Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Priority coding in the visual system

Abstract

Although we are continuously bombarded with visual input, only a fraction of incoming visual events is perceived, remembered or acted on. The neural underpinnings of various forms of visual priority coding, including perceptual expertise, goal-directed attention, visual salience, image memorability and preferential looking, have been studied. Here, we synthesize information from these different examples to review recent developments in our understanding of visual priority coding and its neural correlates, with a focus on the role of behaviour to evaluate candidate correlates. We propose that the brain combines different types of priority into a unified priority signal while also retaining the ability to differentiate between them, and that this happens by leveraging partially overlapping low-dimensional neural subspaces for each type of priority that are shared with the downstream neural populations involved in decision-making. Finally, we describe the gulfs in understanding that have resulted from different research approaches, and we point towards future directions that will lead to fundamental insights about neural coding and how prioritization influences visually guided behaviours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Forms of priority coding.
Fig. 2: Proposals for priority coding.
Fig. 3: Subspaces for priority coding.

Similar content being viewed by others

References

  1. Srinivasan, M. V. Honey bees as a model for vision, perception, and cognition. Annu. Rev. Entomol. 55, 267–284 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Stoeger, A. S. & Manger, P. Vocal learning in elephants: neural bases and adaptive context. Curr. Opin. Neurobiol. 28, 101–107 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ungerleider, L. G., Mishkin, M. in Analysis of Visual Behavior 549–586 (MIT Press, 1982).

  4. Pasupathy, A., Popovkina, D. V. & Kim, T. Visual functions of primate area V4. Annu. Rev. Vis. Sci. 6, 363–385 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. DiCarlo, J. J., Zoccolan, D. & Rust, N. C. How does the brain solve visual object recognition? Neuron 73, 415–34 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gilbert, C. D., Sigman, M. & Crist, R. E. The neural basis of perceptual learning. Neuron 31, 681–697 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Fahle, M. Perceptual learning: specificity versus generalization. Curr. Opin. Neurobiol. 15, 154–160 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Seitz, A. R. & Dinse, H. R. A common framework for perceptual learning. Curr. Opin. Neurobiol. 17, 148–153 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Sasaki, Y., Nanez, J. E. & Watanabe, T. Advances in visual perceptual learning and plasticity. Nat. Rev. Neurosci. 11, 53–60 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Lu, Z.-L., Hua, T., Huang, C.-B., Zhou, Y. & Dosher, B. A. Visual perceptual learning. Neurobiol. Learn. Mem. 95, 145–151 (2011).

    Article  PubMed  Google Scholar 

  11. Sagi, D. Perceptual learning in vision research. Vis. Res. 51, 1552–1566 (2011).

    Article  PubMed  Google Scholar 

  12. Watanabe, T. & Sasaki, Y. Perceptual learning: toward a comprehensive theory. Annu. Rev. Psychol. 66, 197–221 (2015).

    Article  PubMed  Google Scholar 

  13. Tamaki, M. et al. Reward does not facilitate visual perceptual learning until sleep occurs. Proc. Natl Acad. Sci. USA 117, 959–968 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Tamaki, M., Wang, Z., Watanabe, T. & Sasaki, Y. Trained-feature-specific offline learning by sleep in an orientation detection task. J. Vis. 19, 12 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Szpiro, S. F. A. & Carrasco, M. Exogenous attention enables perceptual learning. Psychol. Sci. 26, 1854–1862 (2015).

    Article  PubMed  Google Scholar 

  16. Kim, R., Seitz, A., Feenstra, H. & Shams, L. Testing assumptions of statistical learning: is it long-term and implicit? Neurosci. Lett. 461, 145–149 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Fiorentini, A. & Berardi, N. Perceptual learning specific for orientation and spatial frequency. Nature 287, 43–44 (1980).

    Article  CAS  PubMed  Google Scholar 

  18. Pourtois, G., Rauss, K. S., Vuilleumier, P. & Schwartz, S. Effects of perceptual learning on primary visual cortex activity in humans. Vis. Res. 48, 55–62 (2008).

    Article  PubMed  Google Scholar 

  19. Mollon, J. D. & Danilova, M. V. Three remarks on perceptual learning. Spat. Vis. 10, 51–58 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Little, D. F., Zhang, Y.-X. & Wright, B. A. Disruption of perceptual learning by a brief practice break. Curr. Biol. 27, 3699–3705.e3 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kang, D.-W. et al. Structural and functional connectivity changes beyond visual cortex in a later phase of visual perceptual learning. Sci. Rep. 8, 5186 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kastner, S. & Ungerleider, L. G. Mechanisms of visual attention in the human cortex. Annu. Rev. Neurosci. 23, 315–341 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Anton-Erxleben, K. & Carrasco, M. Attentional enhancement of spatial resolution: linking behavioural and neurophysiological evidence. Nat. Rev. Neurosci. 14, 188–200 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Krauzlis, R. J., Lovejoy, L. P. & Zénon, A. Superior colliculus and visual spatial attention. Annu. Rev. Neurosci. 36, 165–182 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Amso, D. & Scerif, G. The attentive brain: insights from developmental cognitive neuroscience. Nat. Rev. Neurosci. 16, 606–619 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Clark, K., Squire, R. F., Merrikhi, Y. & Noudoost, B. Visual attention: linking prefrontal sources to neuronal and behavioral correlates. Prog. Neurobiol. 132, 59–80 (2015).

    Article  PubMed  Google Scholar 

  27. Treisman, A. M. & Gelade, G. A feature-integration theory of attention. Cogn. Psychol. 12, 97–136 (1980).

    Article  CAS  PubMed  Google Scholar 

  28. Treisman, A. & Sato, S. Conjunction search revisited. J. Exp. Psychol. Hum. Percept. Perform. 16, 459–478 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Wolfe, J. M. Visual search in continuous, naturalistic stimuli. Vis. Res. 34, 1187–1195 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Posner, M. I. Orienting of attention. Q. J. Exp. Psychol. 32, 3–25 (1980).

    Article  CAS  PubMed  Google Scholar 

  31. Carrasco, M. Visual attention: the past 25 years. Vis. Res. 51, 1484–1525 (2011).

    Article  PubMed  Google Scholar 

  32. Bacon, W. F. & Egeth, H. E. Overriding stimulus-driven attentional capture. Percept. Psychophys. 55, 485–496 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Wolfe, J. M., Cave, K. R. & Franzel, S. L. Guided search: an alternative to the feature integration model for visual search. J. Exp. Psychol. Hum. Percept. Perform. 15, 419–433 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Nakayama, K. & Martini, P. Situating visual search. Vis. Res. 51, 1526–1537 (2011).

    Article  PubMed  Google Scholar 

  35. Eckstein, M. P. Visual search: a retrospective. J. Vis. 11, 14 (2011).

    Article  PubMed  Google Scholar 

  36. Judd, T., Ehinger, K., Durand, F. & Torralba, A. Learning to predict where humans look. IEEE 12th International Conference on Computer Vision 2106–2113 (IEEE, 2009).

  37. Isola, P., Xiao, J., Parikh, D., Torralba, A. & Oliva, A. What makes a photograph memorable? IEEE Trans. Pattern Anal. Mach. Intell. 36, 1469–1482 (2014). This paper describes image memorability-associated behavioural variation across a large and arbitrarily selected set of photographs.

    Article  PubMed  Google Scholar 

  38. Bainbridge, W. A., Isola, P. & Oliva, A. The intrinsic memorability of face photographs. J. Exp. Psychol. Gen. 142, 1323–1334 (2013).

    Article  PubMed  Google Scholar 

  39. Goetschalckx, L. & Wagemans, J. MemCat: a new category-based image set quantified on memorability. PeerJ 7, e8169 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Khosla, A., Raju, A. S., Torralba, A. & Oliva, A. Understanding and predicting image memorability at a large scale. International Conference on Computer Vision 2390–2398 (IEEE, 2015).

  41. Rust, N. C. & Mehrpour, V. Understanding image memorability. Trends Cogn. Sci. 24, 557–568 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bainbridge, W. A. The memorability of people: intrinsic memorability across transformations of a person’s face. J. Exp. Psychol. Learn. Mem. Cogn. 43, 706–716 (2017).

    Article  PubMed  Google Scholar 

  43. Bainbridge, W. A. in Psychology of Learning and Motivation (eds Federmeier, K. D. & Beck, D. M.) Ch. 1 vol. 70 1–27 (Academic, 2019).

  44. Bylinskii, Z., Isola, P., Bainbridge, C., Torralba, A. & Oliva, A. Intrinsic and extrinsic effects on image memorability. Vis. Res. 116, 165–178 (2015).

    Article  PubMed  Google Scholar 

  45. Jutras, M. J. & Buffalo, E. A. Recognition memory signals in the macaque hippocampus. Proc. Natl Acad. Sci. USA 107, 401–406 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Hall, B. A., Melfi, V., Burns, A., McGill, D. M. & Doyle, R. E. Curious creatures: a multi-taxa investigation of responses to novelty in a zoo environment. PeerJ 6, e4454 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Teller, D. Y. The forced-choice preferential looking procedure: a psychophysical technique for use with human infants. Infant. Behav. Dev. 2, 135–153 (1979).

    Article  Google Scholar 

  48. Meyer, T. & Rust, N. C. Single-exposure visual memory judgments are reflected in inferotemporal cortex. eLife 7, e32259 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rich, J. B. in Encyclopedia of Clinical Neuropsychology (eds Kreutzer, J. S., DeLuca, J. & Caplan, B.) 2124–2128 (Springer, 2011).

  50. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Desimone, R. Neural mechanisms for visual memory and their role in attention. Proc. Natl Acad. Sci. USA 93, 13494–13499 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Reynolds, J. H. & Chelazzi, L. Attentional modulation of visual processing. Annu. Rev. Neurosci. 27, 611–647 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Maunsell, J. H. R. Neuronal mechanisms of visual attention. Annu. Rev. Vis. Sci. 1, 373–391 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cohen, M. R. & Kohn, A. Measuring and interpreting neuronal correlations. Nat. Neurosci. 14, 811–819 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Roth, N. & Rust, N. C. Rethinking assumptions about how trial and nuisance variability impact neural task performance in a fast-processing regime. J. Neurophysiol. 121, 115–130 (2019).

    Article  PubMed  Google Scholar 

  56. Law, C.-T. & Gold, J. I. Neural correlates of perceptual learning in a sensory-motor, but not a sensory, cortical area. Nat. Neurosci. 11, 505–513 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fries, P. Rhythms for cognition: communication through coherence. Neuron 88, 220–235 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Womelsdorf, T. & Fries, P. The role of neuronal synchronization in selective attention. Curr. Opin. Neurobiol. 17, 154–160 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Kohn, A. et al. Principles of corticocortical communication: proposed schemes and design considerations. Trends Neurosci. 43, 725–737 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vyas, S., Golub, M. D., Sussillo, D. & Shenoy, K. V. Computation through neural population dynamics. Annu. Rev. Neurosci. 43, 249–275 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Srinath, R., Ruff, D. A. & Cohen, M. R. Attention improves information flow between neuronal populations without changing the communication subspace. Curr. Biol. 31, 5299–5313 (2021). This study demonstrated that attention improves the ability to predict activity in decision neurons from the activity of neurons in the visual cortex without changing the dimensionality of the communication subspace.

    Article  CAS  PubMed  Google Scholar 

  62. Kaufman, M. T., Churchland, M. M., Ryu, S. I. & Shenoy, K. V. Cortical activity in the null space: permitting preparation without movement. Nat. Neurosci. 17, 440–448 (2014). This study demonstrated that only a subspace of activity in a given population affects behaviour, while the remaining subset (null space) does not, laying a foundation for the subspace framework.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Saxena, S. & Cunningham, J. P. Towards the neural population doctrine. Curr. Opin. Neurobiol. 55, 103–111 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Gawne, T. J. & Richmond, B. J. How independent are the messages carried by adjacent inferior temporal cortical neurons? J. Neurosci. 13, 2758–2771 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen, Y.-P., Lin, C.-P., Hsu, Y.-C. & Hung, C. P. Network anisotropy trumps noise for efficient object coding in macaque inferior temporal cortex. J. Neurosci. 35, 9889–9899 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Hung, C. P., Cui, D., Chen, Y.-P., Lin, C.-P. & Levine, M. R. Correlated activity supports efficient cortical processing. Front. Comput. Neurosci. 8, 171 (2014).

    PubMed  Google Scholar 

  67. Ziemba, C. M., Freeman, J., Movshon, J. A. & Simoncelli, E. P. Selectivity and tolerance for visual texture in macaque V2. Proc. Natl Acad. Sci. USA 113, E3140–3149 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dapello, J. et al. Simulating a primary visual cortex at the front of CNNs improves robustness to image perturbations. Advances in Neural Information Processing Systems 33 https://proceedings.neurips.cc/paper/2020/hash/98b17f068d5d9b7668e19fb8ae470841-Abstract.html (2020).

  69. Parker, A. J. & Newsome, W. T. Sense and the single neuron: probing the physiology of perception. Annu. Rev. Neurosci. 21, 227–277 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Schoups, A., Vogels, R., Qian, N. & Orban, G. Practising orientation identification improves orientation coding in V1 neurons. Nature 412, 549–553 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Ghose, G. M., Yang, T. & Maunsell, J. H. R. Physiological correlates of perceptual learning in monkey V1 and V2. J. Neurophysiol. 87, 1867–1888 (2002).

    Article  PubMed  Google Scholar 

  72. Raiguel, S., Vogels, R., Mysore, S. G. & Orban, G. A. Learning to see the difference specifically alters the most informative V4 neurons. J. Neurosci. 26, 6589–6602 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Uka, T., Sasaki, R. & Kumano, H. Change in choice-related response modulation in area MT during learning of a depth-discrimination task is consistent with task learning. J. Neurosci. 32, 13689–13700 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ni, A. M., Ruff, D. A., Alberts, J. J., Symmonds, J. & Cohen, M. R. Learning and attention reveal a general relationship between population activity and behavior. Science 359, 463–465 (2018). This paper demonstrated that perceptual learning and attention were reflected in V4 primarily by an overlapping neural correlate: changes in correlated trial variability, which is strongly linked to performance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yotsumoto, Y. et al. Location-specific cortical activation changes during sleep after training for perceptual learning. Curr. Biol. 19, 1278–1282 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Poort, J. et al. Learning enhances sensory and multiple non-sensory representations in primary visual cortex. Neuron 86, 1478–1490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Karmarkar, U. R. & Dan, Y. Experience-dependent plasticity in adult visual cortex. Neuron 52, 577–585 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Yan, Y., Zhaoping, L. & Li, W. Bottom-up saliency and top-down learning in the primary visual cortex of monkeys. Proc. Natl Acad. Sci. USA 115, 10499–10504 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jia, K. et al. Recurrent processing drives perceptual plasticity. Curr. Biol. 30, 4177–4187.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yang, T. & Maunsell, J. H. R. The effect of perceptual learning on neuronal responses in monkey visual area V4. J. Neurosci. 24, 1617–1626 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Gu, Y. et al. Perceptual learning reduces interneuronal correlations in macaque visual cortex. Neuron 71, 750–761 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Huang, C. et al. Circuit models of low-dimensional shared variability in cortical networks. Neuron 101, 337–348.e4 (2019). This study presents a circuit model in which realistic variability that is low-dimensional and modulated by attention arises from a biophysically realistic network.

    Article  CAS  PubMed  Google Scholar 

  83. Semedo, J. D., Zandvakili, A., Machens, C. K., Yu, B. M. & Kohn, A. Cortical areas interact through a communication subspace. Neuron 102, 249–259.e4 (2019). This study demonstrated that populations of neurons in visual areas V1 and V2, which are highly interconnected, share activity via a subspace of activity that is lower-dimensional than the activity in either area.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Treue, S. & Martínez Trujillo, J. C. Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399, 575–579 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. McAlonan, K., Cavanaugh, J. & Wurtz, R. H. Guarding the gateway to cortex with attention in visual thalamus. Nature 456, 391–394 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Moran, J. & Desimone, R. Selective attention gates visual processing in the extrastriate cortex. Science 229, 782–784 (1985).

    Article  CAS  PubMed  Google Scholar 

  87. Buffalo, E. A., Fries, P., Landman, R., Liang, H. & Desimone, R. A backward progression of attentional effects in the ventral stream. Proc. Natl Acad. Sci. USA 107, 361–365 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Saenz, M., Buracas, G. T. & Boynton, G. M. Global effects of feature-based attention in human visual cortex. Nat. Neurosci. 5, 631–632 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Cohen, M. R. & Maunsell, J. H. R. When attention wanders: how uncontrolled fluctuations in attention affect performance. J. Neurosci. 31, 15802–15806 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cohen, M. R. & Maunsell, J. H. R. Attention improves performance primarily by reducing interneuronal correlations. Nat. Neurosci. 12, 1594–1600 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gregoriou, G. G., Rossi, A. F., Ungerleider, L. G. & Desimone, R. Lesions of prefrontal cortex reduce attentional modulation of neuronal responses and synchrony in V4. Nat. Neurosci. 17, 1003–1011 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Herrero, J. L., Gieselmann, M. A., Sanayei, M. & Thiele, A. Attention-induced variance and noise correlation reduction in macaque V1 is mediated by NMDA receptors. Neuron 78, 729–739 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Luo, T. Z. & Maunsell, J. H. R. Neuronal modulations in visual cortex are associated with only one of multiple components of attention. Neuron 86, 1182–1188 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mayo, J. P. & Maunsell, J. H. R. Graded neuronal modulations related to visual spatial attention. J. Neurosci. 36, 5353–5361 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mitchell, J. F., Sundberg, K. A. & Reynolds, J. H. Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4. Neuron 63, 879–888 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nandy, A. S., Nassi, J. J. & Reynolds, J. H. Laminar organization of attentional modulation in macaque visual area V4. Neuron 93, 235–246 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Ruff, D. A. & Cohen, M. R. Attention can either increase or decrease spike count correlations in visual cortex. Nat. Neurosci. 17, 1591–1597 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ruff, D. A. & Cohen, M. R. Stimulus dependence of correlated variability across cortical areas. J. Neurosci. 36, 7546–7556 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ruff, D. A. & Cohen, M. R. Simultaneous multi-area recordings suggest that attention improves performance by reshaping stimulus representations. Nat. Neurosci. 22, 1669–1676 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Verhoef, B.-E. & Maunsell, J. H. R. Attention-related changes in correlated neuronal activity arise from normalization mechanisms. Nat. Neurosci. 20, 969–977 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yan, Y. et al. Perceptual training continuously refines neuronal population codes in primary visual cortex. Nat. Neurosci. 17, 1380–1387 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Zénon, A. & Krauzlis, R. J. Attention deficits without cortical neuronal deficits. Nature 489, 434–437 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Ruff, D. A. & Cohen, M. R. Global cognitive factors modulate correlated response variability between V4 neurons. J. Neurosci. 34, 16408–16416 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Oemisch, M., Westendorff, S., Everling, S. & Womelsdorf, T. Interareal spike-train correlations of anterior cingulate and dorsal prefrontal cortex during attention shifts. J. Neurosci. 35, 13076–13089 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pooresmaeili, A. & Roelfsema, P. R. A growth-cone model for the spread of object-based attention during contour grouping. Curr. Biol. 24, 2869–2877 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Ruff, D. A., Alberts, J. J. & Cohen, M. R. Relating normalization to neuronal populations across cortical areas. J. Neurophysiol. 116, 1375–1386 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Bichot, N. P., Rossi, A. F. & Desimone, R. Parallel and serial neural mechanisms for visual search in macaque area V4. Science 308, 529–534 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Bosman, C. A. et al. Attentional stimulus selection through selective synchronization between monkey visual areas. Neuron 75, 875–888 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Buschman, T. J. & Miller, E. K. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315, 1860–1862 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Fries, P., Reynolds, J. H., Rorie, A. E. & Desimone, R. Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291, 1560–1563 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Gregoriou, G. G., Gotts, S. J., Zhou, H. & Desimone, R. Long-range neural coupling through synchronization with attention. Prog. Brain Res. 176, 35–45 (2009).

    Article  PubMed  Google Scholar 

  112. Lakatos, P., Karmos, G., Mehta, A. D., Ulbert, I. & Schroeder, C. E. Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320, 110–113 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Miller, E. K. & Buschman, T. J. Cortical circuits for the control of attention. Curr. Opin. Neurobiol. 23, 216–222 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Saalmann, Y. B., Pigarev, I. N. & Vidyasagar, T. R. Neural mechanisms of visual attention: how top-down feedback highlights relevant locations. Science 316, 1612–1615 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Saproo, S. & Serences, J. T. Attention improves transfer of motion information between V1 and MT. J. Neurosci. 34, 3586–3596 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Womelsdorf, T. & Fries, P. Neuronal coherence during selective attentional processing and sensory-motor integration. J. Physiol. Paris 100, 182–193 (2006).

    Article  PubMed  Google Scholar 

  117. Briggs, F., Mangun, G. R. & Usrey, W. M. Attention enhances synaptic efficacy and the signal-to-noise ratio in neural circuits. Nature 499, 476–480 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Dagnino, B., Gariel-Mathis, M.-A. & Roelfsema, P. R. Microstimulation of area V4 has little effect on spatial attention and on perception of phosphenes evoked in area V1. J. Neurophysiol. 113, 730–739 (2015).

    Article  PubMed  Google Scholar 

  119. Klink, P. C., Jeurissen, D., Theeuwes, J., Denys, D. & Roelfsema, P. R. Working memory accuracy for multiple targets is driven by reward expectation and stimulus contrast with different time-courses. Sci. Rep. 7, 9082 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Moore, T. & Armstrong, K. M. Selective gating of visual signals by microstimulation of frontal cortex. Nature 421, 370–373 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Ruff, D. A. & Cohen, M. R. A normalization model suggests that attention changes the weighting of inputs between visual areas. Proc. Natl Acad. Sci. USA 114, E4085–E4094 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Salinas, E. & Sejnowski, T. J. Correlated neuronal activity and the flow of neural information. Nat. Rev. Neurosci. 2, 539–550 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Azouz, R. & Gray, C. M. Adaptive coincidence detection and dynamic gain control in visual cortical neurons in vivo. Neuron 37, 513–523 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Buffalo, E. A., Fries, P., Landman, R., Buschman, T. J. & Desimone, R. Laminar differences in gamma and alpha coherence in the ventral stream. Proc. Natl Acad. Sci. USA 108, 11262–11267 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Womelsdorf, T., Fries, P., Mitra, P. P. & Desimone, R. Gamma-band synchronization in visual cortex predicts speed of change detection. Nature 439, 733–736 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Bosman, C. A., Womelsdorf, T., Desimone, R. & Fries, P. A microsaccadic rhythm modulates gamma-band synchronization and behavior. J. Neurosci. 29, 9471–9480 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Knierim, J. J. & van Essen, D. C. Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J. Neurophysiol. 67, 961–980 (1992).

    Article  CAS  PubMed  Google Scholar 

  128. Burrows, B. E. & Moore, T. Influence and limitations of popout in the selection of salient visual stimuli by area V4 neurons. J. Neurosci. 29, 15169–15177 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hegdé, J. & Felleman, D. J. How selective are V1 cells for pop-out stimuli? J. Neurosci. 23, 9968–9980 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Chelazzi, L., Duncan, J., Miller, E. K. & Desimone, R. Responses of neurons in inferior temporal cortex during memory-guided visual search. J. Neurophysiol. 80, 2918–2940 (1998).

    Article  CAS  PubMed  Google Scholar 

  131. Thompson, K. G. & Bichot, N. P. A visual salience map in the primate frontal eye field. Prog. Brain Res. 147, 251–262 (2005).

    PubMed  Google Scholar 

  132. Ogawa, T. & Komatsu, H. Neuronal dynamics of bottom-up and top-down processes in area V4 of macaque monkeys performing a visual search. Exp. Brain Res. 173, 1–13 (2006).

    Article  PubMed  Google Scholar 

  133. Bichot, N. P., Heard, M. T., DeGennaro, E. M. & Desimone, R. A source for feature-based attention in the prefrontal cortex. Neuron 88, 832–844 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Pagan, M., Urban, L. S., Wohl, M. P. & Rust, N. C. Signals in inferotemporal cortex and perirhinal cortex suggest an untangling of visual target information. Nat. Neurosci. 16, 1132–1139 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Roth, N. & Rust, N. C. Inferotemporal cortex multiplexes behaviorally-relevant target match signals and visual representations in a manner that minimizes their interference. PLoS One 13, e0200528 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Roth, N. & Rust, N. C. The integration of visual and target signals in V4 and IT during visual object search. J. Neurophysiol. 122, 2522–2540 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Chen, X. et al. Parietal cortex regulates visual salience and salience-driven behavior. Neuron 106, 177–187.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Koch, C. & Ullman, S. Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurobiol. 4, 219–227 (1985).

    CAS  PubMed  Google Scholar 

  139. Borji, A., Sihite, D. N. & Itti, L. What stands out in a scene? A study of human explicit saliency judgment. Vis. Res. 91, 62–77 (2013).

    Article  PubMed  Google Scholar 

  140. Itti, L., Koch, C. & Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20, 1254–1259 (1998).

    Article  Google Scholar 

  141. Wang, J., Borji, A., Jay Kuo, C.-C. & Itti, L. Learning a combined model of visual saliency for fixation prediction. IEEE Trans. Image Process. 25, 1566–1579 (2016).

    Article  PubMed  Google Scholar 

  142. Jaegle, A. et al. Population response magnitude variation in inferotemporal cortex predicts image memorability. eLife 8, e47596 (2019). This paper describes the neural correlate of one behavioural priority signature, image memorability, and demonstrates that it emerges naturally from deep neural networks trained to identify objects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Fahy, F. L., Riches, I. P. & Brown, M. W. Neuronal activity related to visual recognition memory: long-term memory and the encoding of recency and familiarity information in the primate anterior and medial inferior temporal and rhinal cortex. Exp. Brain Res. 96, 457–472 (1993).

    Article  CAS  PubMed  Google Scholar 

  144. Li, L., Miller, E. K. & Desimone, R. The representation of stimulus familiarity in anterior inferior temporal cortex. J. Neurophysiol. 69, 1918–1929 (1993).

    Article  CAS  PubMed  Google Scholar 

  145. Xiang, J. Z. & Brown, M. W. Differential neuronal encoding of novelty, familiarity and recency in regions of the anterior temporal lobe. Neuropharmacology 37, 657–676 (1998).

    Article  CAS  PubMed  Google Scholar 

  146. Womelsdorf, T. Translating expectation into visual selection through a beta-synchronous fronto-parietal neural subnetwork. Neuron 109, 8–10 (2021).

    Article  CAS  PubMed  Google Scholar 

  147. Ossandón, T. et al. Efficient ‘pop-out’ visual search elicits sustained broadband γ activity in the dorsal attention network. J. Neurosci. 32, 3414–3421 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Jutras, M. J., Fries, P. & Buffalo, E. A. Oscillatory activity in the monkey hippocampus during visual exploration and memory formation. Proc. Natl Acad. Sci. USA 110, 13144–13149 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Jutras, M. J., Fries, P. & Buffalo, E. A. Gamma-band synchronization in the macaque hippocampus and memory formation. J. Neurosci. 29, 12521–12531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sederberg, P. B. et al. Gamma oscillations distinguish true from false memories. Psychol. Sci. 18, 927–932 (2007).

    Article  PubMed  Google Scholar 

  151. Sederberg, P. B. et al. Hippocampal and neocortical gamma oscillations predict memory formation in humans. Cereb. Cortex 17, 1190–1196 (2007).

    Article  PubMed  Google Scholar 

  152. Fell, J. et al. Human memory formation is accompanied by rhinal-hippocampal coupling and decoupling. Nat. Neurosci. 4, 1259–1264 (2001).

    Article  CAS  PubMed  Google Scholar 

  153. Naya, Y. & Suzuki, W. A. Integrating what and when across the primate medial temporal lobe. Science 333, 773–776 (2011).

    Article  CAS  PubMed  Google Scholar 

  154. Kiani, R., Esteky, H., Mirpour, K. & Tanaka, K. Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. J. Neurophysiol. 97, 4296–4309 (2007).

    Article  PubMed  Google Scholar 

  155. Yu, B. M. et al. Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. J. Neurophysiol. 102, 614–635 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Cunningham, J. P. & Yu, B. M. Dimensionality reduction for large-scale neural recordings. Nat. Neurosci. 17, 1500–1509 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Sadtler, P. T. et al. Neural constraints on learning. Nature 512, 423–426 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kiani, R. et al. Natural grouping of neural responses reveals spatially segregated clusters in prearcuate cortex. Neuron 85, 1359–1373 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Cowley, B. R., Smith, M. A., Kohn, A. & Yu, B. M. Stimulus-driven population activity patterns in macaque primary visual cortex. PLoS Comput. Biol. 12, e1005185 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Elsayed, G. F., Lara, A. H., Kaufman, M. T., Churchland, M. M. & Cunningham, J. P. Reorganization between preparatory and movement population responses in motor cortex. Nat. Commun. 7, 13239 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Golub, M. D., Chase, S. M., Batista, A. P. & Yu, B. M. Brain-computer interfaces for dissecting cognitive processes underlying sensorimotor control. Curr. Opin. Neurobiol. 37, 53–58 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Morcos, A. S. & Harvey, C. D. History-dependent variability in population dynamics during evidence accumulation in cortex. Nat. Neurosci. 19, 1672–1681 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Elsayed, G. F. & Cunningham, J. P. Structure in neural population recordings: an expected byproduct of simpler phenomena? Nat. Neurosci. 20, 1310–1318 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Jazayeri, M. & Afraz, A. Navigating the neural space in search of the neural code. Neuron 93, 1003–1014 (2017).

    Article  CAS  PubMed  Google Scholar 

  165. Miri, A. et al. Behaviorally selective engagement of short-latency effector pathways by motor cortex. Neuron 95, 683–696.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Pitkow, X. & Angelaki, D. E. Inference in the brain: statistics flowing in redundant population codes. Neuron 94, 943–953 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Pandarinath, C. et al. Inferring single-trial neural population dynamics using sequential auto-encoders. Nat. Methods 15, 805–815 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ruff, D. A., Ni, A. M. & Cohen, M. R. Cognition as a window into neuronal population space. Annu. Rev. Neurosci. 41, 77–97 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Stringer, C., Pachitariu, M., Steinmetz, N., Carandini, M. & Harris, K. D. High-dimensional geometry of population responses in visual cortex. Nature 571, 361–365 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Rajan, K. & Bialek, W. Maximally informative “stimulus energies” in the analysis of neural responses to natural signals. PLoS One 8, e71959 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ecker, A. S. et al. State dependence of noise correlations in macaque primary visual cortex. Neuron 82, 235–48 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ruff, D. A., Xue, C., Kramer, L. E., Baqai, F. & Cohen, M. R. Low rank mechanisms underlying flexible visual representations. Proc. Natl Acad. Sci. USA 117, 29321–29329 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Mehrpour, V., Meyer, T., Simoncelli, E. P. & Rust, N. C. Pinpointing the neural signatures of single-exposure recognition memory. Proc. Natl Acad. Sci. USA 118, e2021660118 (2021). In the context of a visual memory task, this study demonstrated that the population subspaces encoding novelty and a task-irrelevant variable, contrast, were partially overlapping and could be disambiguated.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. McAdams, C. J. & Maunsell, J. H. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J. Neurosci. 19, 431–441 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Reynolds, J. H. & Heeger, D. J. The normalization model of attention. Neuron 61, 168–185 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Herrmann, K., Heeger, D. J. & Carrasco, M. Feature-based attention enhances performance by increasing response gain. Vis. Res. 74, 10–20 (2012).

    Article  PubMed  Google Scholar 

  177. Eldar, E., Cohen, J. D. & Niv, Y. The effects of neural gain on attention and learning. Nat. Neurosci. 16, 1146–1153 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. McMahon, D. B. & Olson, C. R. Repetition suppression in monkey inferotemporal cortex: relation to behavioral priming. J. Neurophysiol. 97, 3532–43 (2007).

    Article  PubMed  Google Scholar 

  179. Grill-Spector, K., Henson, R. & Martin, A. Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn. Sci. 10, 14–23 (2006).

    Article  PubMed  Google Scholar 

  180. Woloszyn, L. & Sheinberg, D. L. Effects of long-term visual experience on responses of distinct classes of single units in inferior temporal cortex. Neuron 74, 193–205 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Arandia-Romero, I., Tanabe, S., Drugowitsch, J., Kohn, A. & Moreno-Bote, R. Multiplicative and additive modulation of neuronal tuning with population activity affects encoded information. Neuron 89, 1305–1316 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Heeger, D. J. Normalization of cell responses in cat striate cortex. Vis. Neurosci. 9, 181–197 (1992).

    Article  CAS  PubMed  Google Scholar 

  183. Rigotti, M. et al. The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585–590 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Fusi, S., Miller, E. K. & Rigotti, M. Why neurons mix: high dimensionality for higher cognition. Curr. Opin. Neurobiol. 37, 66–74 (2016).

    Article  CAS  PubMed  Google Scholar 

  185. Panichello, M. F. & Buschman, T. J. Shared mechanisms underlie the control of working memory and attention. Nature 592, 601–605 (2021). This study directly compared the neural correlates of working memory and attention, which is a critical step toward determining whether different forms of prioritization are mediated by similar mechanisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Moreno-Bote, R. et al. Information-limiting correlations. Nat. Neurosci. 17, 1410–1417 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kohn, A., Coen-Cagli, R., Kanitscheider, I. & Pouget, A. Correlations and neuronal population information. Annu. Rev. Neurosci. 39, 237–256 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Deneve, S., Latham, P. E. & Pouget, A. Efficient computation and cue integration with noisy population codes. Nat. Neurosci. 4, 826–831 (2001).

    Article  CAS  PubMed  Google Scholar 

  189. Lee, J. & Maunsell, J. H. R. A normalization model of attentional modulation of single unit responses. PLoS One 4, e4651 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Boynton, G. M. A framework for describing the effects of attention on visual responses. Vis. Res. 49, 1129–1143 (2009).

    Article  PubMed  Google Scholar 

  191. Carandini, M. & Heeger, D. J. Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13, 51–62 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Zhaoping, L. A new framework for understanding vision from the perspective of the primary visual cortex. Curr. Opin. Neurobiol. 58, 1–10 (2019).

    Article  CAS  PubMed  Google Scholar 

  193. Bogacz, R. & Brown, M. W. Comparison of computational models of familiarity discrimination in the perirhinal cortex. Hippocampus 13, 494–524 (2003).

    Article  PubMed  Google Scholar 

  194. Itti, L. & Koch, C. Computational modelling of visual attention. Nat. Rev. Neurosci. 2, 194–203 (2001).

    Article  CAS  PubMed  Google Scholar 

  195. Shadlen, M. N. & Newsome, W. T. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci. 18, 3870–3896 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. van Vreeswijk, C. & Sompolinsky, H. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274, 1724–1726 (1996).

    Article  PubMed  Google Scholar 

  197. Amit, D. J. & Brunel, N. Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb. Cortex 7, 237–252 (1997).

    Article  CAS  PubMed  Google Scholar 

  198. Doiron, B., Litwin-Kumar, A., Rosenbaum, R., Ocker, G. K. & Josić, K. The mechanics of state-dependent neural correlations. Nat. Neurosci. 19, 383–393 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Deco, G. et al. Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations. J. Neurosci. 33, 11239–11252 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Wimmer, K. et al. Sensory integration dynamics in a hierarchical network explains choice probabilities in cortical area MT. Nat. Commun. 6, 6177 (2015).

    Article  CAS  PubMed  Google Scholar 

  201. Kanashiro, T., Ocker, G. K., Cohen, M. R. & Doiron, B. Attentional modulation of neuronal variability in circuit models of cortex. eLife 6, e23978 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Hennequin, G., Ahmadian, Y., Rubin, D. B., Lengyel, M. & Miller, K. D. The dynamical regime of sensory cortex: stable dynamics around a single stimulus-tuned attractor account for patterns of noise variability. Neuron 98, 846–860.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Sadeh, S. & Clopath, C. Theory of neuronal perturbome in cortical networks. Proc. Natl Acad. Sci. USA 117, 26966–26976 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Sweeney, Y. & Clopath, C. Population coupling predicts the plasticity of stimulus responses in cortical circuits. eLife 9, e56053 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Ni, A. M., Ray, S. & Maunsell, J. H. R. Tuned normalization explains the size of attention modulations. Neuron 73, 803–813 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Khaligh-Razavi, S.-M. & Kriegeskorte, N. Deep supervised, but not unsupervised, models may explain IT cortical representation. PLoS Comput. Biol. 10, e1003915 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Yamins, D. L. K. et al. Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc. Natl Acad. Sci. USA 111, 8619–8624 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Yamins, D. L. K. & DiCarlo, J. J. Using goal-driven deep learning models to understand sensory cortex. Nat. Neurosci. 19, 356–365 (2016).

    Article  CAS  PubMed  Google Scholar 

  209. Tamietto, M. & de Gelder, B. Neural bases of the non-conscious perception of emotional signals. Nat. Rev. Neurosci. 11, 697–709 (2010).

    Article  CAS  PubMed  Google Scholar 

  210. Pessoa, L., Kastner, S. & Ungerleider, L. G. Neuroimaging studies of attention: from modulation of sensory processing to top-down control. J. Neurosci. 23, 3990–3998 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Markovic, J., Anderson, A. K. & Todd, R. M. Tuning to the significant: neural and genetic processes underlying affective enhancement of visual perception and memory. Behav. Brain Res. 259, 229–241 (2014).

    Article  PubMed  Google Scholar 

  212. Wenliang, L. K. & Seitz, A. R. Deep neural networks for modeling visual perceptual learning. J. Neurosci. 38, 6028–6044 (2018). One of the only studies to investigate the consequences of adding trial variability that is modulated by priority coding to an otherwise deterministic deep network.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Zenke, F. et al. Visualizing a joint future of neuroscience and neuromorphic engineering. Neuron 109, 571–575 (2021).

    Article  CAS  PubMed  Google Scholar 

  214. Sigman, M. & Gilbert, C. D. Learning to find a shape. Nat. Neurosci. 3, 264–269 (2000).

    Article  CAS  PubMed  Google Scholar 

  215. Sarafyazd, M. & Jazayeri, M. Hierarchical reasoning by neural circuits in the frontal cortex. Science 364, eaav8911 (2019).

    Article  CAS  PubMed  Google Scholar 

  216. Cohen, M. R. & Maunsell, J. H. R. Using neuronal populations to study the mechanisms underlying spatial and feature attention. Neuron 70, 1192–1204 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Purcell, B. A. & Kiani, R. Neural mechanisms of post-error adjustments of decision policy in parietal cortex. Neuron 89, 658–671 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Ebitz, R. B., Tu, J. C. & Hayden, B. Y. Rules warp feature encoding in decision-making circuits. PLoS Biol. 18, e3000951 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Dworkin, J. D. et al. The extent and drivers of gender imbalance in neuroscience reference lists. Nat. Neurosci. 23, 918–926 (2020).

    Article  CAS  PubMed  Google Scholar 

  220. Maliniak, D., Powers, R. & Walter, B. F. The gender citation gap in international relations. Int. Organ. 67, 889–922 (2013).

    Article  Google Scholar 

  221. Caplar, N., Tacchella, S. & Birrer, S. Quantitative evaluation of gender bias in astronomical publications from citation counts. Nat. Astron. 1, 0141 (2017).

    Article  Google Scholar 

  222. Zurn, P., Bassett, D. S. & Rust, N. C. The citation diversity statement: a practice of transparency, a way of life. Trends Cogn. Sci. 24, 669–672 (2020).

    Article  PubMed  Google Scholar 

  223. Bertolero, M. Balanced Citer https://github.com/mb3152/balanced_citer (2021).

  224. Ambekar, A., Ward, C., Mohammed, J., Male, S. & Skiena, S. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 49–58 (ACM, 2009).

  225. Sood, G. & Laohaprapanon, S. Predicting race and ethnicity from the sequence of characters in a name. arXiv https://arxiv.org/abs/1805.02109 (2018).

  226. Bertolero, M. A. et al. Racial and ethnic imbalance in neuroscience reference lists and intersections with gender. bioRxiv https://doi.org/10.1101/2020.10.12.336230 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Simons Foundation (Simons Collaboration on the Global Brain award 543033 to N.C.R. and 542961SPI to M.R.C.), the US National Eye Institute of the National Institutes of Health (awards R01EY020851 and R01EY032878 to N.C.R. and awards R01EY022930 and R01NS121913 to M.R.C.) and the US National Science Foundation (award 2043255 to N.C.R.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Nicole C. Rust.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Receptive fields

The restricted region of visual space within which changes in the visual stimulus lead to changes in a neuron’s firing rate response.

Ventral stream

Also called the ‘form processing’ or ‘what are you looking at?’ pathway owing to its association with object identification. Includes primate visual brain areas of visual cortex V1, V2, and V4 and the inferotemporal cortex.

Search template

Defines the combined set of features that are sought in a visual search task.

Population responses

Snapshots of the spiking activity of a collection of individual neurons in response to a single trial in one experimental condition.

Trial variability

Variability in the responses of an individual neuron across repeated instances of the same experimental conditions and visual stimulus.

Noise correlations

The degree to which trial variability is correlated between different units in response to repeated presentations of the same visual stimuli and other experimental conditions.

Nuisance variability

The spiking variability induced by parameters not relevant to a task such as object position or size in a task that requires extraction of, for example, object identity.

Synchrony

Simultaneous activation and/or inactivation of different neurons on fast timescales (less than 10 ms). Often measured as the coherence between activity in two areas in a particular temporal frequency band.

Weights

Used to determine the output of a linear decoder, computed as a weighted sum of the population response on a single trial (for example, output = weight 1 × neuron 1 response + weight 2 × neuron 2 response…).

Coherence

A measure of the similarity of oscillatory activity between two brain regions.

Population vector direction

The position of a population response vector in an N-dimensional space (where N equals the number of neurons) after normalizing for population vector length (or magnitude).

Multiplicatively

Modulations that impact a neuron’s response by multiplying it by a factor.

Decoder

A single (typically linear) axis in a high-dimensional space, most often created to extract a particular type of information (such as ‘is this image an A or a B?’) from a neuronal population.

Adaptation

Changes in the response of an individual (behavioural) or neuron with repeated or prolonged exposure to a stimulus.

Units

Individual neurons or groups of a few neurons whose spiking activity is recorded typically via extracellular techniques. Measures of unit activity may or may not reflect the responses of a single neuron.

Linear subspaces

Given a population of N neurons that define a population dimensionality with an upper bound of N, a linear subspace is a subset of the full space with dimensions M < N.

Covariance matrix

Describes the covariation between different neurons across visual stimuli and repeated trials.

Divisive normalization

A model that describes the responses of an individual neuron or population as a combination of the image within its ‘classic’ receptive field, adjusted by the combined response of other neurons.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rust, N.C., Cohen, M.R. Priority coding in the visual system. Nat Rev Neurosci 23, 376–388 (2022). https://doi.org/10.1038/s41583-022-00582-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-022-00582-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing