Play it again: reactivation of waking experience and memory. Trends Neurosci. 33, 220–229 (2010).

    Article  PubMed  CAS  Google Scholar 

  6. Wilson, M. A. & McNaughton, B. L. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Lee, A. K. & Wilson, M. A. Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36, 1183–1194 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Skaggs, W. E. & McNaughton, B. L. Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science 271, 1870–1873 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Niazy, R. K., Xie, J., Miller, K., Beckmann, C. F. & Smith, S. M. in Progress in Brain Research vol. 193 (eds Van Someren, E. J. W., Van Der Werf, Y. D., Roelfsema, P. R., Mansvelder, H. D. & Lopes Da Silva, F. H.) 259–276 (Elsevier, 2011).

  10. Raichle, M. E. The brain’s default mode network. Annu. Rev. Neurosci. 38, 433–447 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Buckner, R. L. & Carroll, D. C. Self-projection and the brain. Trends Cogn. Sci. 11, 49–57 (2007).

    Article  PubMed  Google Scholar 

  12. Carr, M. F., Jadhav, S. P. & Frank, L. M. Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat. Neurosci. 14, 147–153 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Klinzing, J. G., Niethard, N. & Born, J. Mechanisms of systems memory consolidation during sleep. Nat. Neurosci. 22, 1598–1610 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Rogers, T. T. & McClelland, J. L. Semantic Cognition: A Parallel Distributed Processing Approach (MIT Press, 2004).

  15. McClelland, J. L., McNaughton, B. L. & O’Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419–57 (1995).

    Article  PubMed  Google Scholar 

  16. Teyler, T. J. & DiScenna, P. The hippocampal memory indexing theory. Behav. Neurosci. 100, 147–54 (1986).

    Article  CAS  PubMed  Google Scholar 

  17. McCloskey, M. & Cohen, N. J. in Psychology of Learning and Motivation vol. 24 (ed. Bower, G. H.) 109–165 (Academic, 1989).

  18. McClelland, J. L., McNaughton, B. L. & Lampinen, A. K. Integration of new information in memory: new insights from a complementary learning systems perspective. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190637 (2020).

    Article  Google Scholar 

  19. Pavlides, C. & Winson, J. Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes. J. Neurosci. 9, 2907–2918 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. O’Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971).

    Article  PubMed  Google Scholar 

  21. Muller, R. U. & Kubie, J. L. The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J. Neurosci. 7, 1951–1968 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aronov, D., Nevers, R. & Tank, D. W. Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit. Nature 543, 719–722 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gauthier, J. L. & Tank, D. W. A dedicated population for reward coding in the hippocampus. Neuron 99, 179–193.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ólafsdóttir, H. F., Barry, C., Saleem, A. B., Hassabis, D. & Spiers, H. J. Hippocampal place cells construct reward related sequences through unexplored space. Elife 4, e06063 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wikenheiser, A. M. & Redish, A. D. Changes in reward contingency modulate the trial to trial variability of hippocampal place cells. J. Neurophysiol. 106, 589–598 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wood, E. R., Dudchenko, P. A., Robitsek, R. J. & Eichenbaum, H. Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron 27, 623–633 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, K., Ginzburg, I., McNaughton, B. L. & Sejnowski, T. J. Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. J. Neurophysiol. 79, 1017–1014 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Foster, D. J. Replay comes of age. Annu. Rev. Neurosci. 40, 581–602 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Davidson, T. J., Kloosterman, F. & Wilson, M. A. Hippocampal replay of extended experience. Neuron 63, 497–507 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schwindel, C. D., Navratilova, Z., Ali, K., Tatsuno, M. & McNaughton, B. L. Reactivation of rate remapping in CA3. J. Neurosci. 36, 9342–9350 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kudrimoti, H. S., Barnes, C. A. & McNaughton, B. L. Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics. J. Neurosci. 19, 4090–4101 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Buzsaki, G., Horvath, Z., Urioste, R., Hetke, J. & Wise, K. High-frequency network oscillation in the hippocampus. Science 256, 1025–1027 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. O’Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Clarendon, 1978).

  34. Amaral, D. G. & Witter, M. P. The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31, 571–591 (1989).

    Article  CAS  PubMed  Google Scholar 

  35. Guzman, S. J., Schlögl, A., Frotscher, M. & Jonas, P. Synaptic mechanisms of pattern completion in the hippocampal CA3 network. Science 353, 1117–1123 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. de la Prida, L. M. Potential factors influencing replay across CA1 during sharp-wave ripples. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190236 (2020).

    Article  CAS  Google Scholar 

  37. Jahnke, S., Timme, M. & Memmesheimer, R.-M. A unified dynamic model for learning, replay, and sharp-wave/ripples. J. Neurosci. 35, 16236–16258 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shen, B. & McNaughton, B. L. Modeling the spontaneous reactivation of experience-specific hippocampal cell assembles during sleep. Hippocampus 6, 685–692 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Marr, D. A theory for cerebral neocortex. Proc. R. Soc. Lond. B Biol. Sci. 176, 161–234 (1970).

    Article  CAS  PubMed  Google Scholar 

  40. Marr, D. Simple memory: a theory for archicortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 262, 23–81 (1971).

    Article  CAS  PubMed  Google Scholar 

  41. Frankland, P. W. & Bontempi, B. The organization of recent and remote memories. Nat. Rev. Neurosci. 6, 119–130 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Rogerson, T. et al. Synaptic tagging during memory allocation. Nat. Rev. Neurosci. 15, 157–169 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Moscovitch, M., Cabeza, R., Winocur, G. & Nadel, L. Episodic memory and beyond: the hippocampus and neocortex in transformation. Annu. Rev. Psychol. 67, 105–134 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Squire, L. R. & Alvarez, P. Retrograde amnesia and memory consolidation: a neurobiological perspective. Curr. Opin. Neurobiol. 5, 169–177 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Squire, L. R. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99, 195–231 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Battaglia, F. P., Benchenane, K., Sirota, A., Pennartz, C. M. & Wiener, S. I. The hippocampus: hub of brain network communication for memory. Trends Cogn. Sci. 15, 310–318 (2011).

    PubMed  Google Scholar 

  47. Girardeau, G., Benchenane, K., Wiener, S. I., Buzsáki, G. & Zugaro, M. B. Selective suppression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 12, 1222–1223 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Anagnostaras, S. G., Maren, S. & Fanselow, M. S. Temporally graded retrograde amnesia of contextual fear after hippocampal damage in rats: within-subjects examination. J. Neurosci. 19, 1106–1114 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bontempi, B., Laurent-Demir, C., Destrade, C. & Jaffard, R. Time-dependent reorganization of brain circuitry underlying long-term memory storage. Nature 400, 671–675 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Zola-Morgan, S. M. & Squire, L. R. The primate hippocampal formation: evidence for a time-limited role in memory storage. Science 250, 288–290 (1990).

    Article  CAS  PubMed  Google Scholar 

  51. McNaughton, B. L. Cortical hierarchies, sleep, and the extraction of knowledge from memory. Artif. Intell. 174, 205–214 (2010).

    Article  Google Scholar 

  52. Vanderwolf, C. H. Limbic-diencephalic mechanisms of voluntary movement. Psychol. Rev. 78, 83–113 (1971).

    Article  CAS  PubMed  Google Scholar 

  53. O’Neill, J., Senior, T. & Csicsvari, J. Place-selective firing of CA1 pyramidal cells during sharp wave/ripple network patterns in exploratory behavior. Neuron 49, 143–155 (2006).

    Article  PubMed  CAS  Google Scholar 

  54. Foster, D. J. & Wilson, M. A. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440, 680–683 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Pfeiffer, B. E. & Foster, D. J. Hippocampal place-cell sequences depict future paths to remembered goals. Nature 497, 74–79 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Euston, D. R., Tatsuno, M. & McNaughton, B. L. Fast-forward playback of recent memory sequences in prefrontal cortex during sleep. Science 318, 1147–1150 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Peyrache, A., Khamassi, M., Benchenane, K., Wiener, S. I. & Battaglia, F. P. Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nat. Neurosci. 12, 919–926 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Chang, H. et al. Coordinated activities of retrosplenial ensembles during resting-state encode spatial landmarks. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190228 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wilber, A. A., Skelin, I., Wu, W. & McNaughton, B. L. Laminar organization of encoding and memory reactivation in the parietal cortex. Neuron 95, 1406–1419.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ji, D. & Wilson, M. A. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat. Neurosci. 10, 100–107 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Rothschild, G., Eban, E. & Frank, L. M. A cortical–hippocampal–cortical loop of information processing during memory consolidation. Nat. Neurosci. 20, 251–259 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Khodagholy, D., Gelinas, J. N. & Buzsáki, G. Learning-enhanced coupling between ripple oscillations in association cortices and hippocampus. Science 358, 369–372 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vaz, A. P., Inati, S. K., Brunel, N. & Zaghloul, K. A. Coupled ripple oscillations between the medial temporal lobe and neocortex retrieve human memory. Science 363, 975–978 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dickey, C. W. et al. Widespread ripples synchronize human cortical activity during sleep, waking, and memory recall. PNAS 119, e2107797119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Axmacher, N., Elger, C. E. & Fell, J. Ripples in the medial temporal lobe are relevant for human memory consolidation. Brain 131, 1806–1817 (2008).

    Article  PubMed  Google Scholar 

  66. Norman, Y. et al. Hippocampal sharp-wave ripples linked to visual episodic recollection in humans. Science 365, eaax1030 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Deuker, L. et al. Memory consolidation by replay of stimulus-specific neural activity. J. Neurosci. 33, 19373–19383 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schuck, N. W. & Niv, Y. Sequential replay of nonspatial task states in the human hippocampus. Science 364, eaaw5181 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Staresina, B. P., Alink, A., Kriegeskorte, N. & Henson, R. N. Awake reactivation predicts memory in humans. PNAS 110, 21159–21164 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tambini, A. & Davachi, L. Persistence of hippocampal multivoxel patterns into postencoding rest is related to memory. PNAS 110, 19591–19596 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dickey, C. W. et al. Cortical ripples provide the conditions for consolidation during NREM sleep in humans. Preprint at BioRxiv https://doi.org/10.1101/2021.05.11.443637 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Fox, M. D. & Raichle, M. E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Fransson, P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum. Brain Mapp. 26, 15–29 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. PNAS 102, 9673–9678 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. James, G. A., Tripathi, S. P., Ojemann, J. G., Gross, R. E. & Drane, D. L. Diminished default mode network recruitment of the hippocampus and parahippocampus in temporal lobe epilepsy: clinical article. J. Neurosurg. 119, 288–300 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ezama, L., Hernández-Cabrera, J. A., Seoane, S., Pereda, E. & Janssen, N. Functional connectivity of the hippocampus and its subfields in resting-state networks. Eur. J. Neurosci. 53, 3378–3393 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Vincent, J. L. et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447, 83–86 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Vincent, J. L. et al. Coherent spontaneous activity identifies a hippocampal-parietal memory network. J. Neurophysiol. 96, 3517–3531 (2006).

    Article  PubMed  Google Scholar 

  80. Sämann, P. G. et al. Development of the brain’s default mode network from wakefulness to slow wave sleep. Cereb. Cortex 21, 2082–2093 (2011).

    Article  PubMed  Google Scholar 

  81. Lu, H. et al. Rat brains also have a default mode network. Proc. Natl Acad. Sci. USA 109, 3979 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Stafford, J. M. et al. Large-scale topology and the default mode network in the mouse connectome. Proc. Natl Acad. Sci. USA 111, 18745 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Popa, D., Popescu, A. T. & Paré, D. Contrasting activity profile of two distributed cortical networks as a function of attentional demands. J. Neurosci. 29, 1191–1201 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shulman, G. L. et al. Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J. Cogn. Neurosci. 9, 648–663 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Sormaz, M. et al. Default mode network can support the level of detail in experience during active task states. PNAS 115, 9318–9323 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Andreasen, N. C. et al. Remembering the past: two facets of episodic memory explored with positron emission tomography. Am. J. Psychiatry 152, 1576–1585 (1995).

    Article  CAS  PubMed  Google Scholar 

  87. Hassabis, D., Kumaran, D. & Maguire, E. A. Using imagination to understand the neural basis of episodic memory. J. Neurosci. 27, 14365–14374 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Svoboda, E., McKinnon, M. C. & Levine, B. The functional neuroanatomy of autobiographical memory: a meta-analysis. Neuropsychologia 44, 2189–2208 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Schacter, D. L., Addis, D. R. & Buckner, R. L. Remembering the past to imagine the future: the prospective brain. Nat. Rev. Neurosci. 8, 657–661 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Okuda, J. et al. Thinking of the future and past: the roles of the frontal pole and the medial temporal lobes. NeuroImage 19, 1369–1380 (2003).

    Article  PubMed  Google Scholar 

  91. Szpunar, K. K., Watson, J. M. & McDermott, K. B. Neural substrates of envisioning the future. Proc. Natl Acad. Sci. USA 104, 642 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Higgins, C. et al. Replay bursts in humans coincide with activation of the default mode and parietal alpha networks. Neuron 109, 882–893.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gillespie, A. K. et al. Hippocampal replay reflects specific past experiences rather than a plan for subsequent choice. Neuron 109, 3149–3163 (2021).

    Article  CAS  PubMed  Google Scholar 

  94. Ólafsdóttir, H. F., Carpenter, F. & Barry, C. Task demands predict a dynamic switch in the content of awake hippocampal replay. Neuron 96, 925–935.e6 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. McNaughton, B. L. et al. in Sleep and Brain Plasticity (eds Maquet, P., Smith, C. & Stickgold, R.) 225–246 (Oxford Univ. Press, 2003).

  96. Sneve, M. H. et al. Decoupling of large-scale brain networks supports the consolidation of durable episodic memories. NeuroImage 153, 336–345 (2017).

    Article  PubMed  Google Scholar 

  97. de Pasquale, F. et al. Temporal dynamics of spontaneous MEG activity in brain networks. PNAS 107, 6040–6045 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Vidaurre, D. et al. Spontaneous cortical activity transiently organises into frequency specific phase-coupling networks. Nat. Commun. 9, 2987 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Battaglia, F. P., Sutherland, G. R. & McNaughton, B. L. Hippocampal sharp wave bursts coincide with neocortical “up-state” transitions. Learn. Mem. 11, 697–704 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Sirota, A., Csicsvari, J., Buhl, D. & Buzsáki, G. Communication between neocortex and hippocampus during sleep in rodents. Proc. Natl Acad. Sci. USA 100, 2065 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Siapas, A. G. & Wilson, M. A. Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21, 1123–1128 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Peyrache, A., Battaglia, F. P. & Destexhe, A. Inhibition recruitment in prefrontal cortex during sleep spindles and gating of hippocampal inputs. Proc. Natl Acad. Sci. USA 108, 17207–17212 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Diekelmann, S. & Born, J. The memory function of sleep. Nat. Rev. Neurosci. 11, 114–126 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Gais, S., Mölle, M., Helms, K. & Born, J. Learning-dependent increases in sleep spindle density. J. Neurosci. 22, 6830–6834 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Stickgold, R. Sleep-dependent memory consolidation. Nature 437, 1272–1278 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Jadhav, S. P., Rothschild, G., Roumis, D. K. & Frank, L. M. Coordinated excitation and inhibition of prefrontal ensembles during awake hippocampal sharp-wave ripple events. Neuron 90, 113–127 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Logothetis, N. K. et al. Hippocampal-cortical interaction during periods of subcortical silence. Nature 491, 547–553 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Kaplan, R. et al. Hippocampal sharp-wave ripples influence selective activation of the default mode network. Curr. Biol. 26, 686–691 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Abadchi, J. K. et al. Spatiotemporal patterns of neocortical activity around hippocampal sharp-wave ripples. eLife https://doi.org/10.7554/eLife.51972 (2020).

    Article  Google Scholar 

  110. Hoover, W. B. & Vertes, R. P. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct. Funct. 212, 149–179 (2007).

    Article  PubMed  Google Scholar 

  111. Olsen, G. M., Ohara, S., Iijima, T. & Witter, M. P. Parahippocampal and retrosplenial connections of rat posterior parietal cortex. Hippocampus 27, 335–358 (2017).

    Article  PubMed  Google Scholar 

  112. Qin, Y. L., McNaughton, B. L., Skaggs, W. E. & Barnes, C. A. Memory reprocessing in corticocortical and hippocampocortical neuronal ensembles. Philos. Trans. R. Soc. Lond. B Biol. Sci. 352, 1525–1533 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gulati, T., Ramanathan, D. S., Wong, C. C. & Ganguly, K. Reactivation of emergent task-related ensembles during slow-wave sleep after neuroprosthetic learning. Nat. Neurosci. 17, 1107–1113 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ólafsdóttir, H. F., Carpenter, F. & Barry, C. Coordinated grid and place cell replay during rest. Nat. Neurosci. 19, 792–794 (2016).

    Article  PubMed  CAS  Google Scholar 

  115. O’Neill, J., Boccara, C. N., Stella, F., Schoenenberger, P. & Csicsvari, J. Superficial layers of the medial entorhinal cortex replay independently of the hippocampus. Science 355, 184–188 (2017).

    Article  PubMed  CAS  Google Scholar 

  116. Pedrosa, R. et al. Hippocampal gamma and sharp wave/ripples mediate bidirectional interactions with cortical networks during sleep. Preprint at BioRxiv https://doi.org/10.1101/2022.03.08.483425 (2022).

    Article  Google Scholar 

  117. McNaughton, B. L. & Morris, R. G. M. Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends Neurosci. 10, 408–415 (1987).

    Article  Google Scholar 

  118. Ercsey-Ravasz, M. et al. A predictive network model of cerebral cortical connectivity based on a distance rule. Neuron 80, 184–197 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gămănuţ, R. et al. The mouse cortical connectome, characterized by an ultra-dense cortical graph, maintains specificity by distinct connectivity profiles. Neuron 97, 698–715.e10 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl Acad. Sci. USA 113, 12574–12579 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mesulam, M. M. From sensation to cognition. Brain 121, 1013–1052 (1998).

    Article  PubMed  Google Scholar 

  122. Smallwood, J. et al. The default mode network in cognition: a topographical perspective. Nat. Rev. Neurosci. 22, 503–513 (2021).

    Article  CAS  PubMed  Google Scholar 

  123. Huntenburg, J. M., Yeow, L. Y., Mandino, F. & Grandjean, J. Gradients of functional connectivity in the mouse cortex reflect neocortical evolution. NeuroImage 225, 117528 (2021).

    Article  PubMed  Google Scholar 

  124. Chaudhuri, R., Knoblauch, K., Gariel, M. A., Kennedy, H. & Wang, X. J. A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex. Neuron 88, 419–431 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Deco, G. & Jirsa, V. K. Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. J. Neurosci. 32, 3366–3375 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J. Neurophysiol. 61, 331–349 (1989).

    Article  CAS  PubMed  Google Scholar 

  127. Fuster, J. M. Memory networks in the prefrontal cortex. Prog. Brain Res. 122, 309–316 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Honey, C. J. et al. Slow cortical dynamics and the accumulation of information over long timescales. Neuron 76, 423–434 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Murray, J. D. et al. A hierarchy of intrinsic timescales across primate cortex. Nat. Neurosci. 17, 1661–1663 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kaefer, K., Nardin, M., Blahna, K. & Csicsvari, J. Replay of behavioral sequences in the medial prefrontal cortex during rule switching. Neuron 106, 154–165.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  131. Mao, D. et al. Hippocampus-dependent emergence of spatial sequence coding in retrosplenial cortex. Proc. Natl Acad. Sci. USA 115, 8015–8018 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Braga, R. M., Sharp, D. J., Leeson, C., Wise, R. J. S. & Leech, R. Echoes of the brain within default mode, association, and heteromodal cortices. J. Neurosci. 33, 14031–14039 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Leech, R., Braga, R. & Sharp, D. J. Echoes of the brain within the posterior cingulate cortex. J. Neurosci. 32, 215–222 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bengio, Y., Mesnil, G., Dauphin, Y. & Rifai, S. Better mixing via deep representations. PMLR 28, 552–560 (2013).

    Google Scholar 

  135. Chenkov, N., Sprekeler, H. & Kempter, R. Memory replay in balanced recurrent networks. PLoS Comput. Biol. 13, e1005359 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Long, X. & Zhang, S.-J. A novel somatosensory spatial navigation system outside the hippocampal formation. Cell Res. 31, 649–663 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Esteves, I. M. et al. Spatial information encoding across multiple neocortical regions depends on an intact hippocampus. J. Neurosci. 41, 307–319 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Demas, J. et al. High-speed, cortex-wide volumetric recording of neuroactivity at cellular resolution using light beads microscopy. Nat. Methods 18, 1103–1111 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Cramer, B. et al. Control of criticality and computation in spiking neuromorphic networks with plasticity. Nat. Commun. 11, 2853 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Priesemann, V., Valderrama, M., Wibral, M. & Quyen, M. L. V. Neuronal avalanches differ from wakefulness to deep sleep–evidence from intracranial depth recordings in humans. PLoS Comput. Biol. 9, e1002985 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Cipra, B. A. An introduction to the Ising model. Am. Math. Monthly 94, 937–959 (1987).

    Article  Google Scholar 

  142. Yeomans, J. M. Statistical Mechanics of Phase Transitions (Clarendon, 1992).

  143. Goldenfeld, N. Lectures on Phase Transitions and the Renormalization Group (CRC Press, 2019).

  144. Newman, M. Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46, 323–351 (2005).

    Article  Google Scholar 

  145. Sornette, D. Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools (Springer, 2006).

  146. de Arcangelis, L., Perrone-Capano, C. & Herrmann, H. J. Self-organized criticality model for brain plasticity. Phys. Rev. Lett. 96, 028107 (2005).

    Article  CAS  Google Scholar 

  147. Levina, A., Herrmann, J. & Geisel, T. Dynamical synapses causing self-organized criticality in neural networks. Nat. Phys. 3, 857–860 (2007).

    Article  CAS  Google Scholar 

  148. Rybarsch, M. & Bornholdt, S. in Criticality in Neural Systems (eds Plenz, D. & Niebur, E.) 227–254 (Wiley, 2014).

  149. Beggs, J. M. & Plenz, D. Neuronal avalanches in neocortical circuits. J. Neurosci. 23, 11167–11177 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Plenz, D. & Thiagarajan, T. C. The organizing principles of neuronal avalanches: cell assemblies in the cortex? Trends Neurosci. 30, 101–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Plenz, D. In Criticality in Neural Systems (eds Plenz, D. & Niebur, E.) 5–42 (Wiley, 2014).

  152. Shew, W. in Encyclopedia of Computational Neuroscience (eds Jaeger, D. & Jung, R.) 2018–2024 (Springer Nature, 2015).

  153. Deco, G. & Kringelbach, M. L. Turbulent-like dynamics in the human brain. Cell Rep. 33, 108471 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Cocchi, L., Gollo, L. L., Zalesky, A. & Breakspear, M. Criticality in the brain: a synthesis of neurobiology, models and cognition. Prog. Neurobiol. 158, 132–152 (2017).

    Article  PubMed  Google Scholar 

  155. Fagerholm, E. D. et al. Cortical entropy, mutual information and scale-free dynamics in waking mice. Cereb. Cortex 26, 3945–52 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Shew, W. L., Yang, H., Yu, S., Roy, R. & Plenz, D. Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches. J. Neurosci. 31, 55–63 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Shew, W. L. & Plenz, D. The functional benefits of criticality in the cortex. Neuroscientist 19, 88–100 (2013).

    Article  PubMed  Google Scholar 

  158. Boedecker, J., Obst, O., Lizier, J. T., Mayer, N. M. & Asada, M. Information processing in echo state networks at the edge of chaos. Theory Biosci. 131, 205–213 (2012).

    Article  PubMed  Google Scholar 

  159. Clawson, W. P., Wright, N. C., Wessel, R. & Shew, W. L. Adaptation towards scale-free dynamics improves cortical stimulus discrimination at the cost of reduced detection. PLoS Comput. Biol. 13, e1005574 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Gollo, L. L. Coexistence of critical sensitivity and subcritical specificity can yield optimal population coding. J. R. Soc. Interface 14, 20170207 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Priesemann, V. et al. Spike avalanches in vivo suggest a driven, slightly subcritical brain state. Front. Syst. Neurosci. 8, 108 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Shriki, O. & Yellin, D. Optimal information representation and criticality in an adaptive sensory recurrent neuronal network. PLoS Comput. Biol. 12, e1004698 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Wilting, J. & Priesemann, V. Between perfectly critical and fully irregular: a reverberating model captures and predicts cortical spike propagation. Cereb. Cortex 29, 2759–2770 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Deco, G., Jirsa, V., McIntosh, A., Sporns, O. & Kötter, R. Key role of coupling, delay, and noise in resting brain fluctuations. Proc. Natl Acad. Sci. USA 106, 10302–10307 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Moretti, P. & Muñoz, M. A. Griffiths phases and the stretching of criticality in brain networks. Nat. Commun. 4, 2521 (2013).

    Article  PubMed  CAS  Google Scholar 

  166. Mišić, B. et al. Cooperative and competitive spreading dynamics on the human connectome. Neuron 86, 1518–1529 (2015).

    Article  PubMed  CAS  Google Scholar 

  167. Cocchi, L. et al. A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields. eLife 5, e15252 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Gollo, L. L., Zalesky, A., Hutchison, R. M., van den Heuvel, M. & Breakspear, M. Dwelling quietly in the rich club: brain network determinants of slow cortical fluctuations. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140165 (2015).

    Article  Google Scholar 

  169. Gollo, L. L., Roberts, J. A. & Cocchi, L. Mapping how local perturbations influence systems-level brain dynamics. NeuroImage 160, 97–112 (2017).

    Article  PubMed  Google Scholar 

  170. Hasson, U., Yang, E., Vallines, I., Heeger, D. J. & Rubin, N. A hierarchy of temporal receptive windows in human cortex. J. Neurosci. 28, 2539–2550 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Bassett, D. S. et al. Task-based core-periphery organization of human brain dynamics. PLoS Comput. Biol. 9, e1003171 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hasson, U., Chen, J. & Honey, C. J. Hierarchical process memory: memory as an integral component of information processing. Trends Cogn. Sci. 19, 304–313 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Gridchyn, I., Schoenenberger, P., O’Neill, J. & Csicsvari, J. Assembly-specific disruption of hippocampal replay leads to selective memory deficit. Neuron 106, 291–300.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  174. de Lavilléon, G., Lacroix, M. M., Rondi-Reig, L. & Benchenane, K. Explicit memory creation during sleep demonstrates a causal role of place cells in navigation. Nat. Neurosci. 18, 493–495 (2015).

    Article  PubMed  CAS  Google Scholar 

  175. Ambrose, R. E., Pfeiffer, B. E. & Foster, D. J. Reverse replay of hippocampal place cells is uniquely modulated by changing reward. Neuron 91, 1124–1136 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Mashhoori, A., Hashemnia, S., McNaughton, B. L., Euston, D. R. & Gruber, A. J. Rat anterior cingulate cortex recalls features of remote reward locations after disfavoured reinforcements. eLife 7, e29793 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Shin, J. D., Tang, W. & Jadhav, S. P. Dynamics of awake hippocampal-prefrontal replay for spatial learning and memory-guided decision making. Neuron 104, 1110–1125.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Yu, J. Y., Liu, D. F., Loback, A., Grossrubatscher, I. & Frank, L. M. Specific hippocampal representations are linked to generalized cortical representations in memory. Nat. Commun. 9, 2209 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the European Commission Horizon 2020 programme, grants ERC-AdG 833964 ‘REPLAY_DMN’ (to F.P.B.), MSCA ITN 765549 ‘M-GATE’ (to F.P.B.) and MSCA Intraeuropean Fellowship 840704 ‘Brownian Reactivation’ (to F.S. and F.P.B.), EMBO Fellowship ALTF 938-2021 (to K.K.), NIH grant NS121764 (to B.L.M.), NSERC grant RGPIN-2017-03857 (to B.L.M.) and the Radboud Excellence Visiting Professorship (to B.L.M.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Francesco P. Battaglia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks C. Barry and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaefer, K., Stella, F., McNaughton, B.L. et al. Replay, the default mode network and the cascaded memory systems model. Nat Rev Neurosci 23, 628–640 (2022). https://doi.org/10.1038/s41583-022-00620-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-022-00620-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing