Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators

Abstract

Neurotransmitters and neuromodulators have a wide range of key roles throughout the nervous system. However, their dynamics in both health and disease have been challenging to assess, owing to the lack of in vivo tools to track them with high spatiotemporal resolution. Thus, developing a platform that enables minimally invasive, large-scale and long-term monitoring of neurotransmitters and neuromodulators with high sensitivity, high molecular specificity and high spatiotemporal resolution has been essential. Here, we review the methods available for monitoring the dynamics of neurotransmitters and neuromodulators. Following a brief summary of non-genetically encoded methods, we focus on recent developments in genetically encoded fluorescent indicators, highlighting how these novel indicators have facilitated advances in our understanding of the functional roles of neurotransmitters and neuromodulators in the nervous system. These studies present a promising outlook for the future development and use of tools to monitor neurotransmitters and neuromodulators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Non-genetically encoded methods used to measure neurotransmitters and neuromodulators.
Fig. 2: Genetically encoded indicators used to measure neurotransmitters and neuromodulators.
Fig. 3: Choosing genetically encoded neurotransmitter or neuromodulator indicators for experiments.
Fig. 4: Fibre photometry recording of neurotransmitter or neuromodulator dynamics in freely moving mice.
Fig. 5: Wide-field mesoscopic imaging of neurotransmitter or neuromodulator dynamics across the neocortex in awake mice.
Fig. 6: Two-photon imaging of neurotransmitter or neuromodulator dynamics in different preparations and model organisms.

Similar content being viewed by others

References

  1. Luo, L. Principles of Neurobiology (Garland Science, 2020).

  2. Sudhof, T. C. Neurotransmitter release. Handb. Exp. Pharmacol. https://doi.org/10.1007/978-3-540-74805-2_1 (2008).

    Article  Google Scholar 

  3. Nadim, F. & Bucher, D. Neuromodulation of neurons and synapses. Curr. Opin. Neurobiol. 29, 48–56 (2014).

    CAS  PubMed  Google Scholar 

  4. Marder, E. Neuromodulation of neuronal circuits: back to the future. Neuron 76, 1–11 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lovinger, D. M. Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum. Neuropharmacology 58, 951–961 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ma, S., Hangya, B., Leonard, C. S., Wisden, W. & Gundlach, A. L. Dual-transmitter systems regulating arousal, attention, learning and memory. Neurosci. Biobehav. Rev. 85, 21–33 (2018).

    CAS  PubMed  Google Scholar 

  7. Sarter, M., Bruno, J. P. & Parikh, V. Abnormal neurotransmitter release underlying behavioral and cognitive disorders: toward concepts of dynamic and function-specific dysregulation. Neuropsychopharmacology 32, 1452–1461 (2007).

    CAS  PubMed  Google Scholar 

  8. Lotharius, J. & Brundin, P. Pathogenesis of Parkinson’s disease: dopamine, vesicles and α-synuclein. Nat. Rev. Neurosci. 3, 932–942 (2002).

    CAS  PubMed  Google Scholar 

  9. Higley, M. J. & Picciotto, M. R. Neuromodulation by acetylcholine: examples from schizophrenia and depression. Curr. Opin. Neurobiol. 29, 88–95 (2014).

    CAS  PubMed  Google Scholar 

  10. Di Chiara, G. et al. Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology 47 (Suppl 1), 227–241 (2004).

    PubMed  Google Scholar 

  11. Ferreira-Vieira, T. H., Guimaraes, I. M., Silva, F. R. & Ribeiro, F. M. Alzheimer’s disease: targeting the cholinergic system. Curr. Neuropharmacol. 14, 101–115 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Robertson, M. Biology in the 1980s, plus or minus a decade. Nature 285, 358–359 (1980).

    CAS  PubMed  Google Scholar 

  13. Ting, J. T. & Phillips, P. E. Neurotransmitter release. Wiley Ency. Chem. Biol. https://doi.org/10.1002/9780470048672.wecb385 (2007).

    Article  Google Scholar 

  14. Sakmann, B. Single-Channel Recording (Springer Science & Business Media, 2013).

  15. Del Castillo, J. & Katz, B. Quantal components of the end-plate potential. J. Physiol. 124, 560–573 (1954).

    PubMed Central  Google Scholar 

  16. Bito, L., Davson, H., Levin, E., Murray, M. & Snider, N. The concentrations of free amino acids and other electrolytes in cerebrospinal fluid, in vivo dialysate of brain, and blood plasma of the dog. J. Neurochem. 13, 1057–1067 (1966).

    CAS  PubMed  Google Scholar 

  17. Buck, K., Voehringer, P. & Ferger, B. Rapid analysis of GABA and glutamate in microdialysis samples using high performance liquid chromatography and tandem mass spectrometry. J. Neurosci. Methods 182, 78–84 (2009).

    CAS  PubMed  Google Scholar 

  18. Hogan, B. L., Lunte, S. M., Stobaugh, J. F. & Lunte, C. E. On-line coupling of in vivo microdialysis sampling with capillary electrophoresis. Anal. Chem. 66, 596–602 (1994).

    CAS  PubMed  Google Scholar 

  19. Sun, X., Deng, J., Liu, T. & Borjigin, J. Circadian 5-HT production regulated by adrenergic signaling. Proc. Natl Acad. Sci. USA 99, 4686–4691 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Borjigin, J. & Liu, T. Application of long-term microdialysis in circadian rhythm research. Pharmacol. Biochem. Behav. 90, 148–155 (2008).

    CAS  PubMed  Google Scholar 

  21. Li, H., Li, C., Yan, Z. Y., Yang, J. & Chen, H. Simultaneous monitoring multiple neurotransmitters and neuromodulators during cerebral ischemia/reperfusion in rats by microdialysis and capillary electrophoresis. J. Neurosci. Methods 189, 162–168 (2010).

    CAS  PubMed  Google Scholar 

  22. Kao, C. Y., Anderzhanova, E., Asara, J. M., Wotjak, C. T. & Turck, C. W. NextGen brain microdialysis: applying modern metabolomics technology to the analysis of extracellular fluid in the central nervous system. Mol. Neuropsychiatry 1, 60–67 (2015).

    PubMed  PubMed Central  Google Scholar 

  23. Westerhout, J., Ploeger, B., Smeets, J., Danhof, M. & de Lange, E. C. Physiologically based pharmacokinetic modeling to investigate regional brain distribution kinetics in rats. AAPS J. 14, 543–553 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Petit-Pierre, G. et al. In vivo neurochemical measurements in cerebral tissues using a droplet-based monitoring system. Nat. Commun. 8, 1239 (2017).

    PubMed  PubMed Central  Google Scholar 

  25. Watson, C. J., Venton, B. J. & Kennedy, R. T. In vivo measurements of neurotransmitters by microdialysis sampling. Anal. Chem. 78, 1391–1399 (2006).

    PubMed  Google Scholar 

  26. Benveniste, H. & Diemer, N. H. Cellular reactions to implantation of a microdialysis tube in the rat hippocampus. Acta Neuropathol. 74, 234–238 (1987).

    CAS  PubMed  Google Scholar 

  27. Hascup, E. R. et al. Histological studies of the effects of chronic implantation of ceramic-based microelectrode arrays and microdialysis probes in rat prefrontal cortex. Brain Res. 1291, 12–20 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, L. & Sweedler, J. V. Peptides in the brain: mass spectrometry-based measurement approaches and challenges. Annu. Rev. Anal. Chem. 1, 451–483 (2008).

    CAS  Google Scholar 

  29. Bequet, F. et al. CB1 receptor-mediated control of the release of endocannabinoids (as assessed by microdialysis coupled with LC/MS) in the rat hypothalamus. Eur. J. Neurosci. 26, 3458–3464 (2007).

    PubMed  Google Scholar 

  30. Buczynski, M. W. & Parsons, L. H. Quantification of brain endocannabinoid levels: methods, interpretations and pitfalls. Br. J. Pharmacol. 160, 423–442 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Shariatgorji, M. et al. Comprehensive mapping of neurotransmitter networks by MALDI-MS imaging. Nat. Methods 16, 1021–1028 (2019).

    CAS  PubMed  Google Scholar 

  32. Adams, R. N. Probing brain chemistry with electroanalytical techniques. Anal. Chem. 48, 1126A–1138A (1976).

    CAS  PubMed  Google Scholar 

  33. Bucher, E. S. & Wightman, R. M. Electrochemical analysis of neurotransmitters. Annu. Rev. Anal. Chem. 8, 239–261 (2015).

    CAS  Google Scholar 

  34. Wightman, R. M. Detection technologies. Probing cellular chemistry in biological systems with microelectrodes. Science 311, 1570–1574 (2006).

    CAS  PubMed  Google Scholar 

  35. Ganesana, M., Lee, S. T., Wang, Y. & Venton, B. J. Analytical techniques in neuroscience: recent advances in imaging, separation, and electrochemical methods. Anal. Chem. 89, 314–341 (2017).

    CAS  PubMed  Google Scholar 

  36. Puthongkham, P. & Venton, B. J. Recent advances in fast-scan cyclic voltammetry. Analyst 145, 1087–1102 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Venton, B. J. & Cao, Q. Fundamentals of fast-scan cyclic voltammetry for dopamine detection. Analyst 145, 1158–1168 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Vickrey, T. L., Condron, B. & Venton, B. J. Detection of endogenous dopamine changes in Drosophila melanogaster using fast-scan cyclic voltammetry. Anal. Chem. 81, 9306–9313 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bang, D. et al. Sub-second dopamine and serotonin signaling in human striatum during perceptual decision-making. Neuron 108, 999–1010.e6 (2020). This study demonstrates the use of FSCV-based methods to measure dopamine and 5-HT dynamics in human participants during a visual motion-discrimination task.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kishida, K. T. et al. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward. Proc. Natl Acad. Sci. USA 113, 200–205 (2016).

    CAS  PubMed  Google Scholar 

  41. Moran, R. J. et al. The protective action encoding of serotonin transients in the human brain. Neuropsychopharmacology 43, 1425–1435 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ou, Y., Buchanan, A. M., Witt, C. E. & Hashemi, P. Frontiers in electrochemical sensors for neurotransmitter detection: towards measuring neurotransmitters as chemical diagnostics for brain disorders. Anal. Methods 11, 2738–2755 (2019).

    PubMed  PubMed Central  Google Scholar 

  43. Llaudet, E., Hatz, S., Droniou, M. & Dale, N. Microelectrode biosensor for real-time measurement of ATP in biological tissue. Anal. Chem. 77, 3267–3273 (2005).

    CAS  PubMed  Google Scholar 

  44. Mitchell, K. M. Acetylcholine and choline amperometric enzyme sensors characterized in vitro and in vivo. Anal. Chem. 76, 1098–1106 (2004).

    CAS  PubMed  Google Scholar 

  45. Frenguelli, B. G., Llaudet, E. & Dale, N. High-resolution real-time recording with microelectrode biosensors reveals novel aspects of adenosine release during hypoxia in rat hippocampal slices. J. Neurochem. 86, 1506–1515 (2003).

    CAS  PubMed  Google Scholar 

  46. Disney, A. A. & Higley, M. J. Diverse spatiotemporal scales of cholinergic signaling in the neocortex. J. Neurosci. 40, 720–725 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gubernator, N. G. et al. Fluorescent false neurotransmitters visualize dopamine release from individual presynaptic terminals. Science 324, 1441–1444 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tuominen, L., Nummenmaa, L., Keltikangas-Jarvinen, L., Raitakari, O. & Hietala, J. Mapping neurotransmitter networks with PET: an example on serotonin and opioid systems. Hum. Brain Mapp. 35, 1875–1884 (2014).

    PubMed  Google Scholar 

  49. Ghosh, S., Harvey, P., Simon, J. C. & Jasanoff, A. Probing the brain with molecular fMRI. Curr. Opin. Neurobiol. 50, 201–210 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Nguyen, Q. T. et al. An in vivo biosensor for neurotransmitter release and in situ receptor activity. Nat. Neurosci. 13, 127–132 (2010). This study reports the design of CNiFERs through activation of M1 muscarinic receptors for detecting ACh release in living rodents.

    CAS  PubMed  Google Scholar 

  51. Beyene, A. G. et al. Imaging striatal dopamine release using a nongenetically encoded near infrared fluorescent catecholamine nanosensor. Sci. Adv. 5, eaaw3108 (2019). This study reports the design of a synthetic catecholamine nanosensor with fluorescent emission in the near-infrared range (1,000–1,300 nm), named nIRCat, which was compatible with DA pharmacology and could be used to measure DA release in brain tissue.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Jeong, S. et al. High-throughput evolution of near-infrared serotonin nanosensors. Sci. Adv. 5, eaay3771 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lin, M. Z. & Schnitzer, M. J. Genetically encoded indicators of neuronal activity. Nat. Neurosci. 19, 1142–1153 (2016).

    PubMed  PubMed Central  Google Scholar 

  54. Miesenbock, G., De Angelis, D. A. & Rothman, J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998).

    CAS  PubMed  Google Scholar 

  55. Li, Y. & Tsien, R. W. pHTomato, a red, genetically encoded indicator that enables multiplex interrogation of synaptic activity. Nat. Neurosci. 15, 1047–1053 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu, A. et al. pHmScarlet is a pH-sensitive red fluorescent protein to monitor exocytosis docking and fusion steps. Nat. Commun. 12, 1413 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ding, K. et al. Imaging neuropeptide release at synapses with a genetically engineered reporter. eLife 8, e46421 (2019).

    PubMed  PubMed Central  Google Scholar 

  58. Rao, S., Lang, C., Levitan, E. S. & Deitcher, D. L. Visualization of neuropeptide expression, transport, and exocytosis in Drosophila melanogaster. J. Neurobiol. 49, 159–172 (2001).

    CAS  PubMed  Google Scholar 

  59. Xia, X., Lessmann, V. & Martin, T. F. Imaging of evoked dense-core-vesicle exocytosis in hippocampal neurons reveals long latencies and kiss-and-run fusion events. J. Cell Sci. 122, 75–82 (2009).

    CAS  PubMed  Google Scholar 

  60. Wong, M. Y., Cavolo, S. L. & Levitan, E. S. Synaptic neuropeptide release by dynamin-dependent partial release from circulating vesicles. Mol. Biol. Cell 26, 2466–2474 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Dominguez, N., van Weering, J. R. T., Borges, R., Toonen, R. F. G. & Verhage, M. Dense-core vesicle biogenesis and exocytosis in neurons lacking chromogranins A and B. J. Neurochem. 144, 241–254 (2018).

    CAS  PubMed  Google Scholar 

  62. Shen, Y., Nasu, Y., Shkolnikov, I., Kim, A. & Campbell, R. E. Engineering genetically encoded fluorescent indicators for imaging of neuronal activity: progress and prospects. Neurosci. Res. 152, 3–14 (2020).

    PubMed  Google Scholar 

  63. Knopfel, T. & Song, C. Optical voltage imaging in neurons: moving from technology development to practical tool. Nat. Rev. Neurosci. 20, 719–727 (2019).

    CAS  PubMed  Google Scholar 

  64. Okumoto, S. et al. Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proc. Natl Acad. Sci. USA 102, 8740–8745 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Marvin, J. S. et al. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat. Methods 10, 162–170 (2013). This study reports the design of a PBP-based genetically encoded glutamate sensor, iGluSnFR, and the validation of its utility for visualizing glutamate release in vitro and in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Marvin, J. S. et al. Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR. Nat. Methods 15, 936–939 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Wu, J. et al. Genetically encoded glutamate indicators with altered color and topology. ACS Chem. Biol. 13, 1832–1837 (2018).

    CAS  PubMed  Google Scholar 

  68. Marvin, J. S. et al. A genetically encoded fluorescent sensor for in vivo imaging of GABA. Nat. Methods 16, 763–770 (2019).

    CAS  PubMed  Google Scholar 

  69. Lobas, M. A. et al. A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP. Nat. Commun. 10, 711 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Borden, P. M. et al. A fast genetically encoded fluorescent sensor for faithful in vivo acetylcholine detection in mice, fish, worms and flies. Preprint at bioRxiv https://doi.org/10.1101/2020.02.07.939504 (2020).

    Article  Google Scholar 

  71. Unger, E. K. et al. Directed evolution of a selective and sensitive serotonin sensor via machine learning. Cell 183, 1986–2002.e26 (2020). This study describes the development and application of a binding-pocket redesign strategy, guided by machine learning, to create a fluorescent 5-HT sensor, iSeroSnFR, which enabled optical detection of 5-HT release in freely behaving animals.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Vilardaga, J. P., Bunemann, M., Krasel, C., Castro, M. & Lohse, M. J. Measurement of the millisecond activation switch of G protein-coupled receptors in living cells. Nat. Biotechnol. 21, 807–812 (2003).

    CAS  PubMed  Google Scholar 

  73. Hoffmann, C. et al. A FlAsH-based FRET approach to determine G protein-coupled receptor activation in living cells. Nat. Methods 2, 171–176 (2005).

    CAS  PubMed  Google Scholar 

  74. Baird, G. S., Zacharias, D. A. & Tsien, R. Y. Circular permutation and receptor insertion within green fluorescent proteins. Proc. Natl Acad. Sci. USA 96, 11241–11246 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kostyuk, A. I., Demidovich, A. D., Kotova, D. A., Belousov, V. V. & Bilan, D. S. Circularly permuted fluorescent protein-based indicators: history, principles, and classification. Int. J. Mol. Sci. 20, 4200 (2019).

    PubMed Central  Google Scholar 

  76. Jing, M. et al. A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nat. Biotechnol. 36, 726–737 (2018). This study describes the design of a genetically encoded GPCR activation-based ACh fluorescent sensor, GRABACh, and the validation of its utility for visualizing ACh release in vitro and in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Jing, M. et al. An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nat. Methods 17, 1139-1146 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Sun, F. et al. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174, 481–496.e19 (2018). This study reports the development of a first-generation 2R-based dopamine sensor, GRABDA, which enabled fast, sensitive DA detection with molecular and cellular specificity in multiple organisms and during complex behaviours.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Sun, F. et al. Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. Nat. Methods 17, 1156–1166 (2020). This study reports on developed red-fluorescent GPCR activation-based dopamine (rGRABDA) sensors and optimized versions of green-fluorescent GRABDA sensors. The new sensors reveal compartmental DA release in flies and report mesoaccumbens dopaminergic activity during sexual behaviour in freely behaving mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Feng, J. et al. A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine. Neuron 102, 745–761.e8 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kruse, A. C. et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504, 101–106 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hilger, D., Masureel, M. & Kobilka, B. K. Structure and dynamics of GPCR signaling complexes. Nat. Struct. Mol. Biol. 25, 4–12 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Weis, W. I. & Kobilka, B. K. The molecular basis of G protein-coupled receptor activation. Annu. Rev. Biochem. 87, 897–919 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Pedelacq, J. D., Cabantous, S., Tran, T., Terwilliger, T. C. & Waldo, G. S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 79–88 (2006).

    CAS  PubMed  Google Scholar 

  85. St-Pierre, F. et al. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat. Neurosci. 17, 884–889 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Bajar, B. T. et al. Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting. Sci. Rep. 6, 20889 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Wan, J. et al. A genetically encoded sensor for measuring serotonin dynamics. Nat. Neurosci. 24,746-752 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Dong, A. et al. A fluorescent sensor for spatiotemporally resolved imaging of endocannabinoid dynamics in vivo. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-01074-4 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Peng, W. et al. Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science 369, eabb05566 (2020). This study describes the development and application of a new genetically encoded adenosine sensor (GRABAdo) to monitor adenosine dynamics with fibre photometry recordings during sleep–wake cycles in mice.

    Google Scholar 

  90. Wu, Z. et al. A sensitive GRAB sensor for detecting extracellular ATP in vitro and in vivo. Neuron 110, 770-782.e5 (2022).

    CAS  PubMed  Google Scholar 

  91. Patriarchi, T. et al. An expanded palette of dopamine sensors for multiplex imaging in vivo. Nat. Methods 17, 1147–1155 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360, eaat4422 (2018). This study reports the development of D1R-based and other dopamine receptor-based DA sensors, dLight1 sensors, to visualize spatial and temporal release of DA in rodents.

    PubMed  PubMed Central  Google Scholar 

  93. Labouesse, M. A., Cola, R. B. & Patriarchi, T. GPCR-based dopamine sensors — a detailed guide to inform sensor choice for in vivo imaging. Int. J. Mol. Sci. 21, 8048 (2020).

    CAS  PubMed Central  Google Scholar 

  94. Labouesse, M. A. & Patriarchi, T. A versatile GPCR toolkit to track in vivo neuromodulation: not a one-size-fits-all sensor. Neuropsychopharmacology 46, 2043–2047 (2021).

    PubMed  PubMed Central  Google Scholar 

  95. Leopold, A. V., Shcherbakova, D. M. & Verkhusha, V. V. Fluorescent biosensors for neurotransmission and neuromodulation: engineering and applications. Front. Cell Neurosci. 13, 474 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Sabatini, B. L. & Tian, L. Imaging neurotransmitter and neuromodulator dynamics in vivo with genetically encoded indicators. Neuron 108, 17–32 (2020). This review discusses the development, optimization and applications of optical approaches to monitor NT and NM dynamics in the brain using GENIs.

    CAS  PubMed  Google Scholar 

  97. Wu, Z., Feng, J., Jing, M. & Li, Y. G protein-assisted optimization of GPCR-activation based (GRAB) sensors. Proc. Spie. https://doi.org/10.1117/12.2514631 (2019).

    Article  Google Scholar 

  98. Kroning, K. & Wang, W. Designing a single protein-chain reporter for opioid detection at a cellular resolution. Angew. Chem. Int. Ed. Engl. 133, 13470–13477 (2021).

    Google Scholar 

  99. Barnea, G. et al. The genetic design of signaling cascades to record receptor activation. Proc. Natl Acad. Sci. USA 105, 64–69 (2008).

    CAS  PubMed  Google Scholar 

  100. Inagaki, H. K. et al. Visualizing neuromodulation in vivo: TANGO-mapping of dopamine signaling reveals appetite control of sugar sensing. Cell 148, 583–595 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Lee, D. et al. Temporally precise labeling and control of neuromodulatory circuits in the mammalian brain. Nat. Methods 14, 495–503 (2017).

    CAS  PubMed  Google Scholar 

  102. Kim, M. W. et al. Time-gated detection of protein–protein interactions with transcriptional readout. eLife 6, e30233 (2017).

    PubMed  PubMed Central  Google Scholar 

  103. Zhang, W. H. et al. Monitoring hippocampal glycine with the computationally designed optical sensor GlyFS. Nat. Chem. Biol. 14, 861–869 (2018).

    CAS  PubMed  Google Scholar 

  104. Zhou, X., Mehta, S. & Zhang, J. Genetically encodable fluorescent and bioluminescent biosensors light up signaling networks. Trends Biochem. Sci. 45, 889–905 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Petersen, E. D. et al. Bioluminescent genetically encoded glutamate indicator for molecular imaging of neuronal activity. Preprint at bioRxiv https://doi.org/10.1101/2021.06.16.448690 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Neves, S. R., Ram, P. T. & Iyengar, R. G protein pathways. Science 296, 1636–1639 (2002).

    CAS  PubMed  Google Scholar 

  107. Luttrell, L. M. & Lefkowitz, R. J. The role of β-arrestins in the termination and transduction of G-protein-coupled receptor signals. J. Cell Sci. 115, 455–465 (2002).

    CAS  PubMed  Google Scholar 

  108. Liu, C., Goel, P. & Kaeser, P. S. Spatial and temporal scales of dopamine transmission. Nat. Rev. Neurosci. 22, 345–358 (2021).

    PubMed  PubMed Central  Google Scholar 

  109. Wang, Y., DeMarco, E. M., Witzel, L. S. & Keighron, J. D. A selected review of recent advances in the study of neuronal circuits using fiber photometry. Pharmacol. Biochem. Behav. 201, 173113 (2021).

    CAS  PubMed  Google Scholar 

  110. Kjaerby, C. et al. Dynamic fluctuations of the locus coeruleus–norepinephrine system underlie sleep state transitions. Preprint at bioRxiv https://doi.org/10.1101/2020.09.01.274977 (2020).

    Article  Google Scholar 

  111. Mayer, F. P. et al. There’s no place like home? Return to the home cage triggers dopamine release in the mouse nucleus accumbens. Neurochem. Int. 142, 104894 (2021).

    CAS  PubMed  Google Scholar 

  112. Huang, M. et al. The SC–SNc pathway boosts appetitive locomotion in predatory hunting. Preprint at bioRxiv https://doi.org/10.1101/2020.11.23.395004 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Augustine, V. et al. Temporally and spatially distinct thirst satiation signals. Neuron 103, 242–249.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Dai, B., Sun, F., Kuang, A., Li, Y. & Lin, D. Dopamine release in nucleus accumbens core during social behaviors in mice. Preprint at bioRxiv https://doi.org/10.1101/2021.06.22.449478 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Mohebi, A. et al. Dissociable dopamine dynamics for learning and motivation. Nature 570, 65–70 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. de Jong, J. W. et al. A neural circuit mechanism for encoding aversive stimuli in the mesolimbic dopamine system. Neuron 101, 133–151.e7 (2019).

    PubMed  Google Scholar 

  117. Lutas, A. et al. State-specific gating of salient cues by midbrain dopaminergic input to basal amygdala. Nat. Neurosci. 22, 1820–1833 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kim, H. R. et al. A unified framework for dopamine signals across timescales. Cell 183, 1600–1616.e25 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Yuan, L., Dou, Y. N. & Sun, Y. G. Topography of reward and aversion encoding in the mesolimbic dopaminergic system. J. Neurosci. 39, 6472–6481 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Lin, R. et al. The raphe dopamine system controls the expression of incentive memory. Neuron 106, 498–514 e498 (2020).

    CAS  PubMed  Google Scholar 

  121. Sturgill, J. F. et al. Basal forebrain-derived acetylcholine encodes valence-free reinforcement prediction error. Preprint at bioRxiv https://doi.org/10.1101/2020.02.17.953141 (2020).

    Article  Google Scholar 

  122. Gallo, E. F. et al. Dopamine D2 receptors modulate the cholinergic pause and inhibitory learning. Mol. Psychiatry https://doi.org/10.1038/s41380-021-01364-y (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Lee, S. J. et al. Cell-type-specific asynchronous modulation of PKA by dopamine in learning. Nature 590, 451–456 (2021).

    CAS  PubMed  Google Scholar 

  124. Corre, J. et al. Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement. eLife 7, e39945 (2018).

    PubMed  PubMed Central  Google Scholar 

  125. Liu, Y. et al. The mesolimbic dopamine activity signatures of relapse to alcohol-seeking. J. Neurosci. 40, 6409–6427 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Alhadeff, A. L. et al. Natural and drug rewards engage distinct pathways that converge on coordinated hypothalamic and reward circuits. Neuron 103, 891–908.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Lefevre, E. M. et al. Interruption of continuous opioid exposure exacerbates drug-evoked adaptations in the mesolimbic dopamine system. Neuropsychopharmacology 45, 1781–1792 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Mazzone, C. M. et al. High-fat food biases hypothalamic and mesolimbic expression of consummatory drives. Nat. Neurosci. 23, 1253–1266 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Reid, W. H., Balis, G. U. & Sutton, B. J. The Treatment of Psychiatric Disorders (Routledge, 2013).

  130. Schmack, K., Bosc, M., Ott, T., Sturgill, J. F. & Kepecs, A. Striatal dopamine mediates hallucination-like perception in mice. Science 372, eabf4740 (2021).

    CAS  PubMed  Google Scholar 

  131. Sych, Y., Chernysheva, M., Sumanovski, L. T. & Helmchen, F. High-density multi-fiber photometry for studying large-scale brain circuit dynamics. Nat. Methods 16, 553–560 (2019).

    CAS  PubMed  Google Scholar 

  132. Burton, A. et al. Wireless, battery-free subdermally implantable photometry systems for chronic recording of neural dynamics. Proc. Natl Acad. Sci. USA 117, 2835–2845 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Pisano, F. et al. Depth-resolved fiber photometry with a single tapered optical fiber implant. Nat. Methods 16, 1185–1192 (2019).

    CAS  PubMed  Google Scholar 

  134. Ghosh, K. K. et al. Miniaturized integration of a fluorescence microscope. Nat. Methods 8, 871–878 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Shemesh, O. A. et al. Precision calcium imaging of dense neural populations via a cell-body-targeted calcium indicator. Neuron 107, 470–486.e11 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Chen, Y. et al. Soma-targeted imaging of neural circuits by ribosome tethering. Neuron 107, 454–469.e6 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Broussard, G. J. et al. In vivo measurement of afferent activity with axon-specific calcium imaging. Nat. Neurosci. 21, 1272–1280 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Adam, Y. et al. Voltage imaging and optogenetics reveal behaviour-dependent changes in hippocampal dynamics. Nature 569, 413–417 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Piatkevich, K. D. et al. Population imaging of neural activity in awake behaving mice. Nature 574, 413–417 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Villette, V. et al. Ultrafast two-photon imaging of a high-gain voltage indicator in awake behaving mice. Cell 179, 1590–1608.e23 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Abdelfattah, A. S. et al. Bright and photostable chemigenetic indicators for extended in vivo voltage imaging. Science 365, 699–704 (2019).

    CAS  PubMed  Google Scholar 

  142. Zong, W. et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat. Methods 14, 713–719 (2017).

    CAS  PubMed  Google Scholar 

  143. Zong, W. et al. Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging. Nat. Methods 18, 46–49 (2021).

    CAS  PubMed  Google Scholar 

  144. Cardin, J. A., Crair, M. C. & Higley, M. J. Mesoscopic imaging: shining a wide light on large-scale neural dynamics. Neuron 108, 33–43 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Xie, Y. et al. Resolution of high-frequency mesoscale intracortical maps using the genetically encoded glutamate sensor iGluSnFR. J. Neurosci. 36, 1261–1272 (2016).

    PubMed  PubMed Central  Google Scholar 

  146. Lohani, S. et al. Dual color mesoscopic imaging reveals spatiotemporally heterogeneous coordination of cholinergic and neocortical activity. Preprint at bioRxiv https://doi.org/10.1101/2020.12.09.418632 (2020).

    Article  Google Scholar 

  147. Sethuramanujam, S. et al. Rapid multi-directed cholinergic transmission in the central nervous system. Nat. Commun. 12, 1374 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Tanaka, M., Sun, F., Li, Y. & Mooney, R. A mesocortical dopamine circuit enables the cultural transmission of vocal behaviour. Nature 563, 117–120 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Parker, P. D. et al. Non-canonical glutamate signaling in a genetic model of migraine with aura. Neuron 109, 611–628.e8 (2020).

    PubMed  Google Scholar 

  150. Oe, Y. et al. Distinct temporal integration of noradrenaline signaling by astrocytic second messengers during vigilance. Nat. Commun. 11, 471 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Handler, A. et al. Distinct dopamine receptor pathways underlie the temporal sensitivity of associative learning. Cell 178, 60–75.e19 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Moran, A. K., Eiting, T. P. & Wachowiak, M. Dynamics of glutamatergic drive underlie diverse responses of olfactory bulb outputs in vivo. eNeuro 8, ENEURO.0110-21.2021 (2021).

    PubMed  PubMed Central  Google Scholar 

  153. Farrell, J. S. et al. In vivo endocannabinoid dynamics at the timescale of physiological and pathological neural activity. Neuron 109, 2398–2403.e4 (2021).

    CAS  PubMed  Google Scholar 

  154. Barson, D. et al. Simultaneous mesoscopic and two-photon imaging of neuronal activity in cortical circuits. Nat. Methods 17, 107–113 (2020).

    CAS  PubMed  Google Scholar 

  155. Zhou, M. et al. Suppression of GABAergic neurons through D2-like receptor secures efficient conditioning in Drosophila aversive olfactory learning. Proc. Natl Acad. Sci. USA 116, 5118–5125 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Santi, P. A. Light sheet fluorescence microscopy: a review. J. Histochem. Cytochem. 59, 129–138 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Liang, X. et al. Morning and evening circadian pacemakers independently drive premotor centers via a specific dopamine relay. Neuron 102, 843–857.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Truong, T. V., Supatto, W., Koos, D. S., Choi, J. M. & Fraser, S. E. Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nat. Methods 8, 757–760 (2011).

    CAS  PubMed  Google Scholar 

  159. Mahou, P., Vermot, J., Beaurepaire, E. & Supatto, W. Multicolor two-photon light-sheet microscopy. Nat. Methods 11, 600–601 (2014).

    CAS  PubMed  Google Scholar 

  160. Hillman, E. M. C., Voleti, V., Li, W. & Yu, H. Light-sheet microscopy in neuroscience. Annu. Rev. Neurosci. 42, 295–313 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Kawashima, T., Zwart, M. F., Yang, C. T., Mensh, B. D. & Ahrens, M. B. The serotonergic system tracks the outcomes of actions to mediate short-term motor learning. Cell 167, 933–946.e20 (2016).

    CAS  PubMed  Google Scholar 

  162. Bianco, I. H. & Engert, F. Visuomotor transformations underlying hunting behavior in zebrafish. Curr. Biol. 25, 831–846 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Cong, L. et al. Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio). eLife 6, e28158 (2017).

    PubMed  PubMed Central  Google Scholar 

  164. Kim, D. H. et al. Pan-neuronal calcium imaging with cellular resolution in freely swimming zebrafish. Nat. Methods 14, 1107–1114 (2017).

    CAS  PubMed  Google Scholar 

  165. Lin, L., Gupta, S., Zheng, W. S., Si, K. & Zhu, J. J. Genetically encoded sensors enable micro- and nano-scopic decoding of transmission in healthy and diseased brains. Mol. Psychiatry 26, 443–455 (2021).

    PubMed  Google Scholar 

  166. Zhu, P. K. et al. Nanoscopic visualization of restricted nonvolume cholinergic and monoaminergic transmission with genetically encoded sensors. Nano Lett. 20, 4073–4083 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Shivange, A. V. et al. Determining the pharmacokinetics of nicotinic drugs in the endoplasmic reticulum using biosensors. J. Gen. Physiol. 151, 738–757 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Dong, C. et al. Psychedelic-inspired drug discovery using an engineered biosensor. Cell 184, 2779–2792 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Burt, E. Developing Novel Methods to Investigate Real-time In Vivo Dopamine Dynamics in the Monogamous Prairie Vole. Thesis, Univ. of Colorado Boulder Libraries (2019).

  170. Ju, N. et al. Spatiotemporal functional organization of excitatory synaptic inputs onto macaque V1 neurons. Nat. Commun. 11, 697 (2020). This study demonstrates the use of GENIs in non-human primates. The authors used two-photon imaging to map the excitatory synaptic inputs on dendrites of individual V1 superficial layer neurons in awake monkeys.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Kim, B., Kim, H., Kim, S. & Hwang, Y. R. A brief review of non-invasive brain imaging technologies and the near-infrared optical bioimaging. Appl. Microsc. 51, 9 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Qian, Y. et al. A genetically encoded near-infrared fluorescent calcium ion indicator. Nat. Methods 16, 171–174 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Deo, C. et al. The HaloTag as a general scaffold for far-red tunable chemigenetic indicators. Nat. Chem. Biol. 17, 718–723 (2021).

    CAS  PubMed  Google Scholar 

  174. Vázquez-Guardado, A., Yang, Y., Bandodkar, A. J. & Rogers, J. A. Recent advances in neurotechnologies with broad potential for neuroscience research. Nat. Neurosci. 23, 1522–1536 (2020).

    PubMed  Google Scholar 

  175. Helassa, N. et al. Ultrafast glutamate sensors resolve high-frequency release at Schaffer collateral synapses. Proc. Natl Acad. Sci. USA 115, 5594–5599 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Wu, Z. et al. A GRAB sensor reveals activity-dependent non-vesicular somatodendritic adenosine release. Preprint at bioRxiv https://doi.org/10.1101/2020.05.04.075564 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Kitajima, N. et al. Real-time in vivo imaging of extracellular ATP in the brain with a hybrid-type fluorescent sensor. eLife 9, e57544 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Abraham, A. D. et al. Release of endogenous dynorphin opioids in the prefrontal cortex disrupts cognition. Neuropsychopharmacology 46, 2330–2339 (2021).

    CAS  PubMed  Google Scholar 

  179. Melzer, S. et al. Bombesin-like peptide recruits disinhibitory cortical circuits and enhances fear memories. Cell 184, 5622–5634.e25 (2021).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all scientists whose studies were reviewed in this paper, and apologize to those whose work was not cited owing to space limitations. The authors thank the Li laboratory members for fruitful discussions. This research was supported by the Beijing Municipal Science & Technology Commission (Z181100001318002 and Z181100001518004), the National Natural Science Foundation of China (81821092), the National Key Research and Development Program of China (2020YFE0204000), the Feng Foundation of Biomedical Research, the Peking-Tsinghua Center for Life Sciences and the State Key Laboratory of Membrane Biology at Peking University School of Life Sciences (Y.L.); the US National Institutes of Health (NIH) Brain Research Through Advancing Innovative Neurotechnologies (BRAIN) Initiative (NS103558; Y.L. and D.L.); the NIH (R01MH101377, 1R01HD092596 and U19NS107616; D.L.); and the Boehringer Ingelheim-Peking University Postdoctoral Program (Z.W.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Yulong Li.

Ethics declarations

Competing interests

Y.L. is listed as an inventor on a pending patent application filed by Peking University (international patent no. PCT/CN2018/107533), the value of which might be affected by this publication. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Gliosis

The hypertrophy of glial cells.

Voltammetry

An electrochemical method used to measure the concentration of neurochemicals by detecting the oxidation and reduction processes; signals are calculated in terms of applied potential.

Amperometry

An electrochemical method used to measure the concentration of neurochemicals by detecting the oxidation and reduction processes; signals are determined at a fixed voltage.

Cyclic voltammetry

A voltammetric method in which the current is measured while a linearly cycled potential is swept over the range of interest.

Faradaic currents

Currents generated by the reduction or oxidation of a chemical substance at an electrode.

Half-maximal effective concentration

(EC50). The concentration of a chemical (for example, dopamine (DA)) which induces a response halfway between the baseline and the maximum.

Dynamic range

The ratio between the largest signal and the lowest one induced by neurochemicals.

Site-saturation mutagenesis

A powerful mutagenesis strategy for protein engineering and directed evolution, which allows the substitution of predetermined protein sites against all 20 possible amino acids at once.

ΔF/F 0

A commonly used equation to quantify the fluorescent intensity changes of fluorescent indicators, in which F is the signal trace from each detector and F0 is the fluorescence baseline.

Ring neurons

Named for their circumferential ring-like axonal arborization patterns that form several circular laminae in the anterior shell of the ellipsoid body in Drosophila brain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Lin, D. & Li, Y. Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators. Nat Rev Neurosci 23, 257–274 (2022). https://doi.org/10.1038/s41583-022-00577-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-022-00577-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing