Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

OPINION

Environmental enrichment, new neurons and the neurobiology of individuality

Abstract

‘Enriched environments’ are a key experimental paradigm to decipher how interactions between genes and environment change the structure and function of the brain across the lifespan of an animal. The regulation of adult hippocampal neurogenesis by environmental enrichment is a prime example of this complex interaction. As each animal in an enriched environment will have a slightly different set of experiences that results in downstream differences between individuals, enrichment can be considered not only as an external source of rich stimuli but also to provide the room for individual behaviour that shapes individual patterns of brain plasticity and thus function.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The enriched environment paradigm and its variations.
Fig. 2: Parameters, mechanisms and variables in the enriched environment.
Fig. 3: Mechanistic perspectives on enriched environment.

References

  1. 1.

    Rosenzweig, M. R. & Bennett, E. L. Psychobiology of plasticity: effects of training and experience on brain and behavior. Behav. Brain Res. 78, 57–65 (1996).

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Xie, H. et al. Enrichment-induced exercise to quantify the effect of different housing conditions: a tool to standardize enriched environment protocols. Behav. Brain Res. 249, 81–89 (2013).

    PubMed  Article  Google Scholar 

  3. 3.

    Fares, R. P. et al. Standardized environmental enrichment supports enhanced brain plasticity in healthy rats and prevents cognitive impairment in epileptic rats. PLOS ONE 8, e53888 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Mohammed, A. H. et al. Environmental enrichment and the brain. Prog. Brain Res. 138, 109–133 (2002).

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Van Praag, H., Kempermann, G. & Gage, F. H. Neural consequences of environmental enrichment. Nat. Rev. Neurosci. 1, 191–198 (2000).

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Bennett, E. L., Diamond, M. C., Krech, D. & Rosenzweig, M. R. Chemical and anatomical plasticity of brain. Science 146, 610–619 (1964).

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Diamond, M. C. Enriching Heredity (The Free Press, 1988). This important book summarizes the state of the enrichment field from the perspective of one of its key players.

  8. 8.

    Sale, A., Berardi, N. & Maffei, L. Enrich the environment to empower the brain. Trends Neurosci. 32, 233–239 (2009).

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Mora, F. Successful brain aging: plasticity, environmental enrichment, and lifestyle. Dialogues Clin. Neurosci. 15, 45–52 (2013).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Redolat, R. & Mesa-Gresa, P. Potential benefits and limitations of enriched environments and cognitive activity on age-related behavioural decline. Curr. Top. Behav. Neurosci. 10, 293–316 (2012).

    PubMed  Article  Google Scholar 

  11. 11.

    Kempermann, G., Kuhn, H. G. & Gage, F. H. More hippocampal neurons in adult mice living in an enriched environment. Nature 386, 493–495 (1997). This article presents the first report to show that environmental enrichment has effects at the level of neuronal numbers.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Freund, J. et al. Emergence of Individuality in Genetically Identical Mice. Science 340, 756–759 (2013). This study reveals that longitudinal behavioural trajectories of locomotor activity correlate with interindividual differences in adult neurogenesis.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Brown, R. E. & Milner, P. M. The legacy of Donald O. Hebb: more than the Hebb synapse. Nat. Rev. Neurosci. 4, 1013–1019 (2003).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Rampon, C. et al. Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nat. Neurosci. 3, 238–244 (2000).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Garthe, A., Roeder, I. & Kempermann, G. Mice in an enriched environment learn more flexibly because of adult hippocampal neurogenesis. Hippocampus 26, 261–271 (2016).

    PubMed  Article  Google Scholar 

  16. 16.

    Melani, R., Chelini, G., Cenni, M. C. & Berardi, N. Enriched environment effects on remote object recognition memory. Neuroscience 352, 296–305 (2017).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Duffy, S. N., Craddock, K. J., Abel, T. & Nguyen, P. V. Environmental enrichment modifies the PKA-dependence of hippocampal LTP and improves hippocampus-dependent memory. Learn. Mem. 8, 26–34 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Love, J. M., Chazan-Cohen, R., Raikes, H. & Brooks-Gunn, J. What makes a difference: Early Head Start evaluation findings in a developmental context. Monogr. Soc. Res. Child Dev. 78, vii–viii (2013).

    PubMed  Article  Google Scholar 

  19. 19.

    Diamond, M. C. et al. Increases in cortical depth and glia numbers in rats subjected to enriched environment. J. Comp. Neurol. 128, 117–126 (1966).

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Diamond, M. C., Krech, D. & Rosenzweig, M. R. The effects of an enriched environment on the histology of the rat cerebral cortex. J. Comp. Neurol. 123, 111–120 (1964).

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Rosenzweig, M. R., Krech, D., Bennett, E. L. & Diamond, M. C. Effects of environmental complexity and training on brain chemistry and anatomy: a replication and extension. J. Comp. Physiol. Psychol. 55, 429–437 (1962).

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Rampon, C. et al. Effects of environmental enrichment on gene expression in the brain. Proc. Natl Acad. Sci. USA 97, 12880–12884 (2000). This paper presents one of the first studies attempting to relate changes in gene expression to the effects of environmental enrichment on the brain.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Zhang, T.-Y. et al. Environmental enrichment increases transcriptional and epigenetic differentiation between mouse dorsal and ventral dentate gyrus. Nat. Commun. 9, 298 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  24. 24.

    Rattazzi, L. et al. Impact of enriched environment on murine T cell differentiation and gene expression profile. Front. Immunol. 7, 381 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. 25.

    Zhang, Y. et al. Convergent transcriptomics and proteomics of environmental enrichment and cocaine identifies novel therapeutic strategies for addiction. Neuroscience 339, 254–266 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Ragu Varman, D. & Rajan, K. E. Environmental enrichment reduces anxiety by differentially activating serotonergic and neuropeptide Y (NPY)-ergic system in Indian field mouse (Mus booduga): an animal model of post-traumatic stress disorder. PLOS ONE 10, e0127945 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  27. 27.

    Gualtieri, F. et al. Effects of environmental enrichment on doublecortin and BDNF expression along the dorso-ventral axis of the dentate gyrus. Front. Neurosci. 11, 189–115 (2017).

    Article  Google Scholar 

  28. 28.

    Sztainberg, Y., Kuperman, Y., Tsoory, M., Lebow, M. & Chen, A. The anxiolytic effect of environmental enrichment is mediated via amygdalar CRF receptor type 1. Mol. Psychiatry 15, 905–917 (2010).

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Singhal, G., Jaehne, E. J., Corrigan, F. & Baune, B. T. Cellular and molecular mechanisms of immunomodulation in the brain through environmental enrichment. Front. Cell. Neurosci. 8, 97 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. 30.

    Vega-Rivera, N. M. et al. The neurogenic effects of an enriched environment and its protection against the behavioral consequences of chronic mild stress persistent after enrichment cessation in six-month-old female Balb/C mice. Behav. Brain Res. 301, 72–83 (2016).

    PubMed  Article  Google Scholar 

  31. 31.

    Kempermann, G. & Gage, F. H. Experience-dependent regulation of adult hippocampal neurogenesis: effects of long-term stimulation and stimulus withdrawal. Hippocampus 9, 321–332 (1999).

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Nithianantharajah, J. & Hannan, A. J. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat. Rev. Neurosci. 7, 697–709 (2006). This important review article provides a large overview of disease-related effects of environmental enrichment.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Kempermann, G., Gast, D. & Gage, F. H. Neuroplasticity in old age: sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Ann. Neurol. 52, 135–143 (2002).

    PubMed  Article  Google Scholar 

  34. 34.

    Diamond, M. C., Johnson, R. E., Protti, A. M. & Ott, C. Plasticity in the 904-day-old male rat cerebral cortex. Exp. Neurol. 87, 309–317 (1985). This historically important study extends enrichment research to very old animals.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Maruoka, T., Kodomari, I., Yamauchi, R., Wada, E. & Wada, K. Maternal enrichment affects prenatal hippocampal proliferation and open-field behaviors in female offspring mice. Neurosci. Lett. 454, 28–32 (2009).

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Arai, J. A., Li, S., Hartley, D. M. & Feig, L. A. Transgenerational rescue of a genetic defect in long-term potentiation and memory formation by juvenile enrichment. J. Neurosci. 29, 1496–1502 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Bechard, A. R. & Lewis, M. H. Transgenerational effects of environmental enrichment on repetitive motor behavior development. Behav. Brain Res. 307, 145–149 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Yeshurun, S., Short, A. K., Bredy, T. W., Pang, T. Y. & Hannan, A. J. Paternal environmental enrichment transgenerationally alters affective behavioral and neuroendocrine phenotypes. Psychoneuroendocrinology 77, 225–235 (2017).

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Arai, J. A. & Feig, L. A. Long-lasting and transgenerational effects of an environmental enrichment on memory formation. Brain Res. Bull. 85, 30–35 (2011).

    PubMed  Article  Google Scholar 

  40. 40.

    Smits, B. M. G., van Zutphen, B. F. M., Plasterk, R. H. A. & Cuppen, E. Genetic variation in coding regions between and within commonly used inbred rat strains. Genome Res. 14, 1285–1290 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Sauce, B. et al. The impact of environmental interventions among mouse siblings on the heritability and malleability of general cognitive ability. Phil. Trans. R. Soc. B 373, 20170289 (2018).

    PubMed  Article  Google Scholar 

  42. 42.

    Kobilo, T. et al. Running is the neurogenic and neurotrophic stimulus in environmental enrichment. Learn. Mem. 18, 605–609 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Walsh, R. N. & Cummins, R. A. Mechanisms mediating the production of environmentally induced brain changes. Psychol. Bull. 82, 986–1000 (1975). This important conceptual article develops influential ideas of how enrichment acts on the brain.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Welch, B. L., Brown, D. G., Welch, A. S. & Lin, D. C. Isolation, restrictive confinement or crowding of rats for one year. I. Weight, nucleic acids and protein of brain regions. Brain Res. 75, 71–84 (1974).

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Cummins, R. A., Livesey, P. J. & Evans, J. G. A developmental theory of environmental enrichment. Science 197, 692–694 (1977). Complementary to reference 43, this article further refines the mechanistic ideas about environmental enrichment as prevalent during the high days of the field in the mid-1970s.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Van Praag, H., Kempermann, G. & Gage, F. H. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat. Neurosci. 2, 266–270 (1999).

    PubMed  Article  Google Scholar 

  47. 47.

    Eisinger, B. E. & Zhao, X. Identifying molecular mediators of environmentally enhanced neurogenesis. Cell Tissue Res. 371, 7–21 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  48. 48.

    Craver, C. F. & Darden, L. In Search of Mechanisms: Discoveries Across the Life Sciences (Univ. of Chicago Press, 2013). This article provides a very good discussion of the challenges and limitations of mechanistic insight in biology.

  49. 49.

    Bekinschtein, P., Oomen, C. A., Saksida, L. M. & Bussey, T. J. Effects of environmental enrichment and voluntary exercise on neurogenesis, learning and memory, and pattern separation: BDNF as a critical variable? Semin. Cell Dev. Biol. 22, 536–542 (2011).

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Tyagi, E., Zhuang, Y., Agrawal, R., Ying, Z. & Gomez-Pinilla, F. Interactive actions of Bdnf methylation and cell metabolism for building neural resilience under the influence of diet. Neurobiol. Dis. 73, 307–318 (2015).

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Kempermann, G. Cynefin as reference framework to facilitate insight and decision-making in complex contexts of biomedical research. Front. Neurosci. 11, 634 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Yazdani, A. & Boerwinkle, E. Causal inference in the age of decision medicine. J. Data Mining Genomics Proteomics 6, 1–6 (2015).

    Google Scholar 

  53. 53.

    Jones, D. G. & Smith, B. J. The hippocampus and its response to differential environments. Prog. Neurobiol. 15, 19–69 (1980).

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Ohline, S. M. & Abraham, W. C. Environmental enrichment effects on synaptic and cellular physiology of hippocampal neurons. Neuropharmacology. https://doi.org/10.1016/j.neuropharm.2018.04.007 (2018).

    Article  PubMed  Google Scholar 

  55. 55.

    Bilkey, D. K. et al. Exposure to complex environments results in more sparse representations of space in the hippocampus. Hippocampus 27, 1178–1191 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Fischer, A. Environmental enrichment as a method to improve cognitive function. What can we learn from animal models? Neuroimage 131, 42–47 (2016).

    PubMed  Google Scholar 

  57. 57.

    Tanti, A. et al. Region-dependent and stage-specific effects of stress, environmental enrichment, and antidepressant treatment on hippocampal neurogenesis. Hippocampus 23, 797–811 (2013).

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Zheng, J. et al. Adult hippocampal neurogenesis along the dorsoventral axis contributes differentially to environmental enrichment combined with voluntary exercise in alleviating chronic inflammatory pain in mice. J. Neurosci. 37, 4145–4157 (2017).

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Kempermann, G. The neurogenic reserve hypothesis: what is adult hippocampal neurogenesis good for? Trends Neurosci. 31, 163–169 (2008). This paper presents an early discussion of the relevance of adult hippocampal neurogenesis from a lifespan perspective, building upon the findings that environmental enrichment stimulates adult neurogenesis.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Schloesser, R. J., Lehmann, M., Martinowich, K., Manji, H. K. & Herkenham, M. Environmental enrichment requires adult neurogenesis to facilitate the recovery from psychosocial stress. Mol. Psychiatry 15, 1152–1163 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Sorrells, S. F. et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555, 377–381 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Boldrini, M. et al. Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 22, 589–599 (2018).

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Knoth, R. et al. Murine features of neurogenesis in the human Hippocampus across the lifespan from 0 to 100 years. PLOS ONE 5, e8809 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  64. 64.

    Eriksson, P. S. et al. Neurogenesis in the adult human hippocampus. Nat. Med. 4, 1313–1317 (1998).

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Ernst, A. et al. Neurogenesis in the striatum of the adult human brain. Cell 156, 1072–1083 (2014).

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Spalding, K. L. et al. Dynamics of hippocampal neurogenesis in adult humans. Cell 153, 1227 (2013). This key publication (after the historical reference 64) confirms adult neurogenesis in the human hippocampus with novel methods and provides a quantitative model.

    Article  CAS  Google Scholar 

  67. 67.

    Kempermann, G. et al. Human adult neurogenesis: evidence and remaining questions. Cell Stem Cell 23, 25–30 (2018).

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Kronenberg, G. et al. Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. J. Comp. Neurol. 467, 455–463 (2003).

    PubMed  Article  Google Scholar 

  69. 69.

    Zhao, C., Jou, J., Wolff, L. J., Sun, H. & Gage, F. H. Spine morphogenesis in newborn granule cells is differentially regulated in the outer and middle molecular layers. J. Comp. Neurol. 522, 2756–2766 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Tashiro, A., Makino, H. & Gage, F. H. Experience-specific functional modification of the dentate gyrus through adult neurogenesis: a critical period during an immature stage. J. Neurosci. 27, 3252–3259 (2007).

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Anstötz, M., Lee, S. K., Neblett, T. I., Rune, G. M. & Maccaferri, G. Experience-dependent regulation of Cajal–Retzius cell networks in the developing and adult mouse hippocampus. Cereb. Cortex 28, 672–687 (2017).

    PubMed Central  Article  Google Scholar 

  72. 72.

    Kempermann, G., Brandon, E. P. & Gage, F. H. Environmental stimulation of 129/SvJ mice causes increased cell proliferation and neurogenesis in the adult dentate gyrus. Curr. Biol. 8, 939–942 (1998).

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Brandt, M. D., Jessberger, S. & Steiner, B. Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice. Mol. Cell. Neurosci. 24, 603–613 (2003).

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Garthe, A., Behr, J. & Kempermann, G. Adult-generated hippocampal neurons allow the flexible use of spatially precise learning strategies. PLOS ONE 4, e5464 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  75. 75.

    Schmidt-Hieber, C., Jonas, P. & Bischofberger, J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429, 184–187 (2004).

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Wang, J. W., David, D. J., Monckton, J. E., Battaglia, F. & Hen, R. Chronic fluoxetine stimulates maturation and synaptic plasticity of adult-born hippocampal granule cells. J. Neurosci. 28, 1374–1384 (2008).

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Saxe, M. D. et al. Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc. Natl Acad. Sci. USA 103, 17501–17506 (2006).

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Marín-Burgin, A., Mongiat, L. A., Pardi, M. B. & Schinder, A. F. Unique processing during a period of high excitation/inhibition balance in adult-born neurons. Science 335, 1238–1242 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  79. 79.

    Kirschen, G. W. et al. Active dentate granule cells encode experience to promote the addition of adult-born hippocampal neurons. J. Neurosci. 37, 4661–4678 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Döbrössy, M. D. et al. Differential effects of learning on neurogenesis: learning increases or decreases the number of newly born cells depending on their birth date. Mol. Psychiatry 8, 974–982 (2003).

    PubMed  Article  Google Scholar 

  81. 81.

    Gould, E., Beylin, A., Tanapat, P., Reeves, A. & Shors, T. J. Learning enhances adult neurogenesis in the hippocampal formation. Nat. Neurosci. 2, 260–265 (1999). This early study shows that learning can induce adult neurogenesis, supporting the idea that learning is also a relevant stimulus for enrichment effects on adult neurogenesis.

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Leuner, B. Learning enhances the survival of new neurons beyond the time when the hippocampus is required for memory. J. Neurosci. 24, 7477–7481 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Hairston, I. S. et al. Sleep restriction suppresses neurogenesis induced by hippocampus-dependent learning. J. Neurophysiol. 94, 4224–4233 (2005).

    PubMed  Article  Google Scholar 

  84. 84.

    Fabel, K. et al. Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice. Front. Neurosci. 3, 50 (2009).

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Iggena, D. et al. Only watching others making their experiences is insufficient to enhance adult neurogenesis and water maze performance in mice. Sci. Rep. 5, 14141 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Kempermann, G., Kuhn, H. G. & Gage, F. H. Experience-induced neurogenesis in the senescent dentate gyrus. J. Neurosci. 18, 3206–3212 (1998).

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Kronenberg, G. et al. Physical exercise prevents age-related decline in precursor cell activity in the mouse dentate gyrus. Neurobiol. Aging 27, 1505–1513 (2006).

    PubMed  Article  Google Scholar 

  88. 88.

    Levone, B. R., Cryan, J. F. & O’Leary, O. F. Role of adult hippocampal neurogenesis in stress resilience. Neurobiol. Stress 1, 147–155 (2015).

    PubMed  Article  Google Scholar 

  89. 89.

    Anacker, C. et al. Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus. Nature 559, 98–102 (2018). This key study highlights how adult-born neurons in the ventral hippocampus might contribute to key functions in affective behaviour and to coping with stress.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Keyvani, K., Sachser, N., Witte, O. W. & Paulus, W. Gene expression profiling in the intact and injured brain following environmental enrichment. J. Neuropathol. Exp. Neurol. 63, 598–609 (2004).

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Lacar, B. et al. Nuclear RNA-seq of single neurons reveals molecular signatures of activation. Nat. Commun. 7, 11022 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    Steiner, B., Zurborg, S., Hörster, H., Fabel, K. & Kempermann, G. Differential 24 h responsiveness of Prox1-expressing precursor cells in adult hippocampal neurogenesis to physical activity, environmental enrichment, and kainic acid-induced seizures. Neuroscience 154, 521–529 (2008).

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    Kempermann, G. Seven principles in the regulation of adult neurogenesis. Eur. J. Neurosci. 33, 1018–1024 (2011).

    PubMed  Article  Google Scholar 

  94. 94.

    Snyder, J. S., Kee, N. & Wojtowicz, J. M. Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus. J. Neurophysiol. 85, 2423–2431 (2001).

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Clelland, C. D. et al. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325, 210–213 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Sahay, A. et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472, 466–470 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Walsh, R. N. & Cummins, R. A. Changes in hippocampal neuronal nuclei in response to environmental stimulation. Int. J. Neurosci. 9, 209–212 (1979).

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    Wolfer, D. P. et al. Laboratory animal welfare: cage enrichment and mouse behaviour. Nature 432, 821–822 (2004). This much discussed report brings up the question of whether environmental enrichment might affect the reproducibility of laboratory experiments by increasing variability.

    CAS  PubMed  Article  Google Scholar 

  99. 99.

    André, V. et al. Laboratory mouse housing conditions can be improved using common environmental enrichment without compromising data. PLOS Biol. 16, e2005019 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  100. 100.

    Richter, S. H., Garner, J. P. & Würbel, H. Environmental standardization: cure or cause of poor reproducibility in animal experiments? Nat. Methods 6, 257–261 (2009).

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Freund, J. et al. Association between exploratory activity and social individuality in genetically identical mice living in the same enriched environment. Neuroscience 309, 140–152 (2015).

    CAS  PubMed  Article  Google Scholar 

  102. 102.

    Torquet, N. et al. Social interactions impact on the dopaminergic system and drive individuality. Nat. Commun. 9, 3081 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Loseva, E., Yuan, T.-F. & Karnup, S. Genetics and human agency: comment on Dar-Nimrod and Heine (2011). Psychol. Bull. 137, 825–828 (2011).

    Article  Google Scholar 

  104. 104.

    Cotel, M. C., Jawhar, S., Christensen, D. Z., Bayer, T. A. & Wirths, O. Environmental enrichment fails to rescue working memory deficits, neuron loss, and neurogenesis in APP/PS1KI mice. NBA 33, 96–107 (2012).

    Google Scholar 

  105. 105.

    Salmin, V. V. et al. Differential roles of environmental enrichment in Alzheimer’s type of neurodegeneration and physiological aging. Front. Aging Neurosci. 9, 435–412 (2017).

    Article  CAS  Google Scholar 

  106. 106.

    Hollands, C., Bartolotti, N. & Lazarov, O. Alzheimer’s disease and hippocampal adult neurogenesis; exploring shared mechanisms. Front. Neurosci. 10, 178 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    Norton, S., Matthews, F. E., Barnes, D. E., Yaffe, K. & Brayne, C. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol. 13, 788–794 (2014). This very important analysis underscores the role of lifestyle interventions in the prevention of AD, but in principle is extendable to other disease conditions.

    PubMed  Article  Google Scholar 

  108. 108.

    Hüttenrauch, M., Walter, S., Kaufmann, M., Weggen, S. & Wirths, O. Limited effects of prolonged environmental enrichment on the pathology of 5XFAD mice. Mol. Neurobiol. 54, 6542–6555 (2017).

    PubMed  Article  CAS  Google Scholar 

  109. 109.

    Habeck, C. et al. Cognitive reserve and brain maintenance: orthogonal concepts in theory and practice. Cereb. Cortex 27, 3962–3969 (2016).

    PubMed Central  Google Scholar 

  110. 110.

    Scarmeas, N. & Stern, Y. Cognitive reserve and lifestyle. J. Clin. Exp. Neuropsychol. 25, 625–633 (2003).

    PubMed  PubMed Central  Article  Google Scholar 

  111. 111.

    Gelfo, F., Mandolesi, L., Serra, L., Sorrentino, G. & Caltagirone, C. The neuroprotective effects of experience on cognitive functions: evidence from animal studies on the neurobiological bases of brain reserve. Neuroscience 370, 218–235 (2018).

    CAS  PubMed  Article  Google Scholar 

  112. 112.

    Petrosini, L. et al. On whether the environmental enrichment may provide cognitive and brain reserves. Brain Res. Rev. 61, 221–239 (2009).

    PubMed  Article  Google Scholar 

  113. 113.

    Hertzog, C., Kramer, A. F., Wilson, R. S. & Lindenberger, U. Enrichment effects on adult cognitive development: can the functional capacity of older adults be preserved and enhanced? Psychol. Sci. Public Interest 9, 1–65 (2008). This extremely comprehensive and insightful review captures the state of ‘enrichment’ concepts under the human condition.

    PubMed  Article  Google Scholar 

  114. 114.

    Johansson, B. B. Brain plasticity and stroke rehabilitation. The Willis lecture. Stroke 31, 223–230 (2000).

    CAS  PubMed  Article  Google Scholar 

  115. 115.

    Janssen, H. et al. An enriched environment improves sensorimotor function post-ischemic stroke. Neurorehabil. Neural Repair 24, 802–813 (2010).

    PubMed  Article  Google Scholar 

  116. 116.

    Hermann, D. M. & Chopp, M. Promoting neurological recovery in the post-acute stroke phase: benefits and challenges. Eur. Neurol. 72, 317–325 (2014).

    PubMed  Article  Google Scholar 

  117. 117.

    Morgan, C., Novak, I. & Badawi, N. Enriched environments and motor outcomes in cerebral palsy: systematic review and meta-analysis. Pediatrics 132, e735–e746 (2013).

    PubMed  Article  Google Scholar 

  118. 118.

    Corbett, D., Jeffers, M., Nguemeni, C., Gomez-Smith, M. & Livingston-Thomas, J. Lost in translation: rethinking approaches to stroke recovery. Prog. Brain Res. 218, 413–434 (2015).

    PubMed  Article  Google Scholar 

  119. 119.

    Scarr, S. & McCartney, K. How people make their own environments: a theory of genotype greater than environment effects. Child Dev. 54, 424–435 (1983). This classical paper discusses the effects of genotype on shaping and refining living environments.

    CAS  PubMed  Google Scholar 

  120. 120.

    Beans, C. What happens when lab animals go wild. Proc. Natl Acad. Sci. USA 115, 3196–3199 (2018).

    CAS  PubMed  Article  Google Scholar 

  121. 121.

    Barnea, A. & Nottebohm, F. Seasonal recruitment of hippocampal neurons in adult free-ranging black-capped chickadees. Proc. Natl Acad. Sci. USA 91, 11217–11221 (1994).

    CAS  PubMed  Article  Google Scholar 

  122. 122.

    Barnea, A. & Nottebohm, F. Recruitment and replacement of hippocampal neurons in young and adult chickadees: an addition to the theory of hippocampal learning. Proc. Natl Acad. Sci. USA 93, 714–718 (1996).

    CAS  PubMed  Article  Google Scholar 

  123. 123.

    Chalfin, L. et al. Mapping ecologically relevant social behaviours by gene knockout in wild mice. Nat. Commun. 5, 4569 (2014).

    CAS  PubMed  Article  Google Scholar 

  124. 124.

    Abolins, S. et al. The comparative immunology of wild and laboratory mice. Mus musculus domesticus. Nat. Commun. 8, 14811 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  125. 125.

    Smith, J., Hurst, J. L. & Barnard, C. J. Comparing behaviour in wild and laboratory strains of the house mouse: levels of comparison and functional inference. Behav. Processes 32, 79–86 (1994).

    CAS  PubMed  Article  Google Scholar 

  126. 126.

    David, J. M., Knowles, S., Lamkin, D. M. & Stout, D. B. Individually ventilated cages impose cold stress on laboratory mice: a source of systemic experimental variability. J. Am. Assoc. Lab. Anim. Sci. 52, 738–744 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks the members of his group who in many discussions contributed to shaping the ideas presented in this article.

Reviewer information

Nature Reviews Neuroscience thanks A. Hannan and the other anonymous reviewers for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gerd Kempermann.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Adjuvant manipulation

A supportive treatment that is applied alongside a primary (therapeutic) intervention.

Behaviourism

A school of thought in cognitive psychology that treated higher brain functions and especially learning as consequence of more or less simple input–output relationships (‘psychic reflexes’).

Emergent properties

Properties that arise in complex systems and go beyond what can be predicted from knowing the functions of the parts of that system.

Enriched environments

(ENRs). Defined housing conditions for laboratory animals that are richer in stimuli than standard conditions.

Individualization

The processes by which members of a population become different from each other.

Outbred strains

Laboratory strains of animals that preserve a certain level of genetic inhomogeneity (as opposed to inbred strains, in which animals are genetically identical).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kempermann, G. Environmental enrichment, new neurons and the neurobiology of individuality. Nat Rev Neurosci 20, 235–245 (2019). https://doi.org/10.1038/s41583-019-0120-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing