Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Networking brainstem and basal ganglia circuits for movement

Abstract

The execution and learning of diverse movements involve neuronal networks distributed throughout the nervous system. The brainstem and basal ganglia are key for processing motor information. Both harbour functionally specialized populations stratified on the basis of axonal projections, synaptic inputs and gene expression, revealing a correspondence between circuit anatomy and function at a high level of granularity. Neuronal populations within both structures form multistep processing chains dedicated to the execution of specific movements; however, the connectivity and communication between these two structures is only just beginning to be revealed. The brainstem and basal ganglia are also embedded into wider networks and into systems-level loops. Important networking components include broadcasting neurons in the cortex, cerebellar output neurons and midbrain dopaminergic neurons. Action-specific circuits can be enhanced, vetoed, work in synergy or competition with others, or undergo plasticity to allow adaptive behaviour. We propose that this highly specific organization of circuits in the motor system is a core ingredient for supporting behavioural specificity, and at the same time for providing an adequate substrate for behavioural flexibility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Brainstem neurons regulating speed and direction of locomotion.
Fig. 2: Brainstem neurons for the construction of forelimb movements.
Fig. 3: Interactions between basal ganglia and brainstem circuits.
Fig. 4: Action specificity in striatal circuits.
Fig. 5: Widely projecting neuronal populations in the motor system.
Fig. 6: Different brain networks mediate different aspects of motor learning.
Fig. 7: Principles for network processing for action diversification and learning.

Similar content being viewed by others

References

  1. Grillner, S. Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52, 751–766 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Moore, J. D., Kleinfeld, D. & Wang, F. How the brainstem controls orofacial behaviors comprised of rhythmic actions. Trends Neurosci. 37, 370–380 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ruder, L. & Arber, S. Brainstem circuits controlling action diversification. Annu. Rev. Neurosci. 42, 485–504 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Kuypers, H. G. Anatomy of the descending pathways. Compr. Physiol. 2, 597–666 (1981).

    Article  Google Scholar 

  5. Valverde, F. Reticular formation of the pons and medulla oblongata. A Golgi study. J. Comp. Neurol. 116, 71–99 (1961).

    Article  CAS  PubMed  Google Scholar 

  6. Drew, T., Dubuc, R. & Rossignol, S. Discharge patterns of reticulospinal and other reticular neurons in chronic, unrestrained cats walking on a treadmill. J. Neurophysiol. 55, 375–401 (1986).

    Article  CAS  PubMed  Google Scholar 

  7. Ferreira-Pinto, M. J., Ruder, L., Capelli, P. & Arber, S. Connecting circuits for supraspinal control of locomotion. Neuron 100, 361–374 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Shik, M. L., Severin, F. V. & Orlovskii, G. N. [Control of walking and running by means of electric stimulation of the midbrain]. Biofizika 11, 659–666 (1966).

    CAS  PubMed  Google Scholar 

  9. Ryczko, D. & Dubuc, R. The multifunctional mesencephalic locomotor region. Curr. Pharm. Des. 19, 4448–4470 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Roseberry, T. K. et al. Cell-type-specific control of brainstem locomotor circuits by basal ganglia. Cell 164, 526–537 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Caggiano, V. et al. Midbrain circuits that set locomotor speed and gait selection. Nature 553, 455–460 (2018). This study finds that glutamatergic neurons in the CnF and PPN in the midbrain locomotor region are associated with high-speed and low-speed locomotion, respectively.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Josset, N. et al. Distinct contributions of mesencephalic locomotor region nuclei to locomotor control in the freely behaving mouse. Curr. Biol. 28, 884–901 e883 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Carvalho, M. M. et al. A brainstem locomotor circuit drives the activity of speed cells in the medial entorhinal cortex. Cell Rep. 32, 108123 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Capelli, P., Pivetta, C., Soledad Esposito, M. & Arber, S. Locomotor speed control circuits in the caudal brainstem. Nature 551, 373–377 (2017). This study describes a specific subpopulation of glutamatergic neurons in the caudal medulla that is required for high-speed locomotion and resides downstream of excitatory MLR neurons. Its locomotion-promoting activity can be revealed only through its dissociation from intermingled inhibitory neurons in the same region.

    Article  CAS  PubMed  Google Scholar 

  15. Ferreira-Pinto, M. J. et al. Functional diversity for body actions in the mesencephalic locomotor region. Cell 184, 4564–4578 (2021). By looking at axonal target locations, this study identifies two functionally distinct but intermingled neuronal subpopulations in the midbrain locomotor region that are of clinical relevance for deep brain stimulation approaches in Parkinson disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ampatzis, K., Song, J., Ausborn, J. & El Manira, A. Separate microcircuit modules of distinct V2a interneurons and motoneurons control the speed of locomotion. Neuron 83, 934–943 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. van der Zouwen, C. I. et al. Freely behaving mice can brake and turn during optogenetic stimulation of the mesencephalic locomotor region. Front. Neural Circuits 15, 639900 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Cregg, J. M. et al. Brainstem neurons that command mammalian locomotor asymmetries. Nat. Neurosci. 23, 730–740 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Usseglio, G., Gatier, E., Heuze, A., Herent, C. & Bouvier, J. Control of orienting movements and locomotion by projection-defined subsets of brainstem V2a neurons. Curr. Biol. 30, 4665–4681 e4666 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Bouvier, J. et al. Descending command neurons in the brainstem that halt locomotion. Cell 163, 1191–1203 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chopek, J. W., Zhang, Y. & Brownstone, R. M. Intrinsic brainstem circuits comprised of Chx10-expressing neurons contribute to reticulospinal output in mice. J. Neurophysiol. (2021).

  22. Schwenkgrub, J., Harrell, E. R., Bathellier, B. & Bouvier, J. Deep imaging in the brainstem reveals functional heterogeneity in V2a neurons controlling locomotion. Sci. Adv. https://doi.org/10.1126/sciadv.abc6309 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Isa, K. et al. Dissecting the tectal output channels for orienting and defense responses. eNeuro https://doi.org/10.1523/ENEURO.0271-20.2020 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Masullo, L. et al. Genetically defined functional modules for spatial orienting in the mouse superior colliculus. Curr. Biol. 29, 2892–2904 e2898 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Esposito, M. S., Capelli, P. & Arber, S. Brainstem nucleus MdV mediates skilled forelimb motor tasks. Nature 508, 351–356 (2014). This study maps brainstem neurons with direct connections to limb-innervating spinal motor neurons and identifies excitatory neurons in the medullary reticular formation ventral part in the brainstem as important for the grasping phase of skilled forelimb motor behaviour.

    Article  CAS  PubMed  Google Scholar 

  26. Ruder, L. et al. A functional map for diverse forelimb actions within brainstem circuitry. Nature 590, 445–450 (2021). This study defines neurons in the lateral rostral medulla involved in the control of skilled forelimb behaviour. Interestingly, different subpopulations with axonal targets in either spinal cord or caudal medulla are tuned to different phases of forelimb behavior.

    Article  CAS  PubMed  Google Scholar 

  27. Liang, H., Paxinos, G. & Watson, C. Projections from the brain to the spinal cord in the mouse. Brain Struct. Funct. 215, 159–186 (2011).

    Article  PubMed  Google Scholar 

  28. Jiang, J. & Alstermark, B. Not GABA but glycine mediates segmental, propriospinal, and bulbospinal postsynaptic inhibition in adult mouse spinal forelimb motor neurons. J. Neurosci. 35, 1991–1998 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bellavance, M. A. et al. Parallel inhibitory and excitatory trigemino-facial feedback circuitry for reflexive vibrissa movement. Neuron 95, 673–682 e674 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Faull, R. L. & Mehler, W. R. The cells of origin of nigrotectal, nigrothalamic and nigrostriatal projections in the rat. Neuroscience 3, 989–1002 (1978).

    Article  CAS  PubMed  Google Scholar 

  31. Shammah-Lagnado, S. J., Costa, M. S. & Ricardo, J. A. Afferent connections of the parvocellular reticular formation: a horseradish peroxidase study in the rat. Neuroscience 50, 403–425 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Hikosaka, O. GABAergic output of the basal ganglia. Prog. Brain Res. 160, 209–226 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Hikosaka, O. & Wurtz, R. H. Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus. J. Neurophysiol. 49, 1285–1301 (1983).

    Article  CAS  PubMed  Google Scholar 

  34. Hikosaka, O. & Wurtz, R. H. Visual and oculomotor functions of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades. J. Neurophysiol. 49, 1230–1253 (1983).

    Article  CAS  PubMed  Google Scholar 

  35. Freeze, B. S., Kravitz, A. V., Hammack, N., Berke, J. D. & Kreitzer, A. C. Control of basal ganglia output by direct and indirect pathway projection neurons. J. Neurosci. 33, 18531–18539 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jin, X. & Costa, R. M. Start/stop signals emerge in nigrostriatal circuits during sequence learning. Nature 466, 457–462 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mink, J. W. The basal ganglia: focused selection and inhibition of competing motor programs. Prog. Neurobiol. 50, 381–425 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. McElvain, L. E. et al. Specific populations of basal ganglia output neurons target distinct brain stem areas while collateralizing throughout the diencephalon. Neuron https://doi.org/10.1016/j.neuron.2021.03.017 (2021). This study shows that the SNr has segregated subpopulations of neurons that differentially project to distinct brainstem areas. These populations are electrophysiologically distinct and topographically organized, and collateralize to common diencephalon targets.

    Article  PubMed  Google Scholar 

  39. Liu, D. et al. A common hub for sleep and motor control in the substantia nigra. Science 367, 440–445 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Lalive, A. L., Lien, A. D., Roseberry, T. K., Donahue, C. H. & Kreitzer, A. C. Motor thalamus supports striatum-driven reinforcement. eLife https://doi.org/10.7554/eLife.34032 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Takakusaki, K., Habaguchi, T., Ohtinata-Sugimoto, J., Saitoh, K. & Sakamoto, T. Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 119, 293–308 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Alexander, G. E., DeLong, M. R. & Strick, P. L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381 (1986).

    Article  CAS  PubMed  Google Scholar 

  43. Lee, J., Wang, W. & Sabatini, B. L. Anatomically segregated basal ganglia pathways allow parallel behavioral modulation. Nat. Neurosci. 23, 1388–1398 (2020). This study shows that different regions of the striatum project to different regions of the SNr and in turn to different midbrain and brainstem targets. Furthermore, activation of specific striatal regions induces different behaviours consistent with the corresponding anatomical targets downstream of the basal ganglia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Foster, N. N. et al. The mouse cortico-basal ganglia-thalamic network. Nature 598, 188–194 (2021). This study shows that different striatal functional domains, defined on the basis of their cortical inputs, project to different downstream domains in the SNr and GPe, and also to different thalamic domains, thus revealing distinct cortico-basal ganglia-thalamic loops.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mittler, T., Cho, J., Peoples, L. L. & West, M. O. Representation of the body in the lateral striatum of the freely moving rat: single neurons related to licking. Exp. Brain Res. 98, 163–167 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Bakhurin, K. I. et al. Opponent regulation of action performance and timing by striatonigral and striatopallidal pathways. eLife https://doi.org/10.7554/eLife.54831 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Alexander, G. E. & DeLong, M. R. Microstimulation of the primate neostriatum. II. Somatotopic organization of striatal microexcitable zones and their relation to neuronal response properties. J. Neurophysiol. 53, 1417–1430 (1985).

    Article  CAS  PubMed  Google Scholar 

  48. Tecuapetla, F., Matias, S., Dugue, G. P., Mainen, Z. F. & Costa, R. M. Balanced activity in basal ganglia projection pathways is critical for contraversive movements. Nat. Commun. 5, 4315 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Aoki, S. et al. An open cortico-basal ganglia loop allows limbic control over motor output via the nigrothalamic pathway. eLife https://doi.org/10.7554/eLife.49995 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Klaus, A. et al. The spatiotemporal organization of the striatum encodes action space. Neuron 96, 949 (2017). This study shows that activity in both direct striatonigral neurons and indirect striatopallidal neurons is higher during movement than at rest, and is movement specific, where striatal neurons that are tuned to the same movement show higher zero-lag cross-correlation, suggesting common input.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dhawale, A. K., Wolff, S. B. E., Ko, R. & Olveczky, B. P. The basal ganglia control the detailed kinematics of learned motor skills. Nat. Neurosci. https://doi.org/10.1038/s41593-021-00889-3 (2021).

    Article  PubMed  Google Scholar 

  52. Gerfen, C. R. et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429–1432 (1990).

    Article  CAS  PubMed  Google Scholar 

  53. Albin, R. L., Young, A. B. & Penney, J. B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375 (1989).

    Article  CAS  PubMed  Google Scholar 

  54. Kravitz, A. V. et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466, 622–626 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tecuapetla, F., Jin, X., Lima, S. Q. & Costa, R. M. Complementary contributions of striatal projection pathways to action initiation and execution. Cell 166, 703–715 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Cui, G. et al. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494, 238–242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jin, X., Tecuapetla, F. & Costa, R. M. Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat. Neurosci. 17, 423–430 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Markowitz, J. E. et al. The striatum organizes 3D behavior via moment-to-moment action selection. Cell 174, 44–58 e17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sippy, T., Lapray, D., Crochet, S. & Petersen, C. C. Cell-type-specific sensorimotor processing in striatal projection neurons during goal-directed behavior. Neuron 88, 298–305 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mastro, K. J. et al. Cell-specific pallidal intervention induces long-lasting motor recovery in dopamine-depleted mice. Nat. Neurosci. 20, 815–823 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pamukcu, A. et al. Parvalbumin+ and Npas1+ pallidal neurons have distinct circuit topology and function. J. Neurosci. 40, 7855–7876 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mosher, C. P., Mamelak, A. N., Malekmohammadi, M., Pouratian, N. & Rutishauser, U. Distinct roles of dorsal and ventral subthalamic neurons in action selection and cancellation. Neuron 109, 869–881 e866 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wallen-Mackenzie, A. et al. Spatio-molecular domains identified in the mouse subthalamic nucleus and neighboring glutamatergic and GABAergic brain structures. Commun. Biol. 3, 338 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mallet, N. et al. Dichotomous organization of the external globus pallidus. Neuron 74, 1075–1086 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mallet, N. et al. Arkypallidal cells send a stop signal to striatum. Neuron 89, 308–316 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ketzef, M. & Silberberg, G. Differential synaptic input to external globus pallidus neuronal subpopulations in vivo. Neuron 109, 516–529 e514 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Aristieta, A. et al. A disynaptic circuit in the globus pallidus controls locomotion inhibition. Curr. Biol. 31, 707–721 e707 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Saunders, A. et al. A direct GABAergic output from the basal ganglia to frontal cortex. Nature 521, 85–89 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lilascharoen, V. et al. Divergent pallidal pathways underlying distinct Parkinsonian behavioral deficits. Nat. Neurosci. 24, 504–515 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Martin, A. et al. A spatiomolecular map of the striatum. Cell Rep. 29, 4320–4333 e4325 (2019).

    Article  PubMed  CAS  Google Scholar 

  71. Lemon, R. N. Descending pathways in motor control. Annu. Rev. Neurosci. 31, 195–218 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Kita, T. & Kita, H. The subthalamic nucleus is one of multiple innervation sites for long-range corticofugal axons: a single-axon tracing study in the rat. J. Neurosci. 32, 5990–5999 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wolpert, D. M. & Miall, R. C. Forward models for physiological motor control. Neural Netw. 9, 1265–1279 (1996).

    Article  PubMed  Google Scholar 

  74. Hintiryan, H. et al. The mouse cortico-striatal projectome. Nat. Neurosci. 19, 1100–1114 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Peters, A. J., Fabre, J. M. J., Steinmetz, N. A., Harris, K. D. & Carandini, M. Striatal activity topographically reflects cortical activity. Nature https://doi.org/10.1038/s41586-020-03166-8 (2021). This study shows that the activity in the striatum mirrors the activity in the cortical inputs in a temporally precise and topographically organized manner, that cortical inputs causally drive striatal activity and that the strength of specific corticostriatal connections can change with learning.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Klaus, A., Alves da Silva, J. & Costa, R. M. What, if, and when to move: basal ganglia circuits and self-paced action initiation. Annu. Rev. Neurosci. 42, 459–483 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Wang, X. et al. Deconstruction of corticospinal circuits for goal-directed motor skills. Cell 171, 440–455 e414 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tripodi, M., Stepien, A. E. & Arber, S. Motor antagonism exposed by spatial segregation and timing of neurogenesis. Nature 479, 61–66 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Mercer Lindsay, N. et al. Orofacial movements involve parallel corticobulbar projections from motor cortex to trigeminal premotor nuclei. Neuron 104, 765–780 e763 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Bollu, T. et al. Cortex-dependent corrections as the tongue reaches for and misses targets. Nature 594, 82–87 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Mayrhofer, J. M. et al. Distinct contributions of whisker sensory cortex and tongue-jaw motor cortex in a goal-directed sensorimotor transformation. Neuron 103, 1034–1043 e1035 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sreenivasan, V., Karmakar, K., Rijli, F. M. & Petersen, C. C. Parallel pathways from motor and somatosensory cortex for controlling whisker movements in mice. Eur. J. Neurosci. 41, 354–367 (2015).

    Article  PubMed  Google Scholar 

  83. Winnubst, J. et al. Reconstruction of 1,000 projection neurons reveals new cell types and organization of long-range connectivity in the mouse brain. Cell 179, 268–281 e213 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Economo, M. N. et al. Distinct descending motor cortex pathways and their roles in movement. Nature 563, 79–84 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Nelson, A., Abdelmesih, B. & Costa, R. M. Corticospinal populations broadcast complex motor signals to coordinated spinal and striatal circuits. Nat. Neurosci. https://doi.org/10.1038/s41593-021-00939-w (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Winnubst, J. & Arber, S. A census of cell types in the brain’s motor cortex. Nature 598, 33–34 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. BRAIN Initiative Cell Census Network (BICCN). A multimodal cell census and atlas of the mammalian primary motor cortex. Nature 598, 86–102 (2021). This is a flagship article summarizing the results of many articles published jointly, all aimed at providing insight into neuronal diversity in the motor cortex. It provides a rich resource for the mining of data and future work on the topic and neuronal cell type identification more generally.

    Article  CAS  Google Scholar 

  88. Kebschull, J. M. et al. Cerebellar nuclei evolved by repeatedly duplicating a conserved cell-type set. Science https://doi.org/10.1126/science.abd5059 (2020). This study provides evidence for unique sets of excitatory but repeated sets of inhibitory neuron subpopulations across different DCN.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Fujita, H., Kodama, T. & du Lac, S. Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis. eLife https://doi.org/10.7554/eLife.58613 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Becker, M. I. & Person, A. L. Cerebellar control of reach kinematics for endpoint precision. Neuron 103, 335–348.e335 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Low, A. Y. T. et al. Precision of discrete and rhythmic forelimb movements requires a distinct neuronal subpopulation in the interposed anterior nucleus. Cell Rep. 22, 2322–2333 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Sathyamurthy, A. et al. Cerebellospinal neurons regulate motor performance and motor learning. Cell Rep. 31, 107595 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shen, W., Flajolet, M., Greengard, P. & Surmeier, D. J. Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321, 848–851 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Howe, M. W. & Dombeck, D. A. Rapid signalling in distinct dopaminergic axons during locomotion and reward. Nature 535, 505–510 (2016). This study shows rapid phasic activity in dopaminergic axons in the dorsal striatum that is related to, and capable of modulating, locomotion in mice. The axons expressing these signals are distinct from those responding to reward.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. da Silva, J. A., Tecuapetla, F., Paixao, V. & Costa, R. M. Dopamine neuron activity before action initiation gates and invigorates future movements. Nature 554, 244–248 (2018). This study shows that a population of dopaminergic neurons in the SNc, distinct from the population of reward-responsive neurons, is transiently active before the initiation of self-paced movements. This activity is necessary for movement initiation, it encodes the vigour of future movements and it is not action specific.

    Article  PubMed  CAS  Google Scholar 

  96. Panigrahi, B. et al. Dopamine is required for the neural representation and control of movement vigor. Cell 162, 1418–1430 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Maltese, M., March, J. R., Bashaw, A. G. & Tritsch, N. X. Dopamine differentially modulates the size of projection neuron ensembles in the intact and dopamine-depleted striatum. eLife https://doi.org/10.7554/eLife.68041 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Parker, J. G. et al. Diametric neural ensemble dynamics in parkinsonian and dyskinetic states. Nature 557, 177–182 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kelly, R. M. & Strick, P. L. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J. Neurosci. 23, 8432–8444 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sauerbrei, B. A. et al. Cortical pattern generation during dexterous movement is input-driven. Nature 577, 386–391 (2020).

    Article  CAS  PubMed  Google Scholar 

  101. Guo, Z. V. et al. Maintenance of persistent activity in a frontal thalamocortical loop. Nature 545, 181–186 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gao, Z. et al. A cortico-cerebellar loop for motor planning. Nature 563, 113–116 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chabrol, F. P., Blot, A. & Mrsic-Flogel, T. D. Cerebellar contribution to preparatory activity in motor neocortex. Neuron 103, 506–519 e504 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dacre, J. A cerebellar-thalamocortical pathway drives behavioral context-dependent movement initiation. Neuron 109, 2326–2338.e8 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wagner, M. J. et al. Shared cortex-cerebellum dynamics in the execution and learning of a motor task. Cell 177, 669–682 e624 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yin, H. H. et al. Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill. Nat. Neurosci. 12, 333–341 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Koralek, A. C., Jin, X., Long, J. D. 2nd, Costa, R. M. & Carmena, J. M. Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills. Nature 483, 331–335 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Xiong, Q., Znamenskiy, P. & Zador, A. M. Selective corticostriatal plasticity during acquisition of an auditory discrimination task. Nature 521, 348–351 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Santos, F. J., Oliveira, R. F., Jin, X. & Costa, R. M. Corticostriatal dynamics encode the refinement of specific behavioral variability during skill learning. eLife 4, e09423 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Athalye, V. R., Santos, F. J., Carmena, J. M. & Costa, R. M. Evidence for a neural law of effect. Science 359, 1024–1029 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Lemke, S. M., Ramanathan, D. S., Guo, L., Won, S. J. & Ganguly, K. Emergent modular neural control drives coordinated motor actions. Nat. Neurosci. 22, 1122–1131 (2019). This study shows that refinement of gross limb movements is rapid and related to changes in both cortical and striatal activity, whereas refinement for fine skill acquisition takes longer and relies more on cortical activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Athalye, V. R., Carmena, J. M. & Costa, R. M. Neural reinforcement: re-entering and refining neural dynamics leading to desirable outcomes. Curr. Opin. Neurobiol. 60, 145–154 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Rioult-Pedotti, M. S., Friedman, D. & Donoghue, J. P. Learning-induced LTP in neocortex. Science 290, 533–536 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Xu, T. et al. Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 462, 915–919 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hosp, J. A., Pekanovic, A., Rioult-Pedotti, M. S. & Luft, A. R. Dopaminergic projections from midbrain to primary motor cortex mediate motor skill learning. J. Neurosci. 31, 2481–2487 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Deniau, J. M., Kita, H. & Kitai, S. T. Patterns of termination of cerebellar and basal ganglia efferents in the rat thalamus. Strictly segregated and partly overlapping projections. Neurosci. Lett. 144, 202–206 (1992).

    Article  CAS  PubMed  Google Scholar 

  117. Cossell, L. et al. Functional organization of excitatory synaptic strength in primary visual cortex. Nature 518, 399–403 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lee, D., Lin, B. J. & Lee, A. K. Hippocampal place fields emerge upon single-cell manipulation of excitability during behavior. Science 337, 849–853 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Lee, J. S., Briguglio, J. J., Cohen, J. D., Romani, S. & Lee, A. K. The statistical structure of the hippocampal code for space as a function of time, context, and value. Cell 183, 620–635 e622 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Hintzen, A., Pelzer, E. A. & Tittgemeyer, M. Thalamic interactions of cerebellum and basal ganglia. Brain Struct. Funct. 223, 569–587 (2018).

    Article  PubMed  Google Scholar 

  121. Bostan, A. C. & Strick, P. L. The basal ganglia and the cerebellum: nodes in an integrated network. Nat. Rev. Neurosci. 19, 338–350 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Grillner, S. Evolution of the vertebrate motor system- from forebrain to spinal cord. Curr. Opin. Neurobiol. 71, 11–18 (2021).

    Article  CAS  PubMed  Google Scholar 

  123. Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 598, 111–119 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank G. Costa (https://www.gilcosta.com) for support in the generation of graphical illustrations accompanying this Review. S.A. was supported by funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (Descent, grant agreement no. 692617), the Swiss National Science Foundation, the Kanton Basel-Stadt, the Novartis Research Foundation and the Louis Jeantet Prize for Medicine. R.M.C was supported by NIH BRAIN Initiative grant 5U19NS104649, the Simons-Emory International Consortium on Motor Control and SFARI. S.A. and R.M.C. were supported by a grant from the Aligning Science Across Parkinson’s initiative.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the manuscript.

Corresponding authors

Correspondence to Silvia Arber or Rui M. Costa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks A. El Manira, C. Petersen, and the other, anonymous, reviewer(s), for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arber, S., Costa, R.M. Networking brainstem and basal ganglia circuits for movement. Nat Rev Neurosci 23, 342–360 (2022). https://doi.org/10.1038/s41583-022-00581-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-022-00581-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing