Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Enteric nervous system development: what could possibly go wrong?

Abstract

The gastrointestinal tract contains its own set of intrinsic neuroglial circuits — the enteric nervous system (ENS) — which detects and responds to diverse signals from the environment. Here, we address recent advances in the understanding of ENS development, including how neural-crest-derived progenitors migrate into and colonize the bowel, the formation of ganglionated plexuses and the molecular mechanisms of enteric neuronal and glial diversification. Modern lineage tracing and transcription-profiling technologies have produced observations that simultaneously challenge and affirm long-held beliefs about ENS development. We review many genetic and environmental factors that can alter ENS development and exert long-lasting effects on gastrointestinal function, and discuss how developmental defects in the ENS might account for some of the large burden of digestive disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Migration of neural-crest-derived progenitors to the primordial gut.
Fig. 2: Molecular regulation of cell-type diversification in the enteric nervous system.
Fig. 3: The ‘outside-in’ development and columnar organization of the enteric plexuses.
Fig. 4: Neuroglial diversification and cellular interactions in the enteric nervous system.

Similar content being viewed by others

References

  1. Gershon, M. D. Developmental determinants of the independence and complexity of the enteric nervous system. Trends Neurosci. 33, 446–456 (2010).

    Article  PubMed  CAS  Google Scholar 

  2. Gershon, M. D. & Tack, J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132, 397–414 (2007).

    Article  PubMed  CAS  Google Scholar 

  3. Furness, J. B. The Enteric Nervous System. (Blackwell Publishing, Malden, MA, 2006).

    Google Scholar 

  4. Langley, J. N. The Autonomic Nervous System, Part 1. (W. Heffer, Cambridge, 1921).

    Google Scholar 

  5. Furness, J. B. & Stebbing, M. J. The first brain: species comparisons and evolutionary implications for the enteric and central nervous systems. Neurogastroenterol. Motil. https://doi.org/10.1111/nmo.13234 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  6. Ganz, J. Gut feelings: studying enteric nervous system development, function, and disease in the zebrafish model system. Dev. Dyn. 247, 268–278 (2018).

    Article  PubMed  Google Scholar 

  7. Stamp, L. A. Cell therapy for GI motility disorders: comparison of cell sources and proposed steps for treating Hirschsprung disease. Am. J. Physiol. Gastrointest. Liver Physiol. 312, G348–G354 (2017).

    Article  PubMed  Google Scholar 

  8. Zhao, X. & Pack, M. Modeling intestinal disorders using zebrafish. Methods Cell Biol. 138, 241–270 (2017).

    Article  PubMed  CAS  Google Scholar 

  9. Nagy, N. & Goldstein, A. M. Enteric nervous system development: a crest cell’s journey from neural tube to colon. Semin. Cell Dev. Biol. 66, 94–106 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sergi, C. M., Caluseriu, O., McColl, H. & Eisenstat, D. D. Hirschsprung’s disease: clinical dysmorphology, genes, micro-RNAs, and future perspectives. Pediatr. Res. 81, 177–191 (2017).

    Article  PubMed  Google Scholar 

  11. Obata, Y. & Pachnis, V. The effect of microbiota and the immune system on the development and organization of the enteric nervous system. Gastroenterology 151, 836–844 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Young, H. M., Stamp, L. A. & McKeown, S. J. ENS development research since 1983: great strides but many remaining challenges. Adv. Exp. Med. Biol. 891, 53–62 (2016).

    Article  PubMed  CAS  Google Scholar 

  13. Bondurand, N. & Southard-Smith, E. M. Mouse models of Hirschsprung disease and other developmental disorders of the enteric nervous system: old and new players. Dev. Biol. 417, 139–157 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Torroglosa, A. et al. Epigenetics in ENS development and Hirschsprung disease. Dev. Biol. 417, 209–216 (2016).

    Article  PubMed  CAS  Google Scholar 

  15. Uesaka, T., Young, H. M., Pachnis, V. & Enomoto, H. Development of the intrinsic and extrinsic innervation of the gut. Dev. Biol. 417, 158–167 (2016).

    Article  PubMed  CAS  Google Scholar 

  16. Heuckeroth, R. O. & Schafer, K. H. Gene-environment interactions and the enteric nervous system: neural plasticity and Hirschsprung disease prevention. Dev. Biol. 417, 188–197 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Avetisyan, M., Schill, E. M. & Heuckeroth, R. O. Building a second brain in the bowel. J. Clin. Invest. 125, 899–907 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tam, P. K. Hirschsprung’s disease: a bridge for science and surgery. J. Pediatr. Surg. 51, 18–22 (2015).

    Article  PubMed  Google Scholar 

  19. Knowles, C. H. et al. Quantitation of cellular components of the enteric nervous system in the normal human gastrointestinal tract — report on behalf of the Gastro 2009 International Working Group. Neurogastroenterol. Motil. 23, 115–124 (2011).

    Article  PubMed  CAS  Google Scholar 

  20. Knowles, C. H. et al. The London Classification of gastrointestinal neuromuscular pathology: report on behalf of the Gastro 2009 International Working Group. Gut 59, 882–887 (2010).

    Article  PubMed  Google Scholar 

  21. Langer, J. C. et al. Guidelines for the management of postoperative obstructive symptoms in children with Hirschsprung disease. Pediatr. Surg. Int. 33, 523–526 (2017).

    Article  PubMed  CAS  Google Scholar 

  22. Gosain, A. et al. Guidelines for the diagnosis and management of Hirschsprung-associated enterocolitis. Pediatr. Surg. Int. 33, 517–521 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cheng, L. S., Schwartz, D. M., Hotta, R., Graham, H. K. & Goldstein, A. M. Bowel dysfunction following pullthrough surgery is associated with an overabundance of nitrergic neurons in Hirschsprung disease. J. Pediatr. Surg. 51, 1834–1838 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lauro, A., De Giorgio, R. & Pinna, A. D. Advancement in the clinical management of intestinal pseudo-obstruction. Expert Rev. Gastroenterol. Hepatol. 9, 197–208 (2015).

    Article  PubMed  CAS  Google Scholar 

  25. Furness, J. B. The enteric nervous system: normal functions and enteric neuropathies. Neurogastroenterol. Motil. 20 (Suppl. 1), 32–38 (2008).

    Article  PubMed  Google Scholar 

  26. Roberts, R. R. et al. The first intestinal motility patterns in fetal mice are not mediated by neurons or interstitial cells of Cajal. J. Physiol. 588, 1153–1169 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Foong, J. P. et al. Changes in nicotinic neurotransmission during enteric nervous system development. J. Neurosci. 35, 7106–7115 (2015).

    Article  PubMed  CAS  Google Scholar 

  28. Foong, J. P., Nguyen, T. V., Furness, J. B., Bornstein, J. C. & Young, H. M. Myenteric neurons of the mouse small intestine undergo significant electrophysiological and morphological changes during postnatal development. J. Physiol. 590, 2375–2390 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Yntema, C. L. & Hammond, W. S. The origin of intrinsic ganglia of trunk viscera from vagal neural crest in the chick embryo. J. Comp. Neurol. 101, 515–542 (1954). This paper establishes definitively that the ENS is a neural-crest derivative; all subsequent work on the origin of the ENS is based on this observation.

    Article  PubMed  CAS  Google Scholar 

  30. Le Douarin, N. M. A biological cell labeling technique and its use in experimental embryology. Dev. Biol. 30, 217–222 (1973).

    Article  PubMed  Google Scholar 

  31. Le Douarin, N. M. & Teillet, M. A. The migration of neural crest cells to the wall of the digestive tract in avian embryo. J. Embryol. Exp. Morphol. 30, 31–48 (1973). This manuscript establishes lineage tracing in ENS experimental development and provides confirmation of the neural-crest origin of the ENS and that the ENS is derived from vagal and sacral axial levels.

    PubMed  Google Scholar 

  32. Le Douarin, N. M. Cell line segregation during peripheral nervous system ontogeny. Science 231, 1515–1522 (1986).

    Article  PubMed  Google Scholar 

  33. Burns, A. J., Delalande, J. M. & Le Douarin, N. M. In ovo transplantation of enteric nervous system precursors from vagal to sacral neural crest results in extensive hindgut colonisation. Development 129, 2785–2796 (2002).

    PubMed  CAS  Google Scholar 

  34. Zuhdi, N. et al. Slit molecules prevent entrance of trunk neural crest cells in developing gut. Int. J. Dev. Neurosci. 41, 8–16 (2015).

    Article  PubMed  Google Scholar 

  35. De Bellard, M. E., Rao, Y. & Bronner-Fraser, M. Dual function of Slit2 in repulsion and enhanced migration of trunk, but not vagal, neural crest cells. J. Cell Biol. 162, 269–279 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Kuo, B. R. & Erickson, C. A. Regional differences in neural crest morphogenesis. Cell Adh. Migr. 4, 567–585 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kuo, B. R. & Erickson, C. A. Vagal neural crest cell migratory behavior: a transition between the cranial and trunk crest. Dev. Dyn. 240, 2084–2100 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Serbedzija, G. N., Fraser, S. E. & Bronner-Fraser, M. Pathways of trunk neural crest cell migration in the mouse embryo as revealed by vital dye labelling. Development 108, 605–612 (1990).

    PubMed  CAS  Google Scholar 

  39. Rickmann, M., Fawcett, J. W. & Keynes, R. J. The migration of neural crest cells and the growth of motor axons through the rostral half of the chick somite. J. Embryol. Exp. Morphol. 90, 437–455 (1985).

    PubMed  CAS  Google Scholar 

  40. Escot, S., Blavet, C., Hartle, S., Duband, J. L. & Fournier-Thibault, C. Misregulation of SDF1-CXCR4 signaling impairs early cardiac neural crest cell migration leading to conotruncal defects. Circ. Res. 113, 505–516 (2013).

    Article  PubMed  CAS  Google Scholar 

  41. Escot, S. et al. Disruption of CXCR4 signaling in pharyngeal neural crest cells causes DiGeorge syndrome-like malformations. Development 143, 582–588 (2016).

    Article  PubMed  CAS  Google Scholar 

  42. Wang, H. U. & Anderson, D. J. Eph family transmembrane ligands can mediate repulsive guidance of trunk neural crest migration and motor axon outgrowth. Neuron 18, 383–396 (1997).

    Article  PubMed  CAS  Google Scholar 

  43. Krull, C. E. et al. Interactions of Eph-related receptors and ligands confer rostrocaudal pattern to trunk neural crest migration. Curr. Biol. 7, 571–580 (1997).

    Article  PubMed  CAS  Google Scholar 

  44. Adams, R. H. et al. The cytoplasmic domain of the ligand ephrinB2 is required for vascular morphogenesis but not cranial neural crest migration. Cell 104, 57–69 (2001).

    Article  PubMed  CAS  Google Scholar 

  45. Davy, A., Aubin, J. & Soriano, P. Ephrin-B1 forward and reverse signaling are required during mouse development. Genes Dev. 18, 572–583 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Gammill, L. S., Gonzalez, C., Gu, C. & Bronner-Fraser, M. Guidance of trunk neural crest migration requires neuropilin 2/semaphorin 3F signaling. Development 133, 99–106 (2006). This study solves the mystery of why crest-derived cells migrate preferentially through the anterior halves of somites, even in animals lacking ephrin signalling.

    Article  PubMed  CAS  Google Scholar 

  47. Roffers-Agarwal, J. & Gammill, L. S. Neuropilin receptors guide distinct phases of sensory and motor neuronal segmentation. Development 136, 1879–1888 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Jacobs-Cohen, R. J., Wade, P. R. & Gershon, M. D. Suppression of the melanogenic potential of migrating neural crest-derived cells by the branchial arches. Anat. Rec. 268, 16–26 (2002).

    Article  PubMed  Google Scholar 

  49. Cui, J., Michaille, J. J., Jiang, W. & Zile, M. H. Retinoid receptors and vitamin A deficiency: differential patterns of transcription during early avian development and the rapid induction of RARs by retinoic acid. Dev. Biol. 260, 496–511 (2003).

    Article  PubMed  CAS  Google Scholar 

  50. Simkin, J. E., Zhang, D., Rollo, B. N. & Newgreen, D. F. Retinoic acid upregulates ret and induces chain migration and population expansion in vagal neural crest cells to colonise the embryonic gut. PLoS ONE 8, e64077 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Niederreither, K. et al. The regional pattern of retinoic acid synthesis by RALDH2 is essential for the development of posterior pharyngeal arches and the enteric nervous system. Development 130, 2525–2534 (2003).

    Article  PubMed  CAS  Google Scholar 

  52. Baetge, G. & Gershon, M. D. Transient catecholaminergic (TC) cells in the vagus nerves and bowel of fetal mice: relationship to the development of enteric neurons. Dev. Biol. 132, 189–211 (1989).

    Article  PubMed  CAS  Google Scholar 

  53. Anderson, R. B., Stewart, A. L. & Young, H. M. Phenotypes of neural-crest-derived cells in vagal and sacral pathways. Cell Tissue Res. 323, 11–25 (2006).

    Article  PubMed  CAS  Google Scholar 

  54. Baetge, G., Pintar, J. E. & Gershon, M. D. Transiently catecholaminergic (TC) cells in the bowel of fetal rats and mice: precursors of non-catecholaminergic enteric neurons. Dev. Biol. 141, 353–380 (1990).

    Article  PubMed  CAS  Google Scholar 

  55. Obermayr, F., Stamp, L. A., Anderson, C. R. & Young, H. M. Genetic fate-mapping of tyrosine hydroxylase-expressing cells in the enteric nervous system. Neurogastroenterol. Motil. 25, e283–291 (2013).

    Article  PubMed  CAS  Google Scholar 

  56. Espinosa-Medina, I. et al. Dual origin of enteric neurons in vagal Schwann cell precursors and the sympathetic neural crest. Proc. Natl Acad. Sci. USA 114, 11980–11985 (2017). This manuscript presents the revolutionary new concept that enteric neurons in the most proximal bowel are derived from Schwann cells guided to the gut in the descending vagus nerves and that the rest of the ENS is analogous, from a developmental point of view, to the sympathetic nervous system.

    Article  PubMed  CAS  Google Scholar 

  57. Nishiyama, C. et al. Trans-mesenteric neural crest cells are the principal source of the colonic enteric nervous system. Nat. Neurosci. 15, 1211–1218 (2012). This paper demonstrates, unexpectedly, that ENCDCs take a short cut, migrating through the mesentery to get from the small intestine to the colon, thereby avoiding the long and evidently slower trip through the caecum.

    Article  PubMed  CAS  Google Scholar 

  58. Coventry, S., Yost, C., Palmiter, R. D. & Kapur, R. P. Migration of ganglion cell precursors in the ileoceca of normal and lethal spotted embryos, a murine model for Hirschsprung disease. Lab. Invest. 71, 82–93 (1994).

    PubMed  CAS  Google Scholar 

  59. Young, H. M. et al. Colonizing while migrating: how do individual enteric neural crest cells behave? BMC Biol. 12, 23 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Wang, X., Chan, A. K., Sham, M. H., Burns, A. J. & Chan, W. Y. Analysis of the sacral neural crest cell contribution to the hindgut enteric nervous system in the mouse embryo. Gastroenterology 141, 992–1002 e1–6 (2011).

    Article  PubMed  Google Scholar 

  61. Pomeranz, H. D. & Gershon, M. D. Colonization of the avian hindgut by cells derived from the sacral neural crest. Dev. Biol. 137, 378–394 (1990).

    Article  PubMed  CAS  Google Scholar 

  62. Pomeranz, H. D., Rothman, T. P. & Gershon, M. D. Colonization of the post-umbilical bowel by cells derived from the sacral neural crest: direct tracing of cell migration using an intercalating probe and a replication-deficient retrovirus. Development 111, 647–655 (1991).

    PubMed  CAS  Google Scholar 

  63. Burns, A. J. & Le Douarin, N. M. The sacral crest contributes neurons and glia to the post-umbilical gut: spatiotemporal analysis of the development of the enteric nervous system. Development 125, 4335–4347 (1998).

    PubMed  CAS  Google Scholar 

  64. Kapur, R. P. Colonization of the murine hindgut by sacral crest-derived neural precursors: experimental support for an evolutionarily conserved model. Dev. Biol. 227, 146–155 (2000).

    Article  PubMed  CAS  Google Scholar 

  65. Uesaka, T., Nagashimada, M. & Enomoto, H. Neuronal differentiation in Schwann cell lineage underlies postnatal neurogenesis in the enteric nervous system. J. Neurosci. 35, 9879–9888 (2015). This work shows that Schwann cell precursors on extrinsic nerves innervating the gut give rise to up to 20% of enteric neurons in the large intestine, revealing a new role for extrinsic innervation and another source of enteric neurons independent of enteric neural-crest-derived progenitors.

    Article  PubMed  CAS  Google Scholar 

  66. Simpson, M. J., Zhang, D. C., Mariani, M., Landman, K. A. & Newgreen, D. F. Cell proliferation drives neural crest cell invasion of the intestine. Dev. Biol. 302, 553–568 (2007). This paper establishes the importance of cell proliferation as a driving force enabling crest-derived cells to colonize the gut.

    Article  PubMed  CAS  Google Scholar 

  67. Barlow, A. J., Wallace, A. S., Thapar, N. & Burns, A. J. Critical numbers of neural crest cells are required in the pathways from the neural tube to the foregut to ensure complete enteric nervous system formation. Development 135, 1681–1691 (2008).

    Article  PubMed  CAS  Google Scholar 

  68. Young, H. M. et al. Dynamics of neural crest-derived cell migration in the embryonic mouse gut. Dev. Biol. 270, 455–473 (2004).

    Article  PubMed  CAS  Google Scholar 

  69. Wu, J. J., Chen, J.-X., Rothman, T. P. & Gershon, M. D. Inhibition of in vitro enteric neuronal development by endothelin-3: mediation by endothelin B receptors. Development 126, 1161–1173 (1999).

    PubMed  CAS  Google Scholar 

  70. Hearn, C. J., Murphy, M. & Newgreen, D. GDNF and ET-3 differentially modulate the numbers of avian enteric neural crest cells and enteric neurons in vitro. Dev. Biol. 197, 93–105 (1998).

    Article  PubMed  CAS  Google Scholar 

  71. Fujiwara, N. et al. Altered expression of laminin alpha1 in aganglionic colon of endothelin receptor-B null mouse model of Hirschsprung’s disease. Pediatr. Surg. Int. 34, 137–141 (2018).

    Article  PubMed  Google Scholar 

  72. Bergeron, K. F. et al. Upregulation of the Nr2f1-A830082K12Rik gene pair in murine neural crest cells results in a complex phenotype reminiscent of Waardenburg syndrome type 4. Dis. Model. Mech. 9, 1283–1293 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Pattyn, A., Morin, X., Cremer, H., Goridis, C. & Brunet, J. F. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399, 366–370 (1999).

    Article  PubMed  CAS  Google Scholar 

  74. Nagashimada, M. et al. Autonomic neurocristopathy-associated mutations in PHOX2B dysregulate Sox10 expression. J. Clin. Invest. 122, 3145–3158 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Amiel, J. et al. Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat. Genet. 33, 459–461 (2003).

    Article  PubMed  CAS  Google Scholar 

  76. Weese-Mayer, D. E. et al. Idiopathic congenital central hypoventilation syndrome: analysis of genes pertinent to early autonomic nervous system embryologic development and identification of mutations in PHOX2b. Am. J. Med. Genet. A 123A, 267–278 (2003).

    Article  PubMed  Google Scholar 

  77. Lane, P. W. & Liu, H. M. Association of megacolon with a new dominant spotting gene (Dom) in the mouse. J. Hered. 75, 435–439 (1984).

    Article  PubMed  CAS  Google Scholar 

  78. Herbarth, B. et al. Mutation of the Sry-related Sox10 gene in Dominant megacolon, a mouse model for human Hirschsprung disease. Proc. Natl Acad. Sci. USA 95, 5161–5165 (1998).

    Article  PubMed  CAS  Google Scholar 

  79. Southard-Smith, E. M., Kos, L. & Pavan, W. J. Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat. Genet. 18, 60–64 (1998). This work identifies a loss-of-function mutation in the Sox10 gene as the causative mutation in Dom mice, which have colonic aganglionosis, establishing Sox10 as an important gene in ENS development.

    Article  PubMed  CAS  Google Scholar 

  80. Britsch, S. et al. The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev. 15, 66–78 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Pingault, V. et al. SOX10 mutations in patients with Waardenburg–Hirschsprung disease. Nat. Genet. 18, 171–173 (1998).

    Article  PubMed  CAS  Google Scholar 

  82. Paratore, C., Goerich, D. E., Suter, U., Wegner, M. & Sommer, L. Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling. Development 128, 3949–3961 (2001).

    PubMed  CAS  Google Scholar 

  83. Kim, J., Lo, L., Dormand, E. & Anderson, D. J. SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron 38, 17–31 (2003).

    Article  PubMed  CAS  Google Scholar 

  84. Musser, M. A., Correa, H. & Southard-Smith, E. M. Enteric neuron imbalance and proximal dysmotility in ganglionated intestine of the Sox10 Dom/+ Hirschsprung mouse model. Cell. Mol. Gastroenterol. Hepatol. 1, 87–101 (2015).

    Article  PubMed  Google Scholar 

  85. Schuchardt, A., D’Agati, V., Larsson-Blomberg, L., Costantini, F. & Pachnis, V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367, 380–383 (1994). This classic paper establishes incontrovertibly that RET expression is essential for development of the ENS distal to the oesophagus and proximal stomach.

    Article  PubMed  CAS  Google Scholar 

  86. Heanue, T. A. & Pachnis, V. Enteric nervous system development and Hirschsprung’s disease: advances in genetic and stem cell studies. Nat. Rev. Neurosci. 8, 466–479 (2007).

    Article  PubMed  CAS  Google Scholar 

  87. Barlow, A., de Graaff, E. & Pachnis, V. Enteric nervous system progenitors are coordinately controlled by the G protein-coupled receptor EDNRB and the receptor tyrosine kinase RET. Neuron 40, 905–916 (2003).

    Article  PubMed  CAS  Google Scholar 

  88. Uesaka, T. et al. Conditional ablation of GFRα1 in postmigratory enteric neurons triggers unconventional neuronal death in the colon and causes a Hirschsprung’s disease phenotype. Development 134, 2171–2181 (2007).

    Article  PubMed  CAS  Google Scholar 

  89. Uesaka, T., Nagashimada, M., Yonemura, S. & Enomoto, H. Diminished Ret expression compromises neuronal survival in the colon and causes intestinal aganglionosis in mice. J. Clin. Invest. 118, 1890–1898 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Avetisyan, M. et al. Hepatocyte growth factor and MET support mouse enteric nervous system development, the peristaltic response, and intestinal epithelial proliferation in response to injury. J. Neurosci. 35, 11543–11558 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Barrenschee, M. et al. Site-specific gene expression and localization of growth factor ligand receptors RET, GFRα1 and GFRα2 in human adult colon. Cell Tissue Res. 354, 371–380 (2013).

    Article  PubMed  CAS  Google Scholar 

  92. Heuckeroth, R. O. et al. Gene targeting reveals a critical role for neurturin in the development and maintenance of enteric, sensory, and parasympathetic neurons. Neuron 22, 253–263 (1999).

    Article  PubMed  CAS  Google Scholar 

  93. Rossi, J. et al. Alimentary tract innervation deficits and dysfunction in mice lacking GDNF family receptor α2. J. Clin. Invest. 112, 707–716 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Young, H. M., Ciampoli, D., Hsuan, J. & Canty, A. J. Expression of Ret-, p75NTR-, Phox2a-, Phox2b-, and tyrosine hydroxylase-immunoreactivity by undifferentiated neural crest-derived cells and different classes of enteric neurons in the embryonic mouse gut. Dev. Dyn. 216, 137–152 (1999).

    Article  PubMed  CAS  Google Scholar 

  95. Taylor, C. R., Montagne, W. A., Eisen, J. S. & Ganz, J. Molecular fingerprinting delineates progenitor populations in the developing zebrafish enteric nervous system. Dev. Dyn. 245, 1081–1096 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Lasrado, R. et al. Lineage-dependent spatial and functional organization of the mammalian enteric nervous system. Science 356, 722–726 (2017). This paper presents an elegant genetic lineage tracing study that shows that the ENS develops in an outside-in manner, with the two plexuses being populated by clonal populations of neurons and glia organized into a columnar topology along the serosa-to-lumen, or radial axis, of the gut.

    Article  PubMed  CAS  Google Scholar 

  97. Lake, J. I. & Heuckeroth, R. O. Enteric nervous system development: migration, differentiation, and disease. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G1–G24 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Charrier, B. & Pilon, N. Toward a better understanding of enteric gliogenesis. Neurogenesis 4, e1293958 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Obermayr, F., Hotta, R., Enomoto, H. & Young, H. M. Development and developmental disorders of the enteric nervous system. Nat. Rev. Gastroenterol. Hepatol. 10, 43–57 (2013).

    Article  PubMed  CAS  Google Scholar 

  100. Wallace, A. S. & Burns, A. J. Development of the enteric nervous system, smooth muscle and interstitial cells of Cajal in the human gastrointestinal tract. Cell Tissue Res. 319, 367–382 (2005).

    Article  PubMed  Google Scholar 

  101. Pham, T. D., Gershon, M. D. & Rothman, T. P. Time of origin of neurons in the murine enteric nervous system: sequence in relation to phenotype. J. Comp. Neurol. 314, 789–798 (1991). This manuscript demonstrates for the first time that enteric neurons of different chemically defined subtypes are born in a reproducible sequence during ontogeny.

    Article  PubMed  CAS  Google Scholar 

  102. Jiang, Y., Liu, M. & Gershon, M. D. Netrins and DCC in the guidance of migrating neural crest-derived cells in the developing bowel and pancreas. Dev. Biol. 258, 364–384 (2003).

    Article  PubMed  CAS  Google Scholar 

  103. Ratcliffe, E. M. et al. Enteric neurons synthesize netrins and are essential for the development of the vagal sensory innervation of the fetal gut. Dev. Neurobiol. 71, 362–373 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Simo, P. et al. Dual and asynchronous deposition of laminin chains at the epithelial-mesenchymal interface in the gut. Gastroenterology 102, 1835–1845 (1992).

    Article  PubMed  CAS  Google Scholar 

  105. Simon-Assmann, P. et al. The laminins: role in intestinal morphogenesis and differentiation. Ann. NY Acad. Sci. 859, 46–64 (1998).

    Article  PubMed  CAS  Google Scholar 

  106. Chalazonitis, A., Tennyson, V. M., Kibbey, M. C., Rothman, T. P. & Gershon, M. D. The α1 subunit of laminin-1 promotes the development of neurons by interacting with LBP110 expressed by neural crest-derived cells immunoselected from the fetal mouse gut. J. Neurobiol. 33, 118–138 (1997).

    Article  PubMed  CAS  Google Scholar 

  107. Höpker, V., Shewan, D., Tessier-Lavigne, M., Poo, M. & Holt, C. Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1. Nature 401, 69–73 (1999).

    Article  PubMed  Google Scholar 

  108. Ratcliffe, E. M., D’Autreaux, F. & Gershon, M. D. Laminin terminates the netrin/DCC mediated attraction of vagal sensory axons. Dev. Neurobiol. 68, 960–971 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Memic, F. et al. Transcription and signaling regulators in developing neuronal subtypes of mouse and human enteric nervous system. Gastroenterology 154, 624–636 (2018). This gene expression study of ENS progenitors and surrounding mesenchyme isolated from fetal gut provides an excellent resource of transcription factors, signalling molecules and other molecules thought likely, on the basis of highly suggestive expression patterns, to play a role in ENS specification and circuit formation.

    Article  PubMed  CAS  Google Scholar 

  110. Sasselli, V. et al. Planar cell polarity genes control the connectivity of enteric neurons. J. Clin. Invest. 123, 1763–1772 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Ramalho-Santos, M., Melton, D. A. & McMahon, A. P. Hedgehog signals regulate multiple aspects of gastrointestinal development. Development 127, 2763–2772 (2000).

    PubMed  CAS  Google Scholar 

  112. Biau, S., Jin, S. & Fan, C. M. Gastrointestinal defects of the Gas1 mutant involve dysregulated Hedgehog and Ret signaling. Biol. Open 2, 144–155 (2013).

    Article  PubMed  CAS  Google Scholar 

  113. Jin, S., Martinelli, D. C., Zheng, X., Tessier-Lavigne, M. & Fan, C. M. Gas1 is a receptor for sonic hedgehog to repel enteric axons. Proc. Natl Acad. Sci. USA 112, E73–E80 (2015).

    Article  PubMed  CAS  Google Scholar 

  114. Le Berre-Scoul, C. et al. A novel enteric neuron-glia coculture system reveals the role of glia in neuronal development. J. Physiol. 595, 583–598 (2017).

    Article  PubMed  CAS  Google Scholar 

  115. Qu, Z. D. et al. Immunohistochemical analysis of neuron types in the mouse small intestine. Cell Tissue Res. 334, 147–161 (2008).

    Article  PubMed  CAS  Google Scholar 

  116. Pompolo, S. & Furness, J. B. Ultrastructure and synaptic relationships of calbindin-reactive, Dogiel type II neurons, in the myenteric ganglia of guinea-pig small intestine. J. Neurocytol. 17, 771–782 (1988).

    Article  PubMed  CAS  Google Scholar 

  117. Furness, J. B. & Costa, M. Neurons with 5-hydroxytryptamine-like immunoreactivity in the enteric nervous system: their projections in the guinea pig small intestine. Neuroscience 7, 341–350 (1982).

    Article  PubMed  CAS  Google Scholar 

  118. Gershon, M. D. 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr. Opin. Endocrinol. Diabetes, Obes. 20, 14–21 (2013).

    Article  CAS  Google Scholar 

  119. Krantis, A. GABA in the mammalian enteric nervous system. News Physiol. Sci. 15, 284–290 (2000).

    PubMed  CAS  Google Scholar 

  120. Li, Z. S., Schmauss, C., Cuenca, A., Ratcliffe, E. & Gershon, M. D. Physiological modulation of intestinal motility by enteric dopaminergic neurons and the D2 receptor: analysis of dopamine receptor expression, location, development, and function in wild-type and knock-out mice. J. Neurosci. 26, 2798–2807 (2006).

    Article  PubMed  CAS  Google Scholar 

  121. Li, Z. S., Pham, T. D., Tamir, H., Chen, J. J. & Gershon, M. D. Enteric dopaminergic neurons: definition, developmental lineage, and effects of extrinsic denervation. J. Neurosci. 24, 1330–1339 (2004).

    Article  PubMed  CAS  Google Scholar 

  122. Mongardi Fantaguzzi, C., Thacker, M., Chiocchetti, R. & Furness, J. B. Identification of neuron types in the submucosal ganglia of the mouse ileum. Cell Tissue Res. 336, 179–189 (2009).

    Article  PubMed  CAS  Google Scholar 

  123. Kirchgessner, A. L., Tamir, H. & Gershon, M. D. Identification and stimulation by serotonin of intrinsic sensory neurons of the submucosal plexus of the guinea pig gut: activity-induced expression of Fos immunoreactivity. J. Neurosci. 12, 235–249 (1992).

    Article  PubMed  CAS  Google Scholar 

  124. Kirchgessner, A. L. & Gershon, M. D. Projections of submucosal neurons to the myenteric plexus of the guinea pig intestine: In vitro tracing of microcircuits by retrograde and anterograde transport. J. Comp. Neurol. 277, 487–498 (1988).

    Article  PubMed  CAS  Google Scholar 

  125. Gross, E. R., Gershon, M. D., Margolis, K. G., Gertsberg, Z. V. & Cowles, R. A. Neuronal serotonin regulates growth of the intestinal mucosa in mice. Gastroenterology 143, 408–417 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Margolis, K. G. et al. Serotonin transporter variant drives preventable gastrointestinal abnormalities in development and function. J. Clin. Invest. 126, 2221–2235 (2016). This manuscript, working through an analysis of the effects of gain-of-function and loss-of-function of SERT activity, demonstrates how early-born serotonergic neurons can sculpt the developing ENS by affecting the development of neurons born after them.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Wood, J. D. Nonruminant Nutrition Symposium: neurogastroenterology and food allergies. J. Animal Sci. 90, 1213–1223 (2012).

    Article  CAS  Google Scholar 

  128. Bergner, A. J. et al. Birthdating of myenteric neuron subtypes in the small intestine of the mouse. J. Comp. Neurol. 522, 514–527 (2014).

    Article  PubMed  CAS  Google Scholar 

  129. Chalazonitis, A. et al. Bone morphogenetic protein regulation of enteric neuronal phenotypic diversity: relationship to timing of cell cycle exit. J. Comp. Neurol. 509, 474–492 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Wang, H. et al. The timing and location of glial cell line-derived neurotrophic factor expression determine enteric nervous system structure and function. J. Neurosci. 30, 1523–1538 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Kulkarni, S. et al. Adult enteric nervous system in health is maintained by a dynamic balance between neuronal apoptosis and neurogenesis. Proc. Natl Acad. Sci. USA 114, E3709–E3718 (2017). This exciting and controversial recent paper provides evidence that there is robust and continuous generation and replacement of enteric neurons in healthy adult mice that is fuelled by nestin-expressing progenitor cells.

    Article  PubMed  CAS  Google Scholar 

  132. Corpening, J. C., Cantrell, V. A., Deal, K. K. & Southard-Smith, E. M. A. Histone2BCerulean BAC transgene identifies differential expression of Phox2b in migrating enteric neural crest derivatives and enteric glia. Dev. Dyn. 237, 1119–1132 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Gianino, S., Grider, J. R., Cresswell, J., Enomoto, H. & Heuckeroth, R. O. GDNF availability determines enteric neuron number by controlling precursor proliferation. Development 130, 2187–2198 (2003). This work investigates the role of programmed cell death in ENS development and finds no evidence of cell death in healthy mice or altered enteric neuronal number in mice lacking key molecules in the apoptotic cascade such as apoptosis regulator BAX and BH3-interacting domain death agonist (BID).

    Article  PubMed  CAS  Google Scholar 

  134. Gershon, M. D., Sherman, D. & Gintzler, A. An ultrastructural analysis of the developing enteric nervous system of the guinea pig small intestine. J. Neurocytol. 10, 271–296 (1981).

    Article  PubMed  CAS  Google Scholar 

  135. Li, Z. et al. Essential roles of enteric neuronal serotonin in gastrointestinal motility and the development/survival of enteric dopaminergic neurons. J. Neurosci. 31, 8998–9009 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Liu, M. T., Kuan, Y. H., Wang, J., Hen, R. & Gershon, M. D. 5-HT4 receptor-mediated neuroprotection and neurogenesis in the enteric nervous system of adult mice. J. Neurosci. 29, 9683–9699 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Belkind-Gerson, J. et al. Colitis induces enteric neurogenesis through a 5-HT4-dependent mechanism. Inflamm. Bowel Dis. 21, 870–878 (2015).

    Article  PubMed  Google Scholar 

  138. Goto, K. et al. Activation of 5-HT4 receptors facilitates neurogenesis from transplanted neural stem cells in the anastomotic ileum. J. Physiol. Sci. 66, 67–76 (2016).

    Article  PubMed  CAS  Google Scholar 

  139. Li, Z. et al. Cholinergic neuronal regulation of enteric neurogenesis, GI motility, and mucosal homeostasis: insights from mice that under-or overexpress the presynaptic choline transporter. Gastroenterology 150, S343 (2016).

    Article  Google Scholar 

  140. Gaspar, P., Cases, O. & Maroteaux, L. The developmental role of serotonin: news from mouse molecular genetics. Nat. Rev. Neurosci. 4, 1002–1012 (2003).

    Article  PubMed  CAS  Google Scholar 

  141. D’Amato, R. J., Largent, B. L., Snowman, A. M. & Snyder, S. H. Selective labeling of serotonin uptake sites in rat brain by [3H]citalopram contrasted to labeling of multiple sites by [3H]imipramine. J. Pharmacol. Exp. Ther. 242, 364–371 (1987).

    PubMed  Google Scholar 

  142. Lebrand, C. et al. Transient developmental expression of monoamine transporters in the rodent forebrain. J. Comp. Neurol. 401, 506–524 (1998).

    Article  PubMed  CAS  Google Scholar 

  143. Chen, X. et al. Disruption of transient serotonin accumulation by non-serotonin-producing neurons impairs cortical map development. Cell Rep. 10, 346–358 (2015).

    Article  CAS  Google Scholar 

  144. Rothman, T. P., Ross, L. L. & Gershon, M. D. Separately developing axonal uptake of 5-hydroxytryptamine and norepinephrine in the ileum of the rabbit. Brain Res. 115, 437–456 (1976).

    Article  PubMed  CAS  Google Scholar 

  145. Chitkara, D. K., van Tilburg, M. A., Blois-Martin, N. & Whitehead, W. E. Early life risk factors that contribute to irritable bowel syndrome in adults: a systematic review. Am. J. Gastroenterol. 103, 765–774 (2008).

    Article  PubMed  Google Scholar 

  146. Chitkara, D. K. et al. Recollection of childhood abdominal pain in adults with functional gastrointestinal disorders. Scand. J. Gastroenterol. 44, 301–307 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Faure, C., Patey, N., Gauthier, C., Brooks, E. M. & Mawe, G. M. Serotonin signaling is altered in irritable bowel syndrome with diarrhea but not in functional dyspepsia in pediatric age patients. Gastroenterology 139, 249–258 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Al-Chaer, E. D., Kawasaki, M. & Pasricha, P. J. A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development. Gastroenterology 119, 1276–1285 (2000).

    Article  PubMed  CAS  Google Scholar 

  149. Gareau, M. G., Jury, J., Yang, P. C., MacQueen, G. & Perdue, M. H. Neonatal maternal separation causes colonic dysfunction in rat pups including impaired host resistance. Pediatr. Res. 59, 83–88 (2006).

    Article  PubMed  Google Scholar 

  150. Gareau, M. G., Jury, J. & Perdue, M. H. Neonatal maternal separation of rat pups results in abnormal cholinergic regulation of epithelial permeability. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G198–203 (2007).

    Article  PubMed  CAS  Google Scholar 

  151. Spiller, R. & Garsed, K. Postinfectious irritable bowel syndrome. Gastroenterology 136, 1979–1988 (2009).

    Article  PubMed  Google Scholar 

  152. Dinan, T. G., Cryan, J., Shanahan, F., Keeling, P. W. & Quigley, E. M. IBS: an epigenetic perspective. Nat. Rev. Gastroenterol. Hepatol. 7, 465–471 (2010).

    Article  PubMed  Google Scholar 

  153. Hao, M. M. et al. Enteric nervous system assembly: functional integration within the developing gut. Dev. Biol. 417, 168–181 (2016).

    Article  PubMed  CAS  Google Scholar 

  154. Foong, J. P. Postnatal development of the mouse enteric nervous system. Adv. Exp. Med. Biol. 891, 135–143 (2016).

    Article  PubMed  CAS  Google Scholar 

  155. Laranjeira, C. et al. Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J. Clin. Invest. 121, 3412–3424 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Rao, M. & Gershon, M. D. The bowel and beyond: the enteric nervous system in neurological disorders. Nat. Rev. Gastroenterol. Hepatol. 13, 517–528 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Rao, M. et al. Enteric glia express proteolipid protein 1 and are a transcriptionally unique population of glia in the mammalian nervous system. Glia 63, 2040–2057 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Hanani, M. & Reichenbach, A. Morphology of horseradish peroxidase (HRP)-injected glial cells in the myenteric plexus of the guinea-pig. Cell Tissue Res. 278, 153–160 (1994).

    Article  PubMed  CAS  Google Scholar 

  159. Gulbransen, B. D. & Sharkey, K. A. Novel functional roles for enteric glia in the gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 9, 625–632 (2012).

    Article  PubMed  CAS  Google Scholar 

  160. Boesmans, W., Lasrado, R., Vanden Berghe, P. & Pachnis, V. Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system. Glia 63, 229–241 (2015).

    Article  PubMed  Google Scholar 

  161. Bush, T. G. et al. Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice. Cell 93, 189–201 (1998).

    Article  PubMed  CAS  Google Scholar 

  162. Aube, A. C. et al. Changes in enteric neurone phenotype and intestinal functions in a transgenic mouse model of enteric glia disruption. Gut 55, 630–637 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Rao, M. et al. Enteric glia regulate gastrointestinal motility but are not required for maintenance of the epithelium in mice. Gastroenterology 153, 1068–1081 (2017). This work uses genetic ablation to eliminate the majority of enteric glia in young adult mice and shows that enteric glia are required for the regulation of GI motility in a sex-dependent manner but are dispensable for epithelial functions such as barrier formation and cell proliferation.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Maudlej, N. & Hanani, M. Modulation of dye coupling among glial cells in the myenteric and submucosal plexuses of the guinea pig. Brain Res. 578, 94–98 (1992).

    Article  PubMed  CAS  Google Scholar 

  165. McClain, J. L. et al. Ca2+ responses in enteric glia are mediated by connexin-43 hemichannels and modulate colonic transit in mice. Gastroenterology 146, 497–507 (2014).

    Article  PubMed  CAS  Google Scholar 

  166. McClain, J. L., Fried, D. E. & Gulbransen, B. D. Agonist-evoked Ca2+ signaling in enteric glia drives neural programs that regulate intestinal motility in mice. Cell. Mol. Gastroenterol. Hepatol. 1, 631–645 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Grubisic, V. & Gulbransen, B. D. Enteric glial activity regulates secretomotor function in the mouse colon but does not acutely affect gut permeability. J. Physiol. 595, 3409–3424 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Rosenbaum, C. et al. Activation of myenteric glia during acute inflammation in vitro and in vivo. PLoS ONE 11, e0151335 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Kabouridis, P. S. et al. Microbiota controls the homeostasis of glial cells in the gut lamina propria. Neuron 85, 289–295 (2015). Using genetic lineage tracing, the authors of this paper show that mucosal glia are continually renewed from cells migrating out of the enteric plexuses and that this migration is dependent upon the microbiota.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Collins, J., Borojevic, R., Verdu, E. F., Huizinga, J. D. & Ratcliffe, E. M. Intestinal microbiota influence the early postnatal development of the enteric nervous system. Neurogastroenterol Motil. 26, 98–107 (2014). This paper is among the first studies to examine the consequences of an absent microbiota on ENS development; it shows that the early postnatal ENS in the small intestines of germ-free mice has altered neuron numbers and subtype composition, which are associated with defects in bowel motility.

    Article  PubMed  CAS  Google Scholar 

  171. McVey Neufeld, K. A., Mao, Y. K., Bienenstock, J., Foster, J. A. & Kunze, W. A. The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterol Motil. 25, 183–e88 (2013).

    Article  PubMed  CAS  Google Scholar 

  172. McVey Neufeld, K. A., Perez-Burgos, A., Mao, Y. K., Bienenstock, J. & Kunze, W. A. The gut microbiome restores intrinsic and extrinsic nerve function in germ-free mice accompanied by changes in calbindin. Neurogastroenterol Motil. 27, 627–636 (2015).

    Article  PubMed  CAS  Google Scholar 

  173. Durbec, P. L., Larsson-Blomberg, L. B., Schuchardt, A., Costantini, F. & Pachnis, V. Common origin and developmental dependence on c-ret of subsets of enteric and sympathetic neuroblasts. Development 122, 349–358 (1996).

    PubMed  CAS  Google Scholar 

  174. Birchmeier, C. ErbB receptors and the development of the nervous system. Exp. Cell Res. 315, 611–618 (2009).

    Article  PubMed  CAS  Google Scholar 

  175. Chalazonitis, A., D’Autreaux, F., Pham, T. D., Kessler, J. A. & Gershon, M. D. Bone morphogenetic proteins regulate enteric gliogenesis by modulating ErbB3 signaling. Dev. Biol. 350, 64–79 (2011).

    Article  PubMed  CAS  Google Scholar 

  176. Horn, J. P. The sacral autonomic outflow is parasympathetic: Langley got it right. Clin. Auton. Res. 28, 181–185 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Espinosa-Medina, I. et al. The sacral autonomic outflow is sympathetic. Science 354, 893–897 (2016). This work analyses the sacral autonomic outflow and concludes on genetic grounds that the sacral outflow is actually sympathetic and not parasympathetic as previously thought on the basis of physiological evidence; the physiological and genetic evidence still have to be reconciled.

    Article  PubMed  CAS  Google Scholar 

  178. Altschuler, S. M., Escardo, J., Lynn, R. B. & Miselis, R. R. The central organization of the vagus nerve innervating the colon of the rat. Gastroenterology 104, 502–509 (1993).

    Article  PubMed  CAS  Google Scholar 

  179. Payette, R. F. et al. Origin and morphology of nerve fibers in the aganglionic colon of the lethal spotted (ls/ls) mutant mouse. J. Comp. Neurol. 257, 237–252 (1987).

    Article  PubMed  CAS  Google Scholar 

  180. Le Douarin, N. M. & Kalcheim, C. The Neural Crest. (Cambridge Univ. Press, Cambridge, 1999).

    Book  Google Scholar 

  181. Bohorquez, D. V. et al. An enteroendocrine cell-enteric glia connection revealed by 3D electron microscopy. PLoS ONE 9, e89881 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Ibiza, S. et al. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature 535, 440–443 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

M.R. receives research support from the US National Institutes of Health (NIH; DK098903), the Paul Marks Scholars Program, the American Gastroenterological Association–Takeda Pharmaceuticals International Research Scholar Award in Neurogastroenterology, and Ivan and Phyllis Seidenberg. M.D.G. is supported by grants NS15547, NS099270 and DK093094 from the NIH and by the Einhorn Family Charitable Trust.

Reviewer information

Nature Reviews Neuroscience thanks R. O. Heuckeroth, V. Pachnis and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for article, contributed substantially to the discussion of content, wrote the article and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Michael D. Gershon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Ganglionated plexuses

Nerve networks interspersed with ganglia (aggregates of neuronal cell bodies) at the internodes of connecting nerve strands.

Bilateria

Animals with bilateral symmetry.

Hirschsprung disease

(HSCR). A congenital absence of ganglia from a segment of gut that may be short or long.

Chronic intestinal pseudo-obstruction

A gut motility disorder giving rise to a functional but not mechanical obstruction to the transit of intestinal contents.

Somites

Bilaterally paired blocks of paraxial mesoderm that form along the head-to-tail axis of the developing embryo in segmented animals.

Sacral crest

Neural crest at an axial level caudal to somite 28.

Proximal gut

The region of the bowel closest to the mouth, including the oesophagus, stomach, and duodenum rostral to the ampulla of Vater (corresponding to the fetal foregut).

Neuraxis

The main axis of the CNS along the anterior–posterior dimension.

Pharyngeal arches

A series of outpouchings of mesoderm on both sides of the developing pharynx.

Mesenchyme

The embryonic connective tissue. It is of mesodermal origin in most of the body, but in the region of the head and neck it is derived from the neural crest.

Sclerotome

The portion of a somite that gives rise to bone or other skeletal tissue.

Melanocytic lineage

Neural-crest-derived precursors that commit to developing as melanin-producing cells.

Retinaldehyde dehydrogenase 2

Enzyme that catalyses the synthesis of retinoic acid from retinaldehyde.

Hindgut

Most caudal region of the fetal bowel; the region supplied by the inferior mesenteric artery.

Megacolon

Massively dilated colon, such as that which occurs proximal to the pseudo-obstruction caused by an aganglionic region of colon.

Waardenburg-Shah syndrome

Syndrome characterized by hearing loss and pigment abnormalities that can be associated with enteric aganglionosis.

Confetti transgene

A genetic multicolour-reporting system typically used in mice that enables expression of one of four different fluorescent proteins, the expression of which results from stochastic recombination in individual cells and is maintained in their progeny, allowing cell lineage to be traced.

Interstitial cells of Cajal

Connective tissue cells of the gut derived from a mesenchymal precursor common to intestinal smooth muscle. They are innervated and serve as pacemakers to intestinal smooth muscle.

Enterocytes

Simple columnar epithelial cells that constitute the majority of intestinal epithelial cells and have both absorptive and secretory functions.

Lamina propria

Loose areolar connective tissue of the intestinal mucosa. It lies under the mucosal epithelium and is demarcated from the submucosa by a thin layer of smooth muscle called the muscularis mucosa.

Dye-coupled

Relating to two cells joined by gap junctions that permit membrane-impermeant dye (and, often, electrical charge) to pass from one cell to another.

Lipopolysaccharide

(LPS). A component of the outer membrane of Gram-negative bacteria. Also known as endotoxin, it is a ligand for Toll-like receptor 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, M., Gershon, M.D. Enteric nervous system development: what could possibly go wrong?. Nat Rev Neurosci 19, 552–565 (2018). https://doi.org/10.1038/s41583-018-0041-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-018-0041-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing