Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Macroautophagy in CNS health and disease

Abstract

Macroautophagy is an evolutionarily conserved process that delivers diverse cellular contents to lysosomes for degradation. As our understanding of this pathway grows, so does our appreciation for its importance in disorders of the CNS. Once implicated primarily in neurodegenerative events owing to acute injury and ageing, macroautophagy is now also linked to disorders of neurodevelopment, indicating that it is essential for both the formation and maintenance of a healthy CNS. In parallel to understanding the significance of macroautophagy across contexts, we have gained a greater mechanistic insight into its physiological regulation and the breadth of cargoes it can degrade. Macroautophagy is a broadly used homeostatic process, giving rise to questions surrounding how defects in this single pathway could cause diseases with distinct clinical and pathological signatures. To address this complexity, we herein review macroautophagy in the mammalian CNS by examining three key features of the process and its relationship to disease: how it functions at a basal level in the discrete cell types of the brain and spinal cord; which cargoes are being degraded in physiological and pathological settings; and how the different stages of the macroautophagy pathway intersect with diseases of neurodevelopment and adult-onset neurodegeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular overview of autophagy and related membrane trafficking events.
Fig. 2: Autophagy in cells of the CNS.
Fig. 3: Models of autophagy dysfunction in neurodegenerative diseases.

Similar content being viewed by others

References

  1. Stavoe, A. K. H. & Holzbaur, E. L. F. Autophagy in neurons. Annu. Rev. Cell Dev. Biol. 35, 477–500 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dixon, J. S. “Phagocytic” lysosomes in chromatolytic neurones. Nature 215, 657–658 (1967).

    Article  CAS  PubMed  Google Scholar 

  3. Holtzman, E. & Novikoff, A. B. Lysosomes in the rat sciatic nerve following crush. J. Cell Biol. 27, 651–669 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. De Duve, C. & Wattiaux, R. Functions of lysosomes. Annu. Rev. Physiol. 28, 435–492 (1966). After discovering the lysosome, De Duve created the term ‘autophagy’ and, along with Novikoff and others, laid the foundation for the subsequent decades of study of this process in the CNS.

    Article  PubMed  Google Scholar 

  5. Adhami, F. et al. Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am. J. Pathol. 169, 566–583 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Koike, M. et al. Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am. J. Pathol. 172, 454–469 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Young, J. E., Martinez, R. A. & La Spada, A. R. Nutrient deprivation induces neuronal autophagy and implicates reduced insulin signaling in neuroprotective autophagy activation. J. Biol. Chem. 284, 2363–2373 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tsukada, M. & Ohsumi, Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333, 169–174 (1993). By screening mutant yeast for autophagy defects, Tsukada and Ohsumi started the investigation of the molecular machinery underpinning autophagy.

    Article  CAS  PubMed  Google Scholar 

  9. Mizushima, N. et al. A protein conjugation system essential for autophagy. Nature 395, 395–398 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 (2006). This landmark study, together with Hara et al. (2006), established that autophagy is essential for CNS physiology and that its dysfunction leads to degenerative changes.

    Article  CAS  PubMed  Google Scholar 

  11. Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Yue, Z. et al. A novel protein complex linking the delta 2 glutamate receptor and autophagy: implications for neurodegeneration in lurcher mice. Neuron 35, 921–933 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Komatsu, M. et al. Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc. Natl Acad. Sci. USA 104, 14489–14494 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ahmed, I. et al. Development and characterization of a new Parkinson’s disease model resulting from impaired autophagy. J. Neurosci. 32, 16503–16509 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Friedman, L. G. et al. Disrupted autophagy leads to dopaminergic axon and dendrite degeneration and promotes presynaptic accumulation of α-synuclein and LRRK2 in the brain. J. Neurosci. 32, 7585–7593 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Inoue, K. et al. Coordinate regulation of mature dopaminergic axon morphology by macroautophagy and the PTEN Signaling pathway. PLoS Genet. 9, e1003845 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Sato, S. et al. Loss of autophagy in dopaminergic neurons causes Lewy pathology and motor dysfunction in aged mice. Sci. Rep. 8, 2813 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ohsumi, Y. Historical landmarks of autophagy research. Cell Res. 24, 9–23 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Parzych, K. R. & Klionsky, D. J. An overview of autophagy: morphology, mechanism, and regulation. Antioxid. Redox Signal. 20, 460–473 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schuck, S. Microautophagy — distinct molecular mechanisms handle cargoes of many sizes. J. Cell Sci. 133, jcs246322 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Kaushik, S. & Cuervo, A. M. The coming of age of chaperone-mediated autophagy. Nat. Rev. Mol. Cell Biol. 19, 365–381 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bourdenx, M. et al. Chaperone-mediated autophagy prevents collapse of the neuronal metastable proteome. Cell 184, 2696–2714.e25 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cuervo, A. M. & Wong, E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 24, 92–104 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Dikic, I. & Elazar, Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 19, 349–364 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Morishita, H. & Mizushima, N. Diverse cellular roles of autophagy. Annu. Rev. Cell Dev. Biol. 35, 453–475 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Nakatogawa, H. Mechanisms governing autophagosome biogenesis. Nat. Rev. Mol. Cell Biol. 21, 439–458 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. He, C. & Klionsky, D. J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 67–93 (2010).

    Article  CAS  Google Scholar 

  28. Yamamoto, A., Cremona, M. L. & Rothman, J. E. Autophagy-mediated clearance of huntingtin aggregates triggered by the insulin-signaling pathway. J. Cell Biol. 172, 719–731 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lynch-Day, M. A. & Klionsky, D. J. The Cvt pathway as a model for selective autophagy. FEBS Lett. 584, 1359–1366 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zaffagnini, G. & Martens, S. Mechanisms of selective autophagy. J. Mol. Biol. 428, 1714–1724 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Turco, E., Fracchiolla, D. & Martens, S. Recruitment and activation of the ULK1/Atg1 kinase complex in selective autophagy. J. Mol. Biol. 432, 123–134 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schütter, M., Giavalisco, P., Brodesser, S. & Graef, M. Local fatty acid channeling into phospholipid synthesis drives phagophore expansion during autophagy. Cell 180, 135–149 (2020).

    Article  PubMed  CAS  Google Scholar 

  33. Ghanbarpour, A., Valverde, D. P., Melia, T. J. & Reinisch, K. M. A model for a partnership of lipid transfer proteins and scramblases in membrane expansion and organelle biogenesis. Proc. Natl Acad. Sci. USA 118, e2101562118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhen, Y. et al. ESCRT-mediated phagophore sealing during mitophagy. Autophagy 16, 826–841 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Takahashi, Y. et al. An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure. Nat. Commun. 9, 2855 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Itakura, E., Kishi-Itakura, C. & Mizushima, N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151, 1256–1269 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Aplin, A., Jasionowski, T., Tuttle, D. L., Lenk, S. E. & Dunn, W. A. J. Cytoskeletal elements are required for the formation and maturation of autophagic vacuoles. J. Cell Physiol. 152, 458–466 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T. & Ohsumi, Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell 15, 1101–1111 (2004). This study created a mouse with fluorescently tagged LC3, a critical step in tool development to understand autophagic function in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nath, S. et al. Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3. Nat. Cell Biol. 16, 415–424 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nguyen, T. N. et al. Atg8 family LC3/GABARAP proteins are crucial for autophagosome-lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation. J. Cell Biol. 215, 857–874 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Weidberg, H. et al. LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis. Dev. Cell 20, 444–454 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, H., Bedford, F. K., Brandon, N. J., Moss, S. J. & Olsen, R. W. GABA(A)-receptor-associated protein links GABA(A) receptors and the cytoskeleton. Nature 397, 69–72 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Klionsky, D. J., Cueva, R. & Yaver, D. S. Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway. J. Cell Biol. 119, 287–299 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Rogov, V., Dotsch, V., Johansen, T. & Kirkin, V. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol. Cell 53, 167–178 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Gubas, A. & Dikic, I. A guide to the regulation of selective autophagy receptors. FEBS J. 289, 75–89 (2021).

    Article  PubMed  CAS  Google Scholar 

  47. Kirkin, V. & Rogov, V. V. A diversity of selective autophagy receptors determines the specificity of the autophagy pathway. Mol. Cell 76, 268–285 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Stolz, A., Ernst, A. & Dikic, I. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16, 495–501 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Kim, B. W., Kwon, D. H. & Song, H. K. Structure biology of selective autophagy receptors. BMB Rep. 49, 73–80 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Khaminets, A., Behl, C. & Dikic, I. Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol. 26, 6–16 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Bjørkøy, G. et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171, 603–614 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Palikaras, K., Lionaki, E. & Tavernarakis, N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat. Cell Biol. 20, 1013–1022 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Nthiga, T. M. et al. Regulation of Golgi turnover by CALCOCO1-mediated selective autophagy. J. Cell Biol. 220, e202006128(2021).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yamamoto, A. Go for the Golgi: eating selectively with Calcoco1. J. Cell Biol. 220, e202105005 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Narendra, D., Kane, L. A., Hauser, D. N., Fearnley, I. M. & Youle, R. J. p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 6, 1090–1106 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Komatsu, M. et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131, 1149–1163 (2007). This study separated autophagy disruption from the development of inclusion bodies, indicating that the regulation of neuronal health by autophagy goes beyond proteostasis alone.

    Article  CAS  PubMed  Google Scholar 

  57. Kurashige, T. et al. Optineurin defects cause TDP43-pathology with autophagic vacuolar formation. Neurobiol. Dis. 148, 105215 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Fox, L. M. et al. Huntington’s disease pathogenesis is modified in vivo by Alfy/Wdfy3 and selective macroautophagy. Neuron 105, 813–821 (2020). Investigating the role of protein aggregates in neurodegenerative pathogenesis, this study found that the autophagy adaptor Alfy confers resistance to HD-like phenotypes.

    Article  CAS  PubMed  Google Scholar 

  59. Filimonenko, M. et al. The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol. Cell 38, 265–279 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dhingra, A., Alexander, D., Reyes-Reveles, J., Sharp, R. & Boesze-Battaglia, K. Microtubule-associated protein 1 light chain 3 (LC3) isoforms in RPE and retina. Adv. Exp. Med. Biol. 1074, 609–616 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Komatsu, M. et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169, 425–434 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Maday, S. & Holzbaur, E. L. F. Compartment-specific regulation of autophagy in primary neurons. J. Neurosci. 36, 5933–5945 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kaushik, S. et al. Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. Cell Metab. 14, 173–183 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nikoletopoulou, V., Sidiropoulou, K., Kallergi, E., Dalezios, Y. & Tavernarakis, N. Modulation of autophagy by BDNF underlies synaptic plasticity. Cell Metab. 26, 230–242.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Tsvetkov, A. S. et al. A small-molecule scaffold induces autophagy in primary neurons and protects against toxicity in a Huntington disease model. Proc. Natl Acad. Sci. USA 107, 16982–16987 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Maday, S. & Holzbaur, E. L. F. Autophagosome biogenesis in primary neurons follows an ordered and spatially regulated pathway. Dev. Cell 30, 71–85 (2014). This significant study described neuronal compartmentalization of autophagosome biogenesis, maturation and fusion to the lysosome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hernandez, D. et al. Regulation of presynaptic neurotransmission by macroautophagy. Neuron 74, 277–284 (2012). This study, focusing on dopaminergic neurons, established that autophagy modulates presynaptic structure and function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tang, G. et al. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83, 1131–1143 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lieberman, O. J. et al. mTOR suppresses macroautophagy during striatal postnatal development and is hyperactive in mouse models of autism spectrum disorders. Front. Cell Neurosci. 14, 70 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Khobrekar, N. V., Quintremil, S., Dantas, T. J. & Vallee, R. B. The Dynein adaptor RILP controls neuronal autophagosome biogenesis, transport, and clearance. Dev. Cell 53, 141–153 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Yamamoto, A. & Yue, Z. Autophagy and its normal and pathogenic states in the brain. Annu. Rev. Neurosci. 37, 55–78 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Zhong, Y. et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat. Cell Biol. 11, 468–476 (2009). Together with Matsunaga et al. (2009), this study provided critical insight into the molecular regulation of autophagy versus other membrane fates by upstream lipid kinase complexes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tooze, S. A. & Yoshimori, T. The origin of the autophagosomal membrane. Nat. Cell Biol. 12, 831–835 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Itakura, E., Kishi, C., Inoue, K. & Mizushima, N. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell 19, 5360–5372 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Matsunaga, K. et al. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat. Cell Biol. 11, 385–396 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Lee, S., Sato, Y. & Nixon, R. A. Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer’s-like axonal dystrophy. J. Neurosci. 31, 7817–7830 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Maday, S., Wallace, K. E. & Holzbaur, E. L. F. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J. Cell Biol. 196, 407–417 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cheng, X. T., Zhou, B., Lin, M. Y., Cai, Q. & Sheng, Z. H. Axonal autophagosomes recruit dynein for retrograde transport through fusion with late endosomes. J. Cell Biol. 209, 377–386 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shehata, M., Matsumura, H., Okubo-Suzuki, R., Ohkawa, N. & Inokuchi, K. Neuronal stimulation induces autophagy in hippocampal neurons that is involved in AMPA receptor degradation after chemical long-term depression. J. Neurosci. 32, 10413–10422 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Di Malta, C., Fryer, J. D., Settembre, C. & Ballabio, A. Astrocyte dysfunction triggers neurodegeneration in a lysosomal storage disorder. Proc. Natl Acad. Sci. USA 109, 2334–2342 (2012).

    Article  Google Scholar 

  81. Bankston, A. N. et al. Autophagy is essential for oligodendrocyte differentiation, survival, and proper myelination. Glia 67, 1745–1759 (2019).

    PubMed  Google Scholar 

  82. Okerlund, N. D. et al. Bassoon controls presynaptic autophagy through Atg5. Neuron 93, 897–913 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Hoffmann-Conaway, S. et al. Parkin contributes to synaptic vesicle autophagy in Bassoon-deficient mice. eLife 9, e56590 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Vijayan, V. & Verstreken, P. Autophagy in the presynaptic compartment in health and disease. J. Cell Biol. 216, 1895–1906 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sumitomo, A. et al. Ulk2 controls cortical excitatory–inhibitory balance via autophagic regulation of p62 and GABAA receptor trafficking in pyramidal neurons. Hum. Mol. Genet. 27, 3165–3176 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nikoletopoulou, V. & Tavernarakis, N. Regulation and roles of autophagy at synapses. Trends Cell Biol. 28, 646–661 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Glatigny, M. et al. Autophagy is required for memory formation and reverses age-related memory decline. Curr. Biol. 29, 435–448 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Shen, H., Zhu, H., Panja, D., Gu, Q. & Li, Z. Autophagy controls the induction and developmental decline of NMDAR-LTD through endocytic recycling. Nat. Commun. 11, 2979 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Compans, B. et al. NMDAR-dependent long-term depression is associated with increased short term plasticity through autophagy mediated loss of PSD-95. Nat. Commun. 12, 2849 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pan, Y. et al. Neuronal activity recruits the CRTC1/CREB axis to drive transcription-dependent autophagy for maintaining late-phase LTD. Cell Rep. 36, 109398 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Birdsall, V. & Waites, C. L. Autophagy at the synapse. Neurosci. Lett. 697, 24–28 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Soukup, S. F. et al. A LRRK2-dependent endophilina phosphoswitch is critical for macroautophagy at presynaptic terminals. Neuron 92, 829–844 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Vanhauwaert, R. et al. The SAC1 domain in synaptojanin is required for autophagosome maturation at presynaptic terminals. EMBO J. 36, 1392–1411 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lieberman, O. J. et al. Cell-type-specific regulation of neuronal intrinsic excitability by macroautophagy. eLife 9, e50843 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hirabayashi, Y. et al. ER-mitochondria tethering by PDZD8 regulates Ca2+ dynamics in mammalian neurons. Science 358, 623–630 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kuijpers, M. et al. Neuronal autophagy regulates presynaptic neurotransmission by controlling the axonal endoplasmic reticulum. Neuron 109, 299–313.e9 (2021). This study linked ER-phagy to neurotransmission through the control of calcium stores in the ER.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rudnick, N. D. et al. Distinct roles for motor neuron autophagy early and late in the SOD1 G93A mouse model of ALS. Proc. Natl Acad. Sci. USA 114, E8294–E8303 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nishiyama, J., Miura, E., Mizushima, N., Watanabe, M. & Yuzaki, M. Aberrant membranes and double-membrane structures accumulate in the axons of Atg5-null Purkinje cells before neuronal death. Autophagy 3, 591–596 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Tang, G., Yue, Z., Tallóczy, Z. & Goldman, J. E. Adaptive autophagy in Alexander disease-affected astrocytes. Autophagy 4, 701–703 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Manzoni, C. et al. mTOR independent regulation of macroautophagy by leucine rich repeat kinase 2 via Beclin-1. Sci. Rep. 6, 35106 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ulland, T. K. et al. TREM2 maintains microglial metabolic fitness in Alzheimer’s disease. Cell 170, 649–663 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jänen, S. B., Chaachouay, H. & Richter-Landsberg, C. Autophagy is activated by proteasomal inhibition and involved in aggresome clearance in cultured astrocytes. Glia 58, 1766–1774 (2010).

    Article  PubMed  Google Scholar 

  103. Schwarz, L., Goldbaum, O., Bergmann, M., Probst-Cousin, S. & Richter-Landsberg, C. Involvement of macroautophagy in multiple system atrophy and protein aggregate formation in oligodendrocytes. J. Mol. Neurosci. 47, 256–266 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Cho, M. H. et al. Autophagy in microglia degrades extracellular β-amyloid fibrils and regulates the NLRP3 inflammasome. Autophagy 10, 1761–1775 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Choi, I. et al. Microglia clear neuron-released α-synuclein via selective autophagy and prevent neurodegeneration. Nat. Commun. 11, 1386 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Motori, E. et al. Inflammation-induced alteration of astrocyte mitochondrial dynamics requires autophagy for mitochondrial network maintenance. Cell Metab. 18, 844–859 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Sheng, R. et al. Autophagy activation is associated with neuroprotection in a rat model of focal cerebral ischemic preconditioning. Autophagy 6, 482–494 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Ni, Y. et al. RIP1K contributes to neuronal and astrocytic cell death in ischemic stroke via activating autophagic-lysosomal pathway. Neuroscience 371, 60–74 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Ohri, S. S. et al. Blocking autophagy in oligodendrocytes limits functional recovery after spinal cord injury. J. Neurosci. 38, 5900–5912 (2018).

    Article  CAS  Google Scholar 

  110. Sun, L. O. et al. Spatiotemporal control of CNS myelination by oligodendrocyte programmed cell death through the TFEB-PUMA axis. Cell 175, 1811–1826 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Smith, C. M., Mayer, J. A. & Duncan, I. D. Autophagy promotes oligodendrocyte survival and function following dysmyelination in a long-lived myelin mutant. J. Neurosci. 33, 8088–8100 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lebrun-Julien, F. et al. Balanced mTORC1 activity in oligodendrocytes is required for accurate CNS myelination. J. Neurosci. 34, 8432–8448 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Kim, H. J. et al. Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects. Mol. Psychiatry 22, 1576–1584 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Lucin, K. M. et al. Microglial beclin 1 regulates retromer trafficking and phagocytosis and is impaired in Alzheimer’s disease. Neuron 79, 873–886 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Shibuya, Y., Chang, C. C., Huang, L. H., Bryleva, E. Y. & Chang, T. Y. Inhibiting ACAT1/SOAT1 in microglia stimulates autophagy-mediated lysosomal proteolysis and increases Aβ1-42 clearance. J. Neurosci. 34, 14484–14501 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang, Y. et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160, 1061–1071 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Heckmann, B. L. et al. LC3-associated endocytosis facilitates β-amyloid clearance and mitigates neurodegeneration in murine Alzheimer’s disease. Cell 178, 536–551 (2019). This work identified an endocytic pathway involving a subset of autophagy machinery (LANDO) in microglia, emphasizing the need to consider non-autophagic functions of such machinery in the study and interpretation of CNS autophagy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Iadecola, C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96, 17–42 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang, X. et al. An updated review of autophagy in ischemic stroke: from mechanisms to therapies. Exp. Neurol. 340, 113684 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Yang, Z. et al. Autophagy protects the blood-brain barrier through regulating the dynamic of claudin-5 in short-term starvation. Front. Physiol. 10, 2 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Zhang, X. et al. Autophagy induced by oxygen-glucose deprivation mediates the injury to the neurovascular unit. Med. Sci. Monit. 25, 1373–1382 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kortekaas, R. et al. Blood–brain barrier dysfunction in parkinsonian midbrain in vivo. Ann. Neurol. 57, 176–179 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Sweeney, M. D., Ayyadurai, S. & Zlokovic, B. V. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat. Neurosci. 19, 771–783 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Muoio, V., Persson, P. B. & Sendeski, M. M. The neurovascular unit–concept review. Acta Physiol. 210, 790–798 (2014).

    Article  CAS  Google Scholar 

  125. Kim, M. et al. Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay. eLife 5, e12245 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Xu, J. et al. A variant of the autophagy-related 5 gene is associated with child cerebral palsy. Front. Cell Neurosci. 11, 407 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Hentges, K. E. et al. FRAP/mTOR is required for proliferation and patterning during embryonic development in the mouse. Proc. Natl Acad. Sci. USA 98, 13796–13801 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hoeffer, C. A. et al. Removal of FKBP12 enhances mTOR-Raptor interactions, LTP, memory, and perseverative/repetitive behavior. Neuron 60, 832–845 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Collier, J. J. et al. Developmental consequences of defective ATG7-mediated autophagy in humans. N. Engl. J. Med. 384, 2406–2417 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lv, X. et al. The crucial role of Atg5 in cortical neurogenesis during early brain development. Sci. Rep. 4, 6010 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang, B. et al. The autophagy-inducing kinases, ULK1 and ULK2, regulate axon guidance in the developing mouse forebrain via a noncanonical pathway. Autophagy 14, 796–811 (2014).

    Article  CAS  Google Scholar 

  132. Dragich, J. M. et al. Autophagy linked FYVE (Alfy/WDFY3) is required for establishing neuronal connectivity in the mammalian brain. eLife 5, e14810 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Orosco, L. A. et al. Loss of Wdfy3 in mice alters cerebral cortical neurogenesis reflecting aspects of the autism pathology. Nat. Commun. 5, 4692 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Coupé, B. et al. Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation. Cell Metab. 15, 247–255 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Joo, J. H. et al. The noncanonical role of ULK/ATG1 in ER-to-Golgi trafficking is essential for cellular homeostasis. Mol. Cell 62, 491–506 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lieberman, O. J., McGuirt, A. F., Tang, G. & Sulzer, D. Roles for neuronal and glial autophagy in synaptic pruning during development. Neurobiol. Dis. 122, 49–63 (2019).

    Article  PubMed  Google Scholar 

  137. Hill, S. E. & Colón-Ramos, D. A. The journey of the synaptic autophagosome: a cell biological perspective. Neuron 105, 961–973 (2020).

    Article  CAS  PubMed  Google Scholar 

  138. Marsh, D. & Dragich, J. M. Autophagy in mammalian neurodevelopment and implications for childhood neurological disorders. Neurosci. Lett. 697, 29–33 (2019).

    Article  CAS  PubMed  Google Scholar 

  139. Yan, J., Porch, M. W., Court-Vazquez, B., Bennett, M. V. L. & Zukin, R. S. Activation of autophagy rescues synaptic and cognitive deficits in fragile X mice. Proc. Natl Acad. Sci. USA 115, E9707–E9716 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Cullup, T. et al. Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy. Nat. Genet. 45, 83–87 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Byrne, S. et al. EPG5-related Vici syndrome: a paradigm of neurodevelopmental disorders with defective autophagy. Brain 139, 765–781 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Zhao, Y. G., Zhao, H., Sun, H. & Zhang, H. Role of Epg5 in selective neurodegeneration and Vici syndrome. Autophagy 9, 1258–1262 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wang, Z. et al. The vici syndrome protein EPG5 Is a Rab7 effector that determines the fusion specificity of autophagosomes with late endosomes/lysosomes. Mol. Cell 63, 781–795 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Haack, T. B. et al. Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA. Am. J. Hum. Genet. 91, 1144–1149 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Saitsu, H. et al. De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat. Genet. 45, 445–459 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Polson, H. E. et al. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 6, 506–522 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Thomas, A. C. et al. Mutations in SNX14 cause a distinctive autosomal-recessive cerebellar ataxia and intellectual disability syndrome. Am. J. Hum. Genet. 95, 611–621 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Akizu, N. et al. Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction. Nat. Genet. 47, 528–534 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ebrahimi-Fakhari, D. et al. Congenital disorders of autophagy: an emerging novel class of inborn errors of neuro-metabolism. Brain 139, 317–337 (2016).

    Article  PubMed  Google Scholar 

  150. Renvoisé, B. et al. Lysosomal abnormalities in hereditary spastic paraplegia types SPG15 and SPG11. Ann. Clin. Transl. Neurol. 1, 379–389 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Gstrein, T. et al. Mutations in Vps15 perturb neuronal migration in mice and are associated with neurodevelopmental disease in humans. Nat. Neurosci. 21, 207–217 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Taylor, J. P., Hardy, J. & Fischbeck, K. H. Toxic proteins in neurodegenerative disease. Science 296, 1991–1995 (2002).

    Article  CAS  PubMed  Google Scholar 

  153. Lattante, S., Rouleau, G. A. & Kabashi, E. TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: summary and update. Hum. Mutat. 34, 812–826 (2018).

    Article  CAS  Google Scholar 

  154. Deng, Z. et al. Autophagy receptors and neurodegenerative diseases. Trends Cell Biol. 27, 491–504 (2017).

    Article  CAS  PubMed  Google Scholar 

  155. Fecto, F. et al. SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Arch. Neurol. 68, 1440–1446 (2011).

    Article  PubMed  Google Scholar 

  156. Teyssou, E. et al. Mutations in SQSTM1 encoding p62 in amyotrophic lateral sclerosis: genetics and neuropathology. Acta Neuropathol. 125, 511–522 (2013).

    Article  CAS  PubMed  Google Scholar 

  157. Maruyama, H. et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465, 223–226 (2010). This work showed that mutations in the adaptor protein OPTN can cause ALS and, in cell-based studies of the mutations, demonstrated defects in proteostasis and inflammation.

    Article  CAS  PubMed  Google Scholar 

  158. Cirulli, E. T. et al. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347, 1436–1441 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Richter, B. et al. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc. Natl Acad. Sci. USA 113, 4039–4044 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Fitzgerald, K. A. et al. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4, 491–496 (2003).

    Article  CAS  PubMed  Google Scholar 

  161. West, A. P., Shadel, G. S. & Ghosh, S. Mitochondria in innate immune responses. Nat. Rev. Immunol. 11, 389–402 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Brenner, D. et al. Heterozygous Tbk1 loss has opposing effects in early and late stages of ALS in mice. J. Exp. Med. 216, 267–278 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gerbino, V. et al. The Loss of TBK1 kinase activity in motor neurons or in all cell types differentially impacts ALS disease progression in SOD1 mice. Neuron 106, 789–805 (2020).

    Article  CAS  PubMed  Google Scholar 

  164. Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Webster, C. P. et al. The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. EMBO J. 35, 1656–1676 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Farg, M. A. et al. C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum. Mol. Genet. 23, 3579–3595 (2017).

    Article  CAS  Google Scholar 

  168. Boivin, M. et al. Reduced autophagy upon C9ORF72 loss synergizes with dipeptide repeat protein toxicity in G4C2 repeat expansion disorders. EMBO J. 39, e100574 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Zhu, Q. et al. Reduced C9ORF72 function exacerbates gain of toxicity from ALS/FTD-causing repeat expansion in C9orf72. Nat. Neurosci. 23, 615–624 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sreedharan, J. et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668–1672 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Van Deerlin, V. M. et al. TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis. Lancet Neurol. 7, 409–416 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Borroni, B. et al. Mutation within TARDBP leads to frontotemporal dementia without motor neuron disease. Hum. Mutat. 30, E974–E983 (2009).

    Article  CAS  PubMed  Google Scholar 

  173. Mackenzie, I. R. & Rademakers, R. The role of transactive response DNA-binding protein-43 in amyotrophic lateral sclerosis and frontotemporal dementia. Curr. Opin. Neurol. 21, 693–700 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Johnson, B. S. et al. TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J. Biol. Chem. 284, 20329–20339 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Scotter, E. L. et al. Differential roles of the ubiquitin proteasome system and autophagy in the clearance of soluble and aggregated TDP-43 species. J. Cell Sci. 127, 1263–1278 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Barmada, S. J. et al. Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models. Nat. Chem. Biol. 10, 677–685 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Bose, J. K., Huang, C. C. & Shen, C. K. Regulation of autophagy by neuropathological protein TDP-43. J. Biol. Chem. 286, 44441–44448 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Xia, Q. et al. TDP-43 loss of function increases TFEB activity and blocks autophagosome-lysosome fusion. EMBO J. 35, 121–142 (2016).

    Article  CAS  PubMed  Google Scholar 

  179. Ling, J. P., Pletnikova, O., Troncoso, J. C. & Wong, P. C. TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD. Science 349, 650–655 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Hou, X., Watzlawik, J. O., Fiesel, F. C. & Springer, W. Autophagy in Parkinson’s disease. J. Mol. Biol. 432, 2651–2672 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Polymeropoulos, M. H. et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276, 2045–2047 (1997).

    Article  CAS  PubMed  Google Scholar 

  182. Singleton, A. B. et al. alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302, 841 (2003).

    Article  CAS  PubMed  Google Scholar 

  183. Abeliovich, A. & Gitler, A. D. Defects in trafficking bridge Parkinson’s disease pathology and genetics. Nature 539, 207–216 (2016).

    Article  PubMed  Google Scholar 

  184. Singh, P. K. & Muqit, M. M. K. Parkinson’s: a disease of aberrant vesicle trafficking. Annu. Rev. Cell Dev. Biol. 36, 237–264 (2020).

    Article  CAS  PubMed  Google Scholar 

  185. Stojkovska, I. et al. Rescue of α-synuclein aggregation in Parkinson’s patient neurons by synergistic enhancement of ER proteostasis and protein trafficking. Neuron 110, 436–451.e11 (2022).

    Article  CAS  PubMed  Google Scholar 

  186. Pihlstrøm, L. et al. A comprehensive analysis of SNCA-related genetic risk in sporadic Parkinson disease. Ann. Neurol. 84, 117–129 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Spillantini, M. G. et al. Alpha-synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    Article  CAS  PubMed  Google Scholar 

  188. Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    Article  CAS  PubMed  Google Scholar 

  189. Valente, E. M. et al. Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. Am. J. Hum. Genet. 68, 895–900 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Geisler, S. et al. The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations. Autophagy 6, 871–878 (2010).

    Article  CAS  PubMed  Google Scholar 

  191. Lazarou, M. et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309–314 (2015). This study mechanistically characterized the role of PD-associated PINK1 in mitophagy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Pickrell, A. M. & Youle, R. J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85, 257–273 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Goldberg, M. S. et al. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J. Biol. Chem. 278, 43628–43635 (2003).

    Article  CAS  PubMed  Google Scholar 

  194. Perez, F. A. & Palmiter, R. D. Parkin-deficient mice are not a robust model of parkinsonism. Proc. Natl Acad. Sci. USA 102, 2174–2179 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Matheoud, D. et al. Intestinal infection triggers Parkinson’s disease-like symptoms in Pink1-/- mice. Nature 571, 565–569 (2019).

    Article  CAS  PubMed  Google Scholar 

  196. Sliter, D. A. et al. Parkin and PINK1 mitigate STING-induced inflammation. Nature 561, 258–262 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Lie, P. P. Y. & Nixon, R. A. Lysosome trafficking and signaling in health and neurodegenerative diseases. Neurobiol. Dis. 122, 94–105 (2019).

    Article  CAS  PubMed  Google Scholar 

  198. Van Acker, Z. P., Bretou, M. & Annaert, W. Endo-lysosomal dysregulations and late-onset Alzheimer’s disease: impact of genetic risk factors. Mol. Neurodegener. 14, 20 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Cataldo, A. M., Hamilton, D. J., Barnett, J. L., Paskevich, P. A. & Nixon, R. A. Properties of the endosomal-lysosomal system in the human central nervous system: disturbances mark most neurons in populations at risk to degenerate in Alzheimer’s disease. J. Neurosci. 16, 186–199 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Nixon, R. A. et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J. Neuropathol. Exp. Neurol. 64, 113–122 (2005). This ultrastructural study in cortices from patients provided key evidence of autophagy dysfunction in AD.

    Article  PubMed  Google Scholar 

  201. Boland, B. et al. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J. Neurosci. 28, 6926–6937 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Bloom, G. S. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 71, 505–508 (2014).

    Article  PubMed  Google Scholar 

  203. Nilsson, P. et al. Aβ secretion and plaque formation depend on autophagy. Cell Rep. 5, 61–69 (2013).

    Article  CAS  PubMed  Google Scholar 

  204. Inoue, K. et al. Macroautophagy deficiency mediates age-dependent neurodegeneration through a phospho-tau pathway. Mol. Neurodegener. 7, 48 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Croce, K. R. & Yamamoto, A. Dissolving the complex role aggregation plays in neurodegenerative disease. Mov. Disord. 36, 1061–1069 (2021).

    Article  PubMed  Google Scholar 

  206. Fimia, G. M. et al. Ambra1 regulates autophagy and development of the nervous system. Nature 447, 1121–1125 (2007).

    Article  CAS  PubMed  Google Scholar 

  207. Kuma, A. et al. The role of autophagy during the early neonatal starvation period. Nature 432, 1032–1036 (2004).

    Article  CAS  PubMed  Google Scholar 

  208. Qu, X. et al. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128, 931–946 (2007).

    Article  CAS  PubMed  Google Scholar 

  209. Yue, Z., Jin, S., Yang, C., Levine, A. J. & Heintz, N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl Acad. Sci. USA 100, 15077–15082 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Kaushik, S. et al. Loss of autophagy in hypothalamic POMC neurons impairs lipolysis. EMBO Rep. 13, 258–265 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Liang, C. C., Wang, C., Peng, X., Gan, B. & Guan, J. L. Neural-specific deletion of FIP200 leads to cerebellar degeneration caused by increased neuronal death and axon degeneration. J. Biol. Chem. 285, 3499–3509 (2010).

    Article  CAS  PubMed  Google Scholar 

  212. Kurth, I. et al. Mutations in FAM134B, encoding a newly identified Golgi protein, cause severe sensory and autonomic neuropathy. Nat. Genet. 41, 1179–1181 (2009).

    Article  CAS  PubMed  Google Scholar 

  213. Khaminets, A. et al. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522, 354–358 (2015).

    Article  CAS  PubMed  Google Scholar 

  214. Oliveras-Salvá, M., Van Rompuy, A. S., Heeman, B., Van den Haute, C. & Baekelandt, V. Loss-of-function rodent models for parkin and PINK1. J. Parkinsons Dis. 1, 229–251 (2011).

    Article  PubMed  CAS  Google Scholar 

  215. Matsumoto, G., Wada, K., Okuno, M., Kurosawa, M. & Nukina, N. Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol. Cell 44, 279–289 (2011).

    Article  CAS  PubMed  Google Scholar 

  216. Rea, S. L., Majcher, V., Searle, M. S. & Layfield, R. SQSTM1 mutations — bridging Paget disease of bone and ALS/FTLD. Exp. Cell Res. 325, 27–37 (2014).

    Article  CAS  PubMed  Google Scholar 

  217. Cuyvers, E. et al. Genetic variability in SQSTM1 and risk of early-onset Alzheimer dementia: a European early-onset dementia consortium study. Neurobiol. Aging 36, 2005.e15–2005.e22 (2015).

    Article  CAS  Google Scholar 

  218. Komatsu, M., Kageyama, S. & Ichimura, Y. p62/SQSTM1/A170: physiology and pathology. Pharmacol. Res. 66, 457–462 (2012).

    Article  CAS  PubMed  Google Scholar 

  219. Moscat, J. & Diaz-Meco, M. T. p62 at the crossroads of autophagy, apoptosis, and cancer. Cell 137, 1001–1004 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Moscat, J., Karin, M. & Diaz-Meco, M. T. p62 in cancer: signaling adaptor beyond autophagy. Cell 167, 606–609 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Padman, B. S. et al. LC3/GABARAPs drive ubiquitin-independent recruitment of Optineurin and NDP52 to amplify mitophagy. Nat. Commun. 10, 408 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Heo, J. M., Ordureau, A., Paulo, J. A., Rinehart, J. & Harper, J. W. The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol. Cell 60, 7–20 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Schwab, C., Yu, S., McGeer, E. G. & McGeer, P. L. Optineurin in Huntington’s disease intranuclear inclusions. Neurosci. Lett. 506, 149–154 (2012).

    Article  CAS  PubMed  Google Scholar 

  224. Mankouri, J. et al. Optineurin negatively regulates the induction of IFNbeta in response to RNA virus infection. PLoS Pathog. 6, e1000778 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Outlioua, A., Pourcelot, M. & Arnoult, D. The role of optineurin in antiviral type I interferon production. Front. Immunol. 9, 853 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Odagiri, S. et al. Autophagic adapter protein NBR1 is localized in Lewy bodies and glial cytoplasmic inclusions and is involved in aggregate formation in α-synucleinopathy. Acta Neuropathol. 124, 173–186 (2012).

    Article  CAS  PubMed  Google Scholar 

  227. Rué, L. et al. Brain region- and age-dependent dysregulation of p62 and NBR1 in a mouse model of Huntington’s disease. Neurobiol. Dis. 52, 219–228 (2013).

    Article  PubMed  CAS  Google Scholar 

  228. Stessman, H. A. et al. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat. Genet. 49, 515–526 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Iossifov, I. et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 515, 216–221 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Clausen, T. H. et al. p62/SQSTM1 and ALFY interact to facilitate the formation of p62 bodies/ALIS and their degradation by autophagy. Autophagy 6, 330–344 (2010).

    Article  CAS  PubMed  Google Scholar 

  231. Kim, S. et al. NDP52 associates with phosphorylated tau in brains of an Alzheimer disease mouse model. Biochem. Biophys. Res. Commun. 454, 196–201 (2014).

    Article  CAS  PubMed  Google Scholar 

  232. Fan, S. et al. The role of autophagy and autophagy receptor NDP52 in microbial infections. Int. J. Mol. Sci. 21, 2008 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  233. Till, A. et al. Autophagy receptor CALCOCO2/NDP52 takes center stage in Crohn disease. Autophagy 9, 1256–1257 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Jin, S. & Cui, J. BST2 inhibits type I IFN (interferon) signaling by accelerating MAVS degradation through CALCOCO2-directed autophagy. Autophagy 14, 171–172 (2018).

    Article  CAS  PubMed  Google Scholar 

  235. Sabaie, H., Ahangar, N. K., Ghafouri-Fard, S., Taheri, M. & Rezazadeh, M. Clinical and genetic features of PEHO and PEHO-Like syndromes: a scoping review. Biomed. Pharmacother. 131, 110793 (2020).

    Article  CAS  PubMed  Google Scholar 

  236. Wyant, G. A. et al. NUFIP1 is a ribosome receptor for starvation-induced ribophagy. Science 360, 751–758 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Bardoni, B. et al. NUFIP1 (nuclear FMRP interacting protein 1) is a nucleocytoplasmic shuttling protein associated with active synaptoneurosomes. Exp. Cell Res. 289, 95–107 (2003).

    Article  CAS  PubMed  Google Scholar 

  238. Chen, Q. et al. ATL3 is a tubular ER-phagy receptor for GABARAP-mediated selective autophagy. Curr. Biol. 29, 846–855.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  239. Kornak, U. et al. Sensory neuropathy with bone destruction due to a mutation in the membrane-shaping atlastin GTPase 3. Brain 137, 683–692 (2014).

    Article  PubMed  Google Scholar 

  240. Neufeldt, C. J. et al. ER-shaping atlastin proteins act as central hubs to promote flavivirus replication and virion assembly. Nat. Microbiol. 4, 2416–2429 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. Zou, Y. et al. Identification of rare RTN3 variants in Alzheimer’s disease in Han Chinese. Hum. Genet. 137, 141–150 (2018).

    Article  CAS  PubMed  Google Scholar 

  242. Murayama, K. S. et al. Reticulons RTN3 and RTN4-B/C interact with BACE1 and inhibit its ability to produce amyloid beta-protein. Eur. J. Neurosci. 24, 1237–1244 (2006).

    Article  PubMed  Google Scholar 

  243. Kuang, E. et al. ER Ca2+ depletion triggers apoptotic signals for endoplasmic reticulum (ER) overload response induced by overexpressed reticulon 3 (RTN3/HAP). J. Cell Physiol. 204, 549–559 (2005).

    Article  CAS  PubMed  Google Scholar 

  244. Tang, B. L. & Liou, Y. C. Novel modulators of amyloid-beta precursor protein processing. J. Neurochem. 100, 314–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  245. Mo, J., Chen, J. & Zhang, B. Critical roles of FAM134B in ER-phagy and diseases. Cell Death Dis. 11, 983 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Chiramel, A. I., Dougherty, J. D., Nair, V., Robertson, S. J. & Best, S. M. FAM134B, the selective autophagy receptor for endoplasmic reticulum turnover, inhibits replication of ebola virus strains makona and mayinga. J. Infect. Dis. 214 (Suppl. 3), S319–S325 (2016).

    Article  CAS  Google Scholar 

  247. Farré, J. C. & Subramani, S. Mechanistic insights into selective autophagy pathways: lessons from yeast. Nat. Rev. Mol. Cell Biol. 17, 537–552 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Chu, C. T. et al. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat. Cell Biol. 15, 1197–1205 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Wilkinson, S. Emerging principles of selective ER autophagy. J. Mol. Biol. 432, 185–205 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Lystad, A. H. & Simonsen, A. Mechanisms and pathophysiological roles of the ATG8 conjugation machinery. Cells 8, 973 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  251. Jean, S. & Kiger, A. A. Classes of phosphoinositide 3-kinases at a glance. J. Cell Sci. 127, 923–928 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Simonsen, A. & Tooze, S. A. Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. J. Cell Biol. 186, 773–782 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Funderburk, S. F., Wang, Q. J. & Yue, Z. The Beclin 1–VPS34 complex–at the crossroads of autophagy and beyond. Trends Cell Biol. 20, 355–362 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Tracey, T. J., Steyn, F. J., Wolvetang, E. J. & Ngo, S. T. Neuronal lipid metabolism: multiple pathways driving functional outcomes in health and disease. Front. Mol. Neurosci. 11, 10 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  255. Levine, B. & Kroemer, G. Biological functions of autophagy genes: a disease perspective. Cell 176, 11–42 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. New, J. & Thomas, S. M. Autophagy-dependent secretion: mechanism, factors secreted, and disease implications. Autophagy 15, 1682–1693 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Martinez, J. et al. Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc. Natl Acad. Sci. USA 108, 17396–17401 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Florey, O., Kim, S. E., Sandoval, C. P., Haynes, C. M. & Overholtzer, M. Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nat. Cell Biol. 13, 1335–1343 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Martinez, J. et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat. Cell Biol. 17, 893–906 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Kim, J. Y. et al. Noncanonical autophagy promotes the visual cycle. Cell 154, 365–376 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Negrete-Hurtado, A. et al. Autophagy lipidation machinery regulates axonal microtubule dynamics but is dispensable for survival of mammalian neurons. Nat. Commun. 11, 1535 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the Yamamoto laboratory for helpful discussion. This work was supported by the NINDS F31 NS118897 (C.J.G.), NINDS RO1 NS063973 (A.Y.), NINDS RO1NS077111 (A.Y.), NINDS RO1 NS101663 (C.J.G. and A.Y.), NINDS R21 NS118891 (A.Y.), The Hereditary Disease Foundation with the Alexander Boyd and Jane Starke Boyd Charitable Foundation, Thompson Family Foundation, the Russell Berrie Foundation Initiative in the Neurobiology of Obesity at Columbia University and the MSTP Training grant 5T32GM007367 (C.J.G.).

Author information

Authors and Affiliations

Authors

Contributions

The authors both contributed to all aspects of the article.

Corresponding author

Correspondence to Ai Yamamoto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks V. Nikoletopoulou, S. Soukup, who co-reviewed with S. Hernandez-Diaz, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Catabolism

The breakdown of complex molecules and structures into smaller units.

Endocytic

Pertaining to the internalization of substances into the cell. These membrane-bound structures include endosomes and multivesicular bodies.

SNARE protein

SNAP receptor, or SNARE, proteins form a large family of proteins that mediate vesicle fusion.

Activity dependent

Affected by synaptic transmission.

Ischaemia–reperfusion injury

Exacerbation of cellular dysfunction and death after the return of blood flow (reperfusion) to tissues that previously had an inadequate blood supply (ischaemia).

Upper and lower motor neurons

Upper motor neurons project from the motor cortex of the cerebrum and brainstem to form the corticospinal, corticobulbar and other tracts. Lower motor neurons project from the spinal cord to effector muscles to carry out a movement.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Griffey, C.J., Yamamoto, A. Macroautophagy in CNS health and disease. Nat Rev Neurosci 23, 411–427 (2022). https://doi.org/10.1038/s41583-022-00588-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-022-00588-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing