Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Author Correction: The new nanophysiology: regulation of ionic flow in neuronal subcompartments

The Original Article was published on 14 October 2015

Nature Reviews Neuroscience (2015) Published online 14 October 2015

In this article, the origin of some of the presented modelling information should have been stated and insufficient details were provided to understand how the curve in Box 2 and the electrodiffusion-related curves in Figure 3 were generated.

Equation 5 in Box 2 and some of the simulated data in Figure 3 came from the following study: Schuss, Z., Cartailler, J. & Holcman, D. Poisson–Nernst–Planck equations in a ball. Preprint at arXiv (2015) (later published as: Cartailler, J., Schuss, Z. & Holcman, D. Analysis of the Poisson–Nernst–Planck equation in a ball for modelling the voltage–current relation in neurobiological microdomains. Physica D 339, 39–48 (2017)).

Equation 5 is a simplified version of equation 9 in Schuss et al., but it was not made clear that it had been simplified, and the simplified version made it difficult to understand how the aforementioned curves were generated. Equation 5 should have been written in the form

$$-\Delta \varphi =\frac{Q{e}^{-\frac{ze\varphi }{kT}}}{\varepsilon {\varepsilon }_{0}{\int }_{\Omega }{e}^{-\frac{ze\varphi }{kT}}}$$

for which the compatibility condition at the boundary is

$$\frac{\partial \varphi }{\partial n}=-\frac{Q}{\varepsilon {\varepsilon }_{0}\left|\partial \Omega \right|}$$


$$| \partial \Omega | =4\pi {R}^{2}$$

for a ball of radius R. R2 had been omitted in the simplified equation as R was equal to one in this instance. The value of the dielectric constant (ε), which should have been provided, is 80.

Parts a–c in Figure 3 show concentration of ions against the radius of the sphere. Here, the concentrations values were calculated from the density of particles (number of ions per µm3), which was given by

$$\rho \left(r\right)=\frac{Q{e}^{-\frac{ze\varphi \left(r\right)}{kT}}}{ze{\int }_{\Omega }{e}^{-\frac{ze\varphi }{kT}}dx}$$

where the voltage potential ϕ is the solution of equation 5.

Author information

Authors and Affiliations


Corresponding author

Correspondence to David Holcman.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Holcman, D., Yuste, R. Author Correction: The new nanophysiology: regulation of ionic flow in neuronal subcompartments. Nat Rev Neurosci 20, 509 (2019).

Download citation

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing