Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.


Understanding rostral–caudal auditory cortex contributions to auditory perception



There are functional and anatomical distinctions between the neural systems involved in the recognition of sounds in the environment and those involved in the sensorimotor guidance of sound production and the spatial processing of sound. Evidence for the separation of these processes has historically come from disparate literatures on the perception and production of speech, music and other sounds. More recent evidence indicates that there are computational distinctions between the rostral and caudal primate auditory cortex that may underlie functional differences in auditory processing. These functional differences may originate from differences in the response times and temporal profiles of neurons in the rostral and caudal auditory cortex, suggesting that computational accounts of primate auditory pathways should focus on the implications of these temporal response differences.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Cortical and subcortical connectivity of the macaque auditory cortex.
Fig. 2: Response properties of the rostral and caudal auditory cortex.


  1. 1.

    Rauschecker, J. P. & Scott, S. K. Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat. Neurosci. 12, 718–724 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Scott, S. K. & Johnsrude, I. S. The neuroanatomical and functional organization of speech perception. Trends Neurosci. 26, 100–107 (2003).

    CAS  PubMed  Google Scholar 

  3. 3.

    Hickok, G. & Poeppel, D. Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition 92, 67–99 (2004).

    PubMed  Google Scholar 

  4. 4.

    Sammler, D. et al. Dorsal and ventral pathways for prosody. Curr. Biol. 25, 3079–3085 (2015).

    CAS  PubMed  Google Scholar 

  5. 5.

    Schirmer, A. & Kotz, S. A. Beyond the right hemisphere: brain mechanisms mediating vocal emotional processing. Trends Cogn. Sci. 10, 24–30 (2006).

    PubMed  Google Scholar 

  6. 6.

    Zatorre, R. J., Chen, J. L. & Penhune, V. B. When the brain plays music: auditory–motor interactions in music perception and production. Nat. Rev. Neurosci. 8, 547–558 (2007).

    CAS  PubMed  Google Scholar 

  7. 7.

    Alain, C. et al. “What” and ‘where’ in the human auditory system. Proc. Natl Acad. Sci. USA 98, 12301–12306 (2001).

    CAS  PubMed  Google Scholar 

  8. 8.

    Rauschecker, J. P. Processing of complex sounds in the auditory cortex of cat, monkey, and man. Acta Otoralyngol. 532(Suppl), 34–38 (1997).

    CAS  Google Scholar 

  9. 9.

    Rauschecker, J. P. & Tian, B. Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc. Natl Acad. Sci. USA 97, 11800–11806 (2000).

    CAS  PubMed  Google Scholar 

  10. 10.

    Rosemann, S. et al. Musical, visual and cognitive deficits after middle cerebral artery infarction. eNeurologicalSci 6, 25–32 (2017).

    PubMed  Google Scholar 

  11. 11.

    Kravitz, D. J. et al. A new neural framework for visuospatial processing. Nat. Rev. Neurosci. 12, 1–14 (2011).

    Google Scholar 

  12. 12.

    Scott, B. H. et al. Intrinsic connections of the core auditory cortical regions and rostral supratemporal plane in the macaque monkey. Cereb. Cortex 7, 809–840 (2015).

    Google Scholar 

  13. 13.

    Scott, B. H. et al. Thalamic connections of the core auditory cortex and rostral supratemporal plane in the macaque monkey. J. Comp. Neurol. 525, 3488–3513 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Scott, B. H., Malone, B. J. & Semple, M. N. Transformation of temporal processing across auditory cortex of awake macaques. J. Neurophysiol. 105, 712–730 (2011).

    PubMed  Google Scholar 

  15. 15.

    Arnott, S. R. & Alain, C. The auditory dorsal pathway: orienting vision. Neurosci. Biobehav. Rev. 35, 2162–2173 (2011).

    PubMed  Google Scholar 

  16. 16.

    Alho, K. et al. Stimulus-dependent activations and attention-related modulations in the auditory cortex: a meta-analysis of fMRI studies. Hear. Res. 307, 29–41 (2014).

    PubMed  Google Scholar 

  17. 17.

    Bizley, J. K. & Cohen, Y. E. The what, where and how of auditory-object perception. Nat. Rev. Neurosci. 14, 693–707 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Young, E. D. & Oertel, D. in The Synaptic Organization of the Brain (ed. Shepherd, G. M.) 125–164 (Oxford Univ. Press, 2004).

  19. 19.

    Kaas, J. H. & Hackett, T. A. Subdivisions of auditory cortex and processing streams in primates. Proc. Natl Acad. Sci. USA 97, 11793–11799 (2000).

    CAS  PubMed  Google Scholar 

  20. 20.

    Smiley, J. F. et al. Multisensory convergence in auditory cortex, I. Cortical connections of the caudal superior temporal plane in macaque monkeys. J. Comp. Neurol. 502, 894–923 (2007).

    PubMed  Google Scholar 

  21. 21.

    Hackett, T. A. et al. Multisensory convergence in auditory cortex, II. Thalamocortical connections of the caudal superior temporal plane. J. Comp. Neurol. 502, 924–952 (2007).

    PubMed  Google Scholar 

  22. 22.

    Warren, J. E., Wise, R. J. S. & Warren, J. D. Sounds do-able: auditory–motor transformations and the posterior temporal plane. Trends Neurosci. 28, 636–643 (2005).

    CAS  PubMed  Google Scholar 

  23. 23.

    Dick, F. et al. In vivo functional and myeloarchitectonic mapping of human primary auditory areas. J. Neurosci. 32, 16095–16105 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Rauschecker, J. P. Where, when, and how: are they all sensorimotor? Towards a unified view of the dorsal pathway in vision and audition. Cortex 98, 262–268 (2018).

    PubMed  Google Scholar 

  25. 25.

    Camalier, C. R. et al. Neural latencies across auditory cortex of macaque support a dorsal stream supramodal timing advantage in primates. Proc. Natl Acad. Sci. USA 109, 18168–18173 (2012).

    CAS  PubMed  Google Scholar 

  26. 26.

    Kusmierek, P. & Rauschecker, J. P. Selectivity for space and time in early areas of the auditory dorsal stream in the rhesus monkey. J. Neurophysiol. 111, 1671–1685 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Smith, E. H. Temporal processing in the auditory core: transformation or segregation? J. Neurophysiol. 106, 2791–2793 (2011).

    PubMed  Google Scholar 

  28. 28.

    Scott, S. K. The point of P-centres. Psychol. Res. Psychol. Forschung 61, 4–11 (1998).

    Google Scholar 

  29. 29.

    Repp, B. H. & Keller, P. E. Adaptation to tempo changes in sensorimotor synchronization: effects of intention, attention, and awareness. Q. J. Exp. Psychol. A 57, 499–521 (2004).

    PubMed  Google Scholar 

  30. 30.

    Holcomb, P. J. & Neville, H. J. Auditory and visual semantic priming in lexical decision: a comparison using event-related brain potentials. Lang. Cogn. Process. 5, 281–312 (1990).

    Google Scholar 

  31. 31.

    Hamilton, L. S., Edwards, E. & Chang, E. F. A spatial map of onset and sustained responses to speech in the human superior temporal gyrus. Curr. Biol. 28, 1860–1871 (2018).

    CAS  PubMed  Google Scholar 

  32. 32.

    Santoro, R. et al. Encoding of natural sounds at multiple spectral and temporal resolutions in the human auditory cortex. PLOS Comput. Biol. 10, e1003412–14 (2014).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Norman-Haignere, S., Kanwisher, N. G. & McDermott, J. H. Distinct cortical pathways for music and speech revealed by hypothesis-free voxel decomposition. Neuron 88, 1281–1296 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Evans, S. et al. The pathways for intelligible speech: multivariate and univariate perspectives. Cereb. Cortex 24, 2350–2361 (2014).

    CAS  PubMed  Google Scholar 

  35. 35.

    Agnew, Z. K. et al. Do sentences with unaccusative verbs involve syntactic movement? Evidence from neuroimaging. Lang. Cogn. Neurosci. 29, 1035–1045 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    de Heer, W. A. et al. The hierarchical cortical organization of human speech processing. J. Neurosci. 37, 6539–6557 (2017).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Specht, K. Mapping a lateralization gradient within the ventral stream for auditory speech perception. Front. Hum. Neurosci. 7, 629 (2013).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Wagstyl, K. et al. Cortical thickness gradients in structural hierarchies. NeuroImage 111, 241–250 (2015).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Kikuchi, Y., Horwitz, B. & Mishkin, M. Hierarchical auditory processing directed rostrally along the monkey’s supratemporal plane. J. Neurosci. 30, 13021–13030 (2010).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Tuennerhoff, J. & Noppeney, U. When sentences live up to your expectations. NeuroImage 124, 641–653 (2016).

    PubMed  Google Scholar 

  41. 41.

    Lyu, B. et al. Predictive brain mechanisms in sound-to-meaning mapping during speech processing. J. Neurosci. 36, 10813–10822 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Leaver, A. M. & Rauschecker, J. P. Cortical representation of natural complex sounds: effects of acoustic features and auditory object category. J. Neurosci. 30, 7604–7612 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Price, C., Thierry, G. & Griffiths, T. Speech-specific auditory processing: where is it? Trends Cogn. Sci. 9, 271–276 (2005).

    PubMed  Google Scholar 

  44. 44.

    Beaman, C. P. & Jones, D. M. Irrelevant sound disrupts order information in free recall as in serial recall. Q. J. Exp. Psychol. A 51, 615–636 (1998).

    CAS  PubMed  Google Scholar 

  45. 45.

    Scott, S. K. Auditory processing — speech, space and auditory objects. Curr. Opin. Neurobiol. 15, 197–201 (2005).

    CAS  PubMed  Google Scholar 

  46. 46.

    Zatorre, R. J. Sensitivity to auditory object features in human temporal neocortex. J. Neurosci. 24, 3637–3642 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Evans, S. et al. Getting the cocktail party started: masking effects in speech perception. J. Cogn. Neurosci. 28, 483–500 (2016).

    PubMed  Google Scholar 

  48. 48.

    Meekings, S. et al. Distinct neural systems recruited when speech production is modulated by different masking sounds. J. Acoust. Soc. Am. 140, 8–19 (2016).

    PubMed  Google Scholar 

  49. 49.

    Brungart, D. S. et al. Informational and energetic masking effects in the perception of multiple simultaneous talkers. J. Acoust. Soc. Am. 110, 2527–2538 (2001).

    CAS  PubMed  Google Scholar 

  50. 50.

    McGettigan, C. & Scott, S. K. Cortical asymmetries in speech perception: what’s wrong, what“s right and what”s left? Trends Cogn. Sci. 16, 269–276 (2012).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Hickok, G. A functional magnetic resonance imaging study of the role of left posterior superior temporal gyrus in speech production: implications for the explanation of conduction aphasia. Neurosci. Lett. 287, 156–160 (2000).

    CAS  PubMed  Google Scholar 

  52. 52.

    Flinker, A. et al. Single-trial speech suppression of auditory cortex activity in humans. J. Neurosci. 30, 16643–16650 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Agnew, Z. K. et al. Articulatory movements modulate auditory responses to speech. NeuroImage 73, 191–199 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Jasmin, K. M. et al. Cohesion and joint speech: right hemisphere contributions to synchronized vocal production. J. Neurosci. 36, 4669–4680 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Jasmin, K. et al. Overt social interaction and resting state in young adult males with autism: core and contextual neural features. Brain 142, 808–822 (2019).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Wise, R. et al. Brain regions involved in articulation. Lancet 353, 1057–1061 (1999).

    CAS  PubMed  Google Scholar 

  57. 57.

    Houde, J. F. et al. Modulation of the auditory cortex during speech: an MEG study. J. Cogn. Neurosci. 14, 1125–1138 (2002).

    PubMed  Google Scholar 

  58. 58.

    Belyk, M. et al. The neural basis of vocal pitch imitation in humans. J. Cogn. Neurosci. 28, 621–635 (2016).

    PubMed  Google Scholar 

  59. 59.

    Behroozmand, R. et al. Sensory–motor networks involved in speech production and motor control: an fMRI study. NeuroImage 109, 418–428 (2015).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Takaso, H. et al. The effect of delayed auditory feedback on activity in the temporal lobe while speaking: a positron emission tomography study. J. Speech Lang. Hear Res. 53, 226–236 (2010).

    PubMed  Google Scholar 

  61. 61.

    Vaquero, L. et al. The left, the better: white-matter brain integrity predicts foreign language imitation ability. Cereb. Cortex 4, 2–12 (2016).

    Google Scholar 

  62. 62.

    Kronfeld-Duenias, V. et al. Dorsal and ventral language pathways in persistent developmental stuttering. Cortex 81, 79–92 (2016).

    PubMed  Google Scholar 

  63. 63.

    Neef, N. E. et al. Left posterior-dorsal area 44 couples with parietal areas to promote speech fluency, while right area 44 activity promotes the stopping of motor responses. NeuroImage 142, 628–644 (2016).

    PubMed  Google Scholar 

  64. 64.

    Chevillet, M. A. et al. Automatic phoneme category selectivity in the dorsal auditory stream. J. Neurosci. 33, 5208–5215 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Markiewicz, C. J. & Bohland, J. W. Mapping the cortical representation of speech sounds in a syllable repetition task. NeuroImage 141, 174–190 (2016).

    PubMed  Google Scholar 

  66. 66.

    Alho, J. et al. Early-latency categorical speech sound representations in the left inferior frontal gyrus. NeuroImage 129, 214–223 (2016).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Du, Y. et al. Noise differentially impacts phoneme representations in the auditory and speech motor systems. Proc. Natl Acad. Sci. USA 111, 7126–7131 (2014).

    CAS  PubMed  Google Scholar 

  68. 68.

    Correia, J. M., Jansma, B. M. B. & Bonte, M. Decoding articulatory features from fMRI responses in dorsal speech regions. J. Neurosci. 35, 15015–15025 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Kanero, J. et al. How sound symbolism is processed in the brain: a study on Japanese mimetic words. PLOS ONE 9, e97905 (2014).

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Agnew, Z. K., McGettigan, C. & Scott, S. K. Discriminating between auditory and motor cortical responses to speech and nonspeech mouth sounds. J. Cogn. Neurosci. 23, 4038–4047 (2011).

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Krishnan, S. et al. Beatboxers and guitarists engage sensorimotor regions selectively when listening to the instruments they can play. Cereb. Cortex 28, 4063–4079 (2018).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Lewis, J. W. et al. Cortical networks representing object categories and high-level attributes of familiar real-world action sounds. J. Cogn. Neurosci. 23, 2079–2101 (2011).

    PubMed  Google Scholar 

  73. 73.

    Engel, L. R. et al. Different categories of living and non-living sound-sources activate distinct cortical networks. NeuroImage 47, 1778–1791 (2009).

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Lewis, J. W. et al. Distinct cortical pathways for processing tool versus animal sounds. J. Neurosci. 25, 5148–5158 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Repp, B. H. & Su, Y.-H. Sensorimotor synchronization: a review of recent research (2006–2012). Psychon. Bull. Rev. 20, 403–452 (2013).

    PubMed  Google Scholar 

  76. 76.

    Pfordresher, P. Q. et al. Brain responses to altered auditory feedback during musical keyboard production — an fMRI study. Brain Res. 1556, 28–37 (2014).

    CAS  PubMed  Google Scholar 

  77. 77.

    Gaver, W. W. What in the world do we hear? An ecological approach to auditory event perception. Ecol. Psychol. 5, 1–29 (1993).

    Google Scholar 

  78. 78.

    Warren, W. H. & Verbrugge, R. R. Auditory perception of breaking and bouncing events: a case study in ecological acoustics. J. Exp. Psychol. Hum. Percept. Perform. 10, 704–712 (1984).

    PubMed  Google Scholar 

  79. 79.

    Ortiz-Rios, M. et al. Widespread and opponent fMRI signals represent sound location in macaque auditory cortex. Neuron 93, 971–983 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Poirier, C. et al. Auditory motion-specific mechanisms in the primate brain. PLOS Biol. 15, e2001379 (2017).

    PubMed  PubMed Central  Google Scholar 

  81. 81.

    Fiehler, K. et al. Neural correlates of human echolocation of path direction during walking. Multisens. Res. 28, 195–226 (2015).

    PubMed  Google Scholar 

  82. 82.

    Callan, A., Callan, D. E. & Ando, H. Neural correlates of sound externalization. NeuroImage 66, 22–27 (2013).

    PubMed  Google Scholar 

  83. 83.

    Ceravolo, L., Frühholz, S. & Grandjean, D. Proximal vocal threat recruits the right voice-sensitive auditory cortex. Soc. Cogn. Affect. Neurosci. 11, 793–802 (2016).

    PubMed  PubMed Central  Google Scholar 

  84. 84.

    Ahveninen, J. et al. Evidence for distinct human auditory cortex regions for sound location versus identity processing. Nat. Commun. 4, 615–619 (2013).

    Google Scholar 

  85. 85.

    Zündorf, I. C., Lewald, J. & Karnath, H.-O. Testing the dual-pathway model for auditory processing in human cortex. NeuroImage 124, 672–681 (2016).

    PubMed  Google Scholar 

  86. 86.

    Brungart, D. S. & Simpson, B. D. Within-ear and across-ear interference in a cocktail-party listening task. J. Acoust. Soc. Amer. 112, 2985–2995 (2002).

    Google Scholar 

  87. 87.

    Phillips, D. P. et al. Acoustic hemifields in the spatial release from masking of speech by noise. J. Am. Acad. Audiol. 14, 518–524 (2003).

    CAS  PubMed  Google Scholar 

  88. 88.

    Mummery, C. J. et al. Functional neuroimaging of speech perception in six normal and two aphasic subjects. J. Acoust. Soc. Amer. 106, 449–457 (1999).

    CAS  Google Scholar 

  89. 89.

    Cohen, L. et al. Distinct unimodal and multimodal regions for word processing in the left temporal cortex. NeuroImage 23, 1256–1270 (2004).

    PubMed  Google Scholar 

  90. 90.

    Scott, S. K., McGettigan, C. & Eisner, F. A little more conversation, a little less action — candidate roles for the motor cortex in speech perception. Nat. Rev. Neurosci. 10, 295–302 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Zatorre, R. J., Belin, P. & Penhune, V. B. Structure and function of auditory cortex: music and speech. Trends Cogn. Sci. 6, 37–46 (2002).

    PubMed  Google Scholar 

  92. 92.

    Zatorre, R. J. & Belin, P. Spectral and temporal processing in human auditory cortex. Cereb. Cortex 11, 946–953 (2001).

    CAS  PubMed  Google Scholar 

  93. 93.

    Poeppel, D. The analysis of speech in different temporal integration windows: cerebral lateralization as ‘asymmetric sampling in time’. Speech Commun. 41, 245–255 (2003).

    Google Scholar 

  94. 94.

    Scott, S. K. et al. Identification of a pathway for intelligible speech in the left temporal lobe. Brain 123, 2400–2406 (2000).

    PubMed  PubMed Central  Google Scholar 

  95. 95.

    Wise, R. J. S. et al. Separate neural subsystems within ‘Wernicke’s area’. Brain 124, 83–95 (2001).

    CAS  PubMed  Google Scholar 

  96. 96.

    Winer, J. A. et al. Auditory thalamocortical transformation: structure and function. Trends Neurosci. 28, 255–263 (2005).

    CAS  PubMed  Google Scholar 

  97. 97.

    Bizley, J. K. in Conn’s Translational Neuroscience (ed. Conn, M. P.) 579–598 (Elsevier, 2017).

  98. 98.

    Chechik, G. et al. Reduction of information redundancy in the ascending auditory pathway. Neuron 51, 359–368 (2006).

    CAS  PubMed  Google Scholar 

  99. 99.

    Goldstein, J. L. Auditory nonlinearity. J. Acoust. Soc. Amer. 41, 676–699 (1967).

    CAS  Google Scholar 

  100. 100.

    Fuchs, P. A., Glowatzki, E. & Moser, T. The afferent synapse of cochlear hair cells. Curr. Opin. Neurobiol. 13, 452–458 (2003).

    CAS  PubMed  Google Scholar 

  101. 101.

    Harms, M. P. & Melcher, J. R. Sound repetition rate in the human auditory pathway: representations in the waveshape and amplitude of fMRI activation. J. Neurophysiol. 88, 1433–1450 (2002).

    PubMed  Google Scholar 

  102. 102.

    Purcell, D. W. et al. Human temporal auditory acuity as assessed by envelope following responses. J. Acoust. Soc. Amer. 116, 3581–3593 (2004).

    Google Scholar 

  103. 103.

    Taylor, W. R. & Smith, R. G. The role of starburst amacrine cells in visual signal processing. Vis. Neurosci. 29, 73–81 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Leff, A. P. et al. Impaired reading in patients with right hemianopia. Ann. Neurol. 47, 171–178 (2000).

    CAS  PubMed  Google Scholar 

  105. 105.

    Coslett, H. B., Brashear, H. R. & Heilman, K. M. Pure word deafness after bilateral primary auditory cortex infarcts. Neurology 34, 347–352 (1984).

    CAS  PubMed  Google Scholar 

  106. 106.

    Ulanovsky, N., Las, L. & Nelken, I. Processing of low-probability sounds by cortical neurons. Nat. Neurosci. 6, 391–398 (2003).

    CAS  PubMed  Google Scholar 

  107. 107.

    Polterovich, A., Jankowski, M. M. & Nelken, I. Deviance sensitivity in the auditory cortex of freely moving rats. PLOS ONE 13, e0197678 (2018).

    PubMed  PubMed Central  Google Scholar 

  108. 108.

    Yao, J. D., Bremen, P. & Middlebrooks, J. C. Emergence of spatial stream segregation in the ascending auditory pathway. J. Neurosci. 35, 16199–16212 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Slutsky, D. A. & Recanzone, G. H. Temporal and spatial dependency of the ventriloquism effect. Neuroreport 12, 7–10 (2001).

    CAS  PubMed  Google Scholar 

  110. 110.

    Chen, Y., Repp, B. H. & Patel, A. D. Spectral decomposition of variability in synchronization and continuation tapping: comparisons between auditory and visual pacing and feedback conditions. Hum. Mov. Sci. 21, 515–532 (2002).

    PubMed  Google Scholar 

  111. 111.

    Kaas, J. H. & Hackett, T. A. Subdivisions of auditory cortex and levels of processing in primates. Audiol. Neurotol. 3, 73–85 (1998).

    CAS  Google Scholar 

Download references


During the preparation of this manuscript, K.J. was supported by an Early Career Fellowship from the Leverhulme Trust and C.F.L. was supported by an Fundação para a Ciência e a Tecnologia (FCT) Investigator Grant from the Portuguese Foundation for Science and Technology (IF/00172/2015). The authors thank J. Rauschecker and R. Wise for immensely helpful discussions of the background to many of these studies.

Reviewer information

Nature Reviews Neuroscience thanks J. Rauschecker, and the other anonymous reviewer(s), for their contribution to the peer review of this work.

Author information




The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Kyle Jasmin or Sophie K. Scott.

Ethics declarations

Competing interests

The authors declare that there are no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jasmin, K., Lima, C.F. & Scott, S.K. Understanding rostral–caudal auditory cortex contributions to auditory perception. Nat Rev Neurosci 20, 425–434 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing