Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms underlying HIV-associated cognitive impairment and emerging therapies for its management

A Publisher Correction to this article was published on 23 October 2023

This article has been updated

Abstract

People living with HIV are affected by the chronic consequences of neurocognitive impairment (NCI) despite antiretroviral therapies that suppress viral replication, improve health and extend life. Furthermore, viral suppression does not eliminate the virus, and remaining infected cells may continue to produce viral proteins that trigger neurodegeneration. Comorbidities such as diabetes mellitus are likely to contribute substantially to CNS injury in people living with HIV, and some components of antiretroviral therapy exert undesirable side effects on the nervous system. No treatment for HIV-associated NCI has been approved by the European Medicines Agency or the US Food and Drug Administration. Historically, roadblocks to developing effective treatments have included a limited understanding of the pathophysiology of HIV-associated NCI and heterogeneity in its clinical manifestations. This heterogeneity might reflect multiple underlying causes that differ among individuals, rather than a single unifying neuropathogenesis. Despite these complexities, accelerating discoveries in HIV neuropathogenesis are yielding potentially druggable targets, including excessive immune activation, metabolic alterations culminating in mitochondrial dysfunction, dysregulation of metal ion homeostasis and lysosomal function, and microbiome alterations. In addition to drug treatments, we also highlight the importance of non-pharmacological interventions. By revisiting mechanisms implicated in NCI and potential interventions addressing these mechanisms, we hope to supply reasons for optimism in people living with HIV affected by NCI and their care providers.

Key points

  • The pathogenesis of neurocognitive impairment (NCI) in people living with HIV is complex, and no disease-modifying therapies are currently available.

  • Neuroinflammatory and metabolic changes are hallmarks of HIV-associated NCI and are potential therapeutic targets.

  • The neuropathogenesis of HIV-associated NCI in diverse ethnic and racial groups warrants further exploration.

  • Examples of promising targets for the treatment of NCI in people living with HIV include human growth hormone-releasing hormone (hGHRH) and the enzyme phosphatidylinositol-glycan-specific phospholipase D (also known as GPLD1).

  • Non-pharmacological interventions that might enhance cognitive function in people living with HIV include increased physical activity, improved quality of sleep and nutritional treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of factors contributing to neurocognitive impairment in people living with HIV with viral suppression.
Fig. 2: Hypothetical model of HIV-mediated myeloid cell and neuronal dysfunction in HIV-associated NCI.

Similar content being viewed by others

Change history

References

  1. Heaton, R. K. et al. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J. Neurovirol. 17, 3–16 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. HIV.gov. Global HIV/AIDS Overview https://www.who.int/data/gho/data/themes/hiv-aids (2023).

  3. Ellis, R. J. et al. Randomized trial of central nervous system-targeted antiretrovirals for HIV-associated neurocognitive disorder. Clin. Infect. Dis. 58, 1015–1022 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Wright, E. J. Neurological disease: the effects of HIV and antiretroviral therapy and the implications for early antiretroviral therapy initiation. Curr. Opin. HIV AIDS 4, 447–452 (2009).

    Article  PubMed  Google Scholar 

  5. Vecchio, A. et al. Neurocognitive effects of antiretroviral initiation among people living with HIV in rural Uganda. J. Acquir. Immune Defic. Syndr. 84, 534–542 (2020).

    Article  PubMed  Google Scholar 

  6. Gao, C. et al. Antiretroviral therapy improves neurocognitive impairment in people living with HIV? A meta-analysis. Int. J. Nurs. Sci. 7, 238–247 (2020).

    PubMed  PubMed Central  Google Scholar 

  7. Coban, H. et al. Impact of aging on neurocognitive performance in previously antiretroviral-naive HIV-infected individuals on their first suppressive regimen. AIDS 31, 1565–1571 (2017).

    Article  PubMed  Google Scholar 

  8. Simioni, S. et al. Cognitive dysfunction in HIV patients despite long-standing suppression of viremia. AIDS 24, 1243–1250 (2010).

    Article  PubMed  Google Scholar 

  9. Brew, B. J. et al. Factors in AIDS dementia complex trial design: results and lessons from the abacavir trial. PLoS Clin. Trials 2, e13 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Antinori, A. et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69, 1789–1799 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Nightingale, S. et al. Moving on From HAND: why we need new criteria for cognitive impairment in persons living with human immunodeficiency virus and a proposed way forward. Clin. Infect. Dis. 73, 1113–1118 (2021).

    Article  PubMed  Google Scholar 

  12. Nightingale, S. et al. A new approach to cognitive impairment in people with HIV. Lancet HIV 9, e815–e817 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Nightingale, S. et al. Cognitive impairment in people living with HIV: consensus recommendations for a new approach. Nat. Rev. Neurol. 19, 424–433 (2023).

    Article  PubMed  Google Scholar 

  14. Alakkas, A. et al. White matter damage, neuroinflammation, and neuronal integrity in HAND. J. Neurovirol. 25, 32–41 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Eden, A. et al. Increased intrathecal immune activation in virally suppressed HIV-1 infected patients with neurocognitive impairment. PLoS One 11, e0157160 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ellis, R. J. et al. Higher cerebrospinal fluid biomarkers of neuronal injury in HIV-associated neurocognitive impairment. J. Neurovirol. 28, 438–445 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Heaton, R. K. et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology 75, 2087–2096 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chetty, L., Cobbing, S. & Chetty, V. Physical activity and exercise for older people living with HIV: a protocol for a scoping review. Syst. Rev. 9, 60 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Saloner, R. & Cysique, L. A. HIV-associated neurocognitive disorders: a global perspective. J. Int. Neuropsychol. Soc. 23, 860–869 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Anuradha, S. et al. Factors influencing adherence to ART: new insights from a center providing free ART under the national program in Delhi, India. J. Int. Assoc. Provid. AIDS Care 12, 195–201 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Benedict, R. H., Mezhir, J. J., Walsh, K. & Hewitt, R. G. Impact of human immunodeficiency virus type-1-associated cognitive dysfunction on activities of daily living and quality of life. Arch. Clin. Neuropsychol. 15, 535–544 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Jones, J. D. et al. Changes in cognition precede changes in HRQoL among HIV+ males: longitudinal analysis of the multicenter AIDS cohort study. Neuropsychology 33, 370–378 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pinheiro, C. A. et al. Depression and diagnosis of neurocognitive impairment in HIV-positive patients. Braz. J. Med. Biol. Res. 49, e5344 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Laverick, R. et al. Self-reported decline in everyday function, cognitive symptoms, and cognitive function in people with HIV. J. Acquir. Immune Defic. Syndr. 76, e74–e83 (2017).

    Article  PubMed  Google Scholar 

  25. Sevigny, J. J. et al. An evaluation of neurocognitive status and markers of immune activation as predictors of time to death in advanced HIV infection. Arch. Neurol. 64, 97–102 (2007).

    Article  PubMed  Google Scholar 

  26. Valcour, V. G., Shikuma, C. M., Watters, M. R. & Sacktor, N. C. Cognitive impairment in older HIV-1-seropositive individuals: prevalence and potential mechanisms. AIDS 18, S79–86 (2004).

    Article  PubMed  Google Scholar 

  27. Wendelken, L. A. & Valcour, V. Impact of HIV and aging on neuropsychological function. J. Neurovirol. 18, 256–263 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Becker, J. T., Lopez, O. L., Dew, M. A. & Aizenstein, H. J. Prevalence of cognitive disorders differs as a function of age in HIV virus infection. AIDS 18 (Suppl. 1), S11–18 (2004).

    Article  PubMed  Google Scholar 

  29. Antiretroviral Therapy Cohort Collaboration. Life expectancy of individuals on combination antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies. Lancet 372, 293–299 (2008).

    Article  Google Scholar 

  30. Ellis, R. J. et al. CD4 nadir is a predictor of HIV neurocognitive impairment in the era of combination antiretroviral therapy. AIDS 25, 1747–1751 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Munoz-Moreno, J. A. et al. Nadir CD4 cell count predicts neurocognitive impairment in HIV-infected patients. AIDS Res. Hum. Retroviruses 24, 1301–1307 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Grant, I. et al. Asymptomatic HIV-associated neurocognitive impairment increases risk for symptomatic decline. Neurology 82, 2055–2062 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Centers for Disease Control and Prevention. Estimated HIV Incidence and Prevalence in the United States, 2015–2019 http://www.cdc.gov/hiv/library/reports/hiv-surveillance.html (2021).

  34. Manly, J. J. et al. The effect of African-American acculturation on neuropsychological test performance in normal and HIV-positive individuals. The HIV Neurobehavioral Research Center (HNRC) Group. J. Int. Neuropsychol. Soc. 4, 291–302 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Vo, Q. T. et al. Neuropsychological test performance before and after HIV-1 seroconversion: the Multicenter AIDS Cohort Study. J. Neurovirol. 19, 24–31 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Winston, A. et al. Neurocognitive function in HIV Infected patients on antiretroviral therapy. PLoS One 8, e61949 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Watson, C. W.-M. et al. Ethnic/racial disparities in longitudinal neurocognitive decline in people with HIV. J. Acquir. Immune Defic. Syndr. 90, 97–105 (2022).

    Article  PubMed Central  Google Scholar 

  38. Tan, Y. W., Burgess, G. H. & Green, R. J. The effects of acculturation on neuropsychological test performance: a systematic literature review. Clin. Neuropsychol. 35, 541–571 (2021).

    Article  PubMed  Google Scholar 

  39. Wojna, V. et al. Prevalence of human immunodeficiency virus-associated cognitive impairment in a group of Hispanic women at risk for neurological impairment. J. Neurovirol. 12, 356–364 (2006).

    Article  PubMed  Google Scholar 

  40. Kamalyan, L. et al. Neurocognitive impairment in Spanish-speaking Latinos living with HIV in the US: application of the neuropsychological norms for the US-Mexico border region in Spanish (NP-NUMBRS). Clin. Neuropsychol. 35, 433–452 (2021).

    Article  PubMed  Google Scholar 

  41. Ruhanya, V. et al. HIV-1 subtype C Vpr amino acid residue 45y and specific conserved fragments are associated with neurocognitive impairment and markers of viral load. AIDS Res. Hum. Retroviruses 39, 166–175 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Aderinto, N. HIV-associated neurocognitive disorders in Africa: an emerging challenge: a correspondence. IJS Glob. Health 6, e0146 (2023).

    Google Scholar 

  43. Sacktor, N., Nakasujja, N., Robertson, K. & Clifford, D. B. HIV-associated cognitive impairment in sub-Saharan Africa–the potential effect of clade diversity. Nat. Clin. Pract. Neurol. 3, 436–443 (2007).

    Article  PubMed  Google Scholar 

  44. Gray, L. R. et al. CNS-specific regulatory elements in brain-derived HIV-1 strains affect responses to latency-reversing agents with implications for cure strategies. Mol. Psychiatry 21, 574–584 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Nath, A. Eradication of human immunodeficiency virus from brain reservoirs. J. Neurovirol. 21, 227–234 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Ellis, R. & Letendre, S. L. Update and new directions in therapeutics for neurological complications of HIV infections. Neurotherapeutics 13, 471–476 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Desplats, P. et al. Molecular and pathologic insights from latent HIV-1 infection in the human brain. Neurology 80, 1415–1423 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Perez-Valero, I. et al. Cerebrospinal fluid viral escape in aviremic HIV-infected patients receiving antiretroviral therapy: prevalence, risk factors and neurocognitive effects. AIDS 33, 475–481 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Mukerji, S. S. et al. Temporal patterns and drug resistance in CSF viral escape among ART-experienced HIV-1 infected adults. J. Acquir. Immune Defic. Syndr. 75, 246–255 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Trunfio, M. et al. Cerebrospinal fluid HIV-1 escape according to different thresholds and underlying comorbidities: is it time to assess the definitions. AIDS 33, 759–762 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Manesh, A. et al. Symptomatic HIV CNS viral escape among patients on effective cART. Int. J. Infect. Dis. 84, 39–43 (2019).

    Article  PubMed  Google Scholar 

  52. Cochrane, C. R. et al. Intact HIV proviruses persist in the brain despite viral suppression with ART. Ann. Neurol. 92, 532–544 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Oliveira, M. F. et al. Evaluation of archival HIV DNA in brain and lymphoid tissues. J. Virol. 97, e0054323 (2023).

    Article  PubMed  Google Scholar 

  54. Sanna, P. P., Repunte-Canonigo, V., Masliah, E. & Lefebvre, C. Gene expression patterns associated with neurological disease in human HIV infection. PLoS One 12, e0175316 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Farhadian, S. F. et al. Single-cell RNA sequencing reveals microglia-like cells in cerebrospinal fluid during virologically suppressed HIV. JCI Insight 3, e121718 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Suzuki, K. et al. Elevation of cell-associated HIV-1 transcripts in CSF CD4+ T cells, despite effective antiretroviral therapy, is linked to brain injury. Proc. Natl Acad. Sci. USA 119, e2210584119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Spudich, S. et al. Persistent HIV-infected cells in cerebrospinal fluid are associated with poorer neurocognitive performance. J. Clin. Invest. 129, 3339–3346 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lian, X. et al. Signatures of immune selection in intact and defective proviruses distinguish HIV-1 elite controllers. Sci. Transl. Med. 13, eabl4097 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Einkauf, K. B. et al. Parallel analysis of transcription, integration, and sequence of single HIV-1 proviruses. Cell 185, 266–282.e15 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pollack, R. A. et al. Defective HIV-1 proviruses are expressed and can be recognized by cytotoxic T lymphocytes, which shape the proviral landscape. Cell Host Microbe 21, 494–506.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lenassi, M. et al. HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic 11, 110–122 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Arakelyan, A., Fitzgerald, W., Zicari, S., Vanpouille, C. & Margolis, L. Extracellular vesicles carry HIV Env and facilitate Hiv infection of human lymphoid tissue. Sci. Rep. 7, 1695 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chandra, P. K. et al. Latent HIV-exosomes induce mitochondrial hyperfusion due to loss of phosphorylated dynamin-related protein 1 in brain endothelium. Mol. Neurobiol. 58, 2974–2989 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pulliam, L., Sun, B., Mustapic, M., Chawla, S. & Kapogiannis, D. Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer’s disease. J. Neurovirol. 25, 702–709 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Giannessi, F., Aiello, A., Franchi, F., Percario, Z. A. & Affabris, E. The role of extracellular vesicles as allies of HIV, HCV and SARS viruses. Viruses 12, 571 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mahajan, S. D., Ordain, N. S., Kutscher, H., Karki, S. & Reynolds, J. L. HIV neuroinflammation: the role of exosomes in cell signaling, prognostic and diagnostic biomarkers and drug delivery. Front. Cell Dev. Biol. 9, 637192 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ojha, C. R. et al. Interplay between autophagy, exosomes and HIV-1 associated neurological disorders: new insights for diagnosis and therapeutic applications. Viruses 9, 176 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Shrivastava, S. et al. Exosome-mediated stable epigenetic repression of HIV-1. Nat. Commun. 12, 5541 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Narayanan, A. et al. Exosomes derived from HIV-1-infected cells contain trans-activation response element RNA. J. Biol. Chem. 288, 20014–20033 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sampey, G. C. et al. Exosomes from HIV-1-infected cells stimulate production of pro-inflammatory cytokines through Trans-activating response (TAR) RNA. J. Biol. Chem. 291, 1251–1266 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Barclay, R. A. et al. Exosomes from uninfected cells activate transcription of latent HIV-1. J. Biol. Chem. 292, 14764 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tyagi, M., Bukrinsky, M. & Simon, G. L. Mechanisms of HIV transcriptional regulation by drugs of abuse. Curr. HIV Res. 14, 442–454 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Saloner, R. et al. Benzodiazepine use is associated with an increased risk of neurocognitive impairment in people living with HIV. J. Acquir. Immune Defic. Syndr. 82, 475–482 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sundermann, E. E. et al. The association between benzodiazepine use and greater risk of neurocognitive impairment is moderated by medical burden in people with HIV. J. Neurovirol. 28, 410–421 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lin, A. et al. Alprazolam prompts HIV-1 transcriptional reactivation and enhances CTL response through RUNX1 inhibition and STAT5 activation. Front. Neurol. 12, 663793 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Qu, Y. et al. Legacy effect on neuropsychological function in HIV-infected men on combination antiretroviral therapy. AIDS 36, 19–27 (2022).

    Article  PubMed  Google Scholar 

  77. Rawlings, S. A., Chaillon, A., Smith, D. & Gianella, S. Scale up rapid research autopsies for tissue immunology. Nature 595, 352 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Marquine, M. J. et al. The impact of ethnicity/race on the association between the Veterans Aging Cohort Study (VACS) index and neurocognitive function among HIV-infected persons. J. Neurovirol. 22, 442–454 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Fields, J. A. et al. Alterations in brain TREM2 and amyloid-β levels are associated with neurocognitive impairment in HIV-infected persons on antiretroviral therapy. J. Neurochem. 147, 784–802 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hulgan, T. et al. Mitochondrial DNA haplogroups and neurocognitive impairment during HIV infection. Clin. Infect. Dis. 61, 1476–1484 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Moore, D. J. et al. Cortical and subcortical neurodegeneration is associated with HIV neurocognitive impairment. AIDS 20, 879–887 (2006).

    Article  PubMed  Google Scholar 

  82. Levine, A. J. et al. Multilevel analysis of neuropathogenesis of neurocognitive impairment in HIV. J. Neurovirol. 22, 431–441 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Masliah, E. et al. Dendritic injury is a pathological substrate for human immunodeficiency virus-related cognitive disorders. HNRC Group. The HIV Neurobehavioral Research Center. Ann. Neurol. 42, 963–972 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Jernigan, T. L. et al. Clinical factors related to brain structure in HIV: the CHARTER study. J. Neurovirol. 17, 248–257 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gaetani, L. et al. Neurofilament light chain as a biomarker in neurological disorders. J. Neurol. Neurosurg. Psychiatry 90, 870–881 (2019).

    Article  PubMed  Google Scholar 

  86. Tortelli, R. et al. Cerebrospinal fluid neurofilament light chain levels: marker of progression to generalized amyotrophic lateral sclerosis. Eur. J. Neurol. 22, 215–218 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Tortelli, R. et al. Elevated cerebrospinal fluid neurofilament light levels in patients with amyotrophic lateral sclerosis: a possible marker of disease severity and progression. Eur. J. Neurol. 19, 1561–1567 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Petzold, A. et al. CSF neurofilament levels: a potential prognostic marker in Guillain-Barre syndrome. Neurology 67, 1071–1073 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Petzold, A. et al. CSF protein biomarkers for proximal axonal damage improve prognostic accuracy in the acute phase of Guillain-Barre syndrome. Muscle Nerve 40, 42–49 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Mariotto, S. et al. Serum and cerebrospinal neurofilament light chain levels in patients with acquired peripheral neuropathies. J. Peripher. Nerv. Syst. 23, 174–177 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Peterson, J. et al. Cerebrospinal fluid (CSF) neuronal biomarkers across the spectrum of HIV infection: hierarchy of injury and detection. PLoS One 9, e116081 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Gardner, M. B. & Luciw, P. A. Animal models of AIDS. FASEB J. 3, 2593–2606 (1989).

    Article  CAS  PubMed  Google Scholar 

  93. Reid, W. et al. An HIV-1 transgenic rat that develops HIV-related pathology and immunologic dysfunction. Proc. Natl Acad. Sci. USA 98, 9271–9276 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Keppler, O. T. et al. Progress toward a human CD4/CCR5 transgenic rat model for de novo infection by human immunodeficiency virus type 1. J. Exp. Med. 195, 719–736 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Klotman, P. E. & Notkins, A. L. Transgenic models of human immunodeficiency virus type-1. Curr. Top. Microbiol. Immunol. 206, 197–222 (1996).

    CAS  PubMed  Google Scholar 

  96. Toggas, S. M. & Mucke, L. Transgenic models in the study of AIDS dementia complex. Curr. Top. Microbiol. Immunol. 206, 223–241 (1996).

    CAS  PubMed  Google Scholar 

  97. Van Duyne, R. et al. The utilization of humanized mouse models for the study of human retroviral infections. Retrovirology 6, 76 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Thaney, V. E. et al. Transgenic mice expressing HIV-1 envelope protein gp120 in the brain as an animal model in neuroAIDS research. J. Neurovirol. 24, 156–167 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Ambrose, Z., KewalRamani, V. N., Bieniasz, P. D. & Hatziioannou, T. HIV/AIDS: in search of an animal model. Trends Biotechnol. 25, 333–337 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Clements, J. E., Anderson, M. G., Zink, M. C., Joag, S. V. & Narayan, O. The SIV model of AIDS encephalopathy. Role of neurotropic viruses in diseases. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 72, 147–157 (1994).

    CAS  PubMed  Google Scholar 

  101. Olmsted, R. A. et al. Molecular cloning of feline immunodeficiency virus. Proc. Natl Acad. Sci. USA 86, 2448–2452 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Meeker, R. B., Thiede, B. A., Hall, C., English, R. & Tompkins, M. Cortical cell loss in asymptomatic cats experimentally infected with feline immunodeficiency virus. AIDS Res. Hum. Retroviruses 13, 1131–1140 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Jacobson, S. et al. Cortical neuronal cytoskeletal changes associated with FIV infection. J. Neurovirol. 3, 283–289 (1997).

    Article  CAS  PubMed  Google Scholar 

  104. Clements, J. E., Mankowski, J. L., Gama, L. & Zink, M. C. The accelerated simian immunodeficiency virus macaque model of human immunodeficiency virus-associated neurological disease: from mechanism to treatment. J. Neurovirol. 14, 309–317 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Williams, R. et al. Nonhuman primate models of NeuroAIDS. J. Neurovirol. 14, 292–300 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Potash, M. J. et al. A mouse model for study of systemic HIV-1 infection, antiviral immune responses, and neuroinvasiveness. Proc. Natl Acad. Sci. USA 102, 3760–3765 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kim, B. H. et al. CCL2 is required for initiation but not persistence of HIV infection mediated neurocognitive disease in mice. Sci. Rep. 13, 6577 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tyor, W. R., Power, C., Gendelman, H. E. & Markham, R. B. A model of human immunodeficiency virus encephalitis in scid mice. Proc. Natl Acad. Sci. USA 90, 8658–8662 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Persidsky, Y. et al. Human immunodeficiency virus encephalitis in SCID mice. Am. J. Pathol. 149, 1027–1053 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Poluektova, L. Y., Munn, D. H., Persidsky, Y. & Gendelman, H. E. Generation of cytotoxic T cells against virus-infected human brain macrophages in a murine model of HIV-1 encephalitis. J. Immunol. 168, 3941–3949 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Zhang, J. et al. Human microglia extensively reconstitute in humanized-BLT mice with human interleukin-34 transgene and support HIV-1 brain infection. Front. Immunol. 12, 672415 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Dash, P. K. et al. Loss of neuronal integrity during progressive HIV-1 infection of humanized mice. J. Neurosci. 31, 3148–3157 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Leonard, J. M. et al. Development of disease and virus recovery in transgenic mice containing HIV proviral DNA. Science 242, 1665–1670 (1988).

    Article  CAS  PubMed  Google Scholar 

  114. Iwakura, Y. et al. The induction of cataracts by HIV-1 in transgenic mice. AIDS 6, 1069–1075 (1992).

    Article  CAS  PubMed  Google Scholar 

  115. Hanna, Z. et al. Transgenic mice expressing human immunodeficiency virus type 1 in immune cells develop a severe AIDS-like disease. J. Virol. 72, 121–132 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hanna, Z. et al. Nef harbors a major determinant of pathogenicity for an AIDS-like disease induced by HIV-1 in transgenic mice. Cell 95, 163–175 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Thomas, F. P., Chalk, C., Lalonde, R., Robitaille, Y. & Jolicoeur, P. Expression of human immunodeficiency virus type 1 in the nervous system of transgenic mice leads to neurological disease. J. Virol. 68, 7099–7107 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Toggas, S. M. et al. Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice. Nature 367, 188–193 (1994).

    Article  CAS  PubMed  Google Scholar 

  119. Berrada, F. et al. Neuronal expression of human immunodeficiency virus type 1 env proteins in transgenic mice: distribution in the central nervous system and pathological alterations. J. Virol. 69, 6770–6778 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Toneatto, S., Finco, O., van der Putten, H., Abrignani, S. & Annunziata, P. Evidence of blood-brain barrier alteration and activation in HIV-1 gp120 transgenic mice. AIDS 13, 2343–2348 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Kim, B. O. et al. Neuropathologies in transgenic mice expressing human immunodeficiency virus type 1 Tat protein under the regulation of the astrocyte-specific glial fibrillary acidic protein promoter and doxycycline. Am. J. Pathol. 162, 1693–1707 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bruce-Keller, A. J. et al. Morphine causes rapid increases in glial activation and neuronal injury in the striatum of inducible HIV-1 Tat transgenic mice. Glia 56, 1414–1427 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Jones, G. J. et al. HIV-1 Vpr causes neuronal apoptosis and in vivo neurodegeneration. J. Neurosci. 27, 3703–3711 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. D’Hooge, R., Franck, F., Mucke, L. & De Deyn, P. P. Age-related behavioural deficits in transgenic mice expressing the HIV-1 coat protein gp120. Eur. J. Neurosci. 11, 4398–4402 (1999).

    Article  PubMed  Google Scholar 

  125. Maung, R. et al. CCR5 knockout prevents neuronal injury and behavioral impairment induced in a transgenic mouse model by a CXCR4-using HIV-1 glycoprotein 120. J. Immunol. 193, 1895–1910 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Imamichi, H. et al. Defective HIV-1 proviruses produce viral proteins. Proc. Natl Acad. Sci. USA 117, 3704–3710 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ferdin, J. et al. Viral protein Nef is detected in plasma of half of HIV-infected adults with undetectable plasma HIV RNA. PLoS One 13, e0191613 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Bachani, M., Sacktor, N., McArthur, J. C., Nath, A. & Rumbaugh, J. Detection of anti-tat antibodies in CSF of individuals with HIV-associated neurocognitive disorders. J. Neurovirol. 19, 82–88 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dinkins, C., Arko-Mensah, J. & Deretic, V. Autophagy and HIV. Semin. Cell Dev. Biol. 21, 712–718 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Nath, A., Conant, K., Chen, P., Scott, C. & Major, E. O. Transient exposure to HIV-1 Tat protein results in cytokine production in macrophages and astrocytes. A hit and run phenomenon. J. Biol. Chem. 274, 17098–17102 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Nath, A., Padua, R. A. & Geiger, J. D. HIV-1 coat protein gp120-induced increases in levels of intrasynaptosomal calcium. Brain Res. 678, 200–206 (1995).

    Article  CAS  PubMed  Google Scholar 

  132. Piller, S. C., Jans, P., Gage, P. W. & Jans, D. A. Extracellular HIV-1 virus protein R causes a large inward current and cell death in cultured hippocampal neurons: implications for AIDS pathology. Proc. Natl Acad. Sci. USA 95, 4595–4600 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Rozzi, S. J., Avdoshina, V., Fields, J. A. & Mocchetti, I. Human immunodeficiency virus Tat impairs mitochondrial fission in neurons. Cell Death Discov. 4, 8 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Sawaya, B. E., Khalili, K., Mercer, W. E., Denisova, L. & Amini, S. Cooperative actions of HIV-1 Vpr and p53 modulate viral gene transcription. J. Biol. Chem. 273, 20052–20057 (1998).

    Article  CAS  PubMed  Google Scholar 

  135. Teodorof-Diedrich, C. & Spector, S. A. Human immunodeficiency virus type 1 gp120 and Tat induce mitochondrial fragmentation and incomplete mitophagy in human neurons. J. Virol. 92, e00993 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Thangaraj, A. et al. HIV-1 TAT-mediated microglial activation: role of mitochondrial dysfunction and defective mitophagy. Autophagy 14, 1596–1619 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Villeneuve, L. M. et al. HIV-1 transgenic rats display mitochondrial abnormalities consistent with abnormal energy generation and distribution. J. Neurovirol. 22, 564–574 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gendelman, H. E., Lipton, S. A., Tardieu, M., Bukrinsky, M. I. & Nottet, H. S. The neuropathogenesis of HIV-1 infection. J. Leukoc. Biol. 56, 389–398 (1994).

    Article  CAS  PubMed  Google Scholar 

  139. Kato, T., Hirano, A., Llena, J. F. & Dembitzer, H. M. Neuropathology of acquired immune deficiency syndrome (AIDS) in 53 autopsy cases with particular emphasis on microglial nodules and multinucleated giant cells. Acta Neuropathol. 73, 287–294 (1987).

    Article  CAS  PubMed  Google Scholar 

  140. Michaels, J., Price, R. W. & Rosenblum, M. K. Microglia in the giant cell encephalitis of acquired immune deficiency syndrome: proliferation, infection and fusion. Acta Neuropathol. 76, 373–379 (1988).

    Article  CAS  PubMed  Google Scholar 

  141. Iskander, S., Walsh, K. A. & Hammond, R. R. Human CNS cultures exposed to HIV-1 gp120 reproduce dendritic injuries of HIV-1-associated dementia. J. Neuroinflammation 1, 7 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Bryant, A. K. et al. Antiretroviral therapy reduces neurodegeneration in HIV infection. AIDS 29, 323–330 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. Gonzalez-Scarano, F. & Martin-Garcia, J. The neuropathogenesis of AIDS. Nat. Rev. Immunol. 5, 69–81 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Thompson, K. A., Cherry, C. L., Bell, J. E. & McLean, C. A. Brain cell reservoirs of latent virus in presymptomatic HIV-infected individuals. Am. J. Pathol. 179, 1623–1629 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Churchill, M. J. et al. Use of laser capture microdissection to detect integrated HIV-1 DNA in macrophages and astrocytes from autopsy brain tissues. J. Neurovirol. 12, 146–152 (2006).

    Article  PubMed  Google Scholar 

  146. Ryan, S. K. et al. Neuroinflammation and EIF2 signaling persist despite antiretroviral treatment in an hiPSC tri-culture model of HIV infection. Stem Cell Rep. 14, 991 (2020).

    Article  Google Scholar 

  147. Kraft-Terry, S. D., Buch, S. J., Fox, H. S. & Gendelman, H. E. A coat of many colors: neuroimmune crosstalk in human immunodeficiency virus infection. Neuron 64, 133–145 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Gosselin, D. et al. An environment-dependent transcriptional network specifies human microglia identity. Science 356, eaal3222 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Kaul, M., Garden, G. A. & Lipton, S. A. Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410, 988–994 (2001).

    Article  CAS  PubMed  Google Scholar 

  150. Saylor, D. et al. HIV-associated neurocognitive disorder — pathogenesis and prospects for treatment. Nat. Rev. Neurol. 12, 309 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Heyes, M. P. et al. Sources of the neurotoxin quinolinic acid in the brain of HIV-1-infected patients and retrovirus-infected macaques. FASEB J. 12, 881–896 (1998).

    CAS  PubMed  Google Scholar 

  152. Smith, D. G. et al. Quinolinic acid is produced by macrophages stimulated by platelet activating factor, Nef and Tat. J. Neurovirol. 7, 56–60 (2001).

    Article  CAS  PubMed  Google Scholar 

  153. Anderson, A. M. et al. HIV, prospective memory, and cerebrospinal fluid concentrations of quinolinic acid and phosphorylated Tau. J. Neuroimmunol. 319, 13–18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Giulian, D. et al. Study of receptor-mediated neurotoxins released by HIV-1-infected mononuclear phagocytes found in human brain. J. Neurosci. 16, 3139–3153 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Borjabad, A. et al. Significant effects of antiretroviral therapy on global gene expression in brain tissues of patients with HIV-1-associated neurocognitive disorders. PLoS Pathog. 7, e1002213 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Levine, A. J. et al. Systems analysis of human brain gene expression: mechanisms for HIV-associated neurocognitive impairment and common pathways with Alzheimer’s disease. BMC Med. Genomics 6, 4 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Borjabad, A. & Volsky, D. J. Common transcriptional signatures in brain tissue from patients with HIV-associated neurocognitive disorders, Alzheimer’s disease, and multiple sclerosis. J. Neuroimmune Pharmacol. 7, 914–926 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Ginsberg, S. D. et al. Expression profiling suggests microglial impairment in HIV neuropathogenesis. Ann. Neurol. 83, 406–417 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Chivero, E. T. et al. HIV-1 tat primes and activates microglial NLRP3 inflammasome-mediated neuroinflammation. J. Neurosci. 37, 3599–3609 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Barber, S. A., Herbst, D. S., Bullock, B. T., Gama, L. & Clements, J. E. Innate immune responses and control of acute simian immunodeficiency virus replication in the central nervous system. J. Neurovirol. 10, 15–20 (2004).

    Article  CAS  PubMed  Google Scholar 

  161. Veazey, R. S. et al. Prevention of SHIV transmission by topical IFN-β treatment. Mucosal Immunol. 9, 1528–1536 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Honda, K., Takaoka, A. & Taniguchi, T. Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity 25, 349–360 (2006).

    Article  CAS  PubMed  Google Scholar 

  163. Alammar, L., Gama, L. & Clements, J. E. Simian immunodeficiency virus infection in the brain and lung leads to differential type I IFN signaling during acute infection. J. Immunol. 186, 4008–4018 (2011).

    Article  CAS  PubMed  Google Scholar 

  164. Zaritsky, L. A., Gama, L. & Clements, J. E. Canonical type I IFN signaling in simian immunodeficiency virus-infected macrophages is disrupted by astrocyte-secreted CCL2. J. Immunol. 188, 3876–3885 (2012).

    Article  CAS  PubMed  Google Scholar 

  165. Thaney, V. E. et al. IFNβ protects neurons from damage in a murine model of HIV-1 associated brain injury. Sci. Rep. 7, 46514 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Gelman, B. B. et al. The National NeuroAIDS Tissue Consortium brain gene array: two types of HIV-associated neurocognitive impairment. PLoS One 7, e46178 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Singh, H. et al. A pivotal role for interferon-α receptor-1 in neuronal injury induced by HIV-1. J. Neuroinflammation 17, 226 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Thaney, V. E. & Kaul, M. Type I interferons in NeuroHIV. Viral Immunol. 32, 7–14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Bourke, N. M. et al. Control of HIV infection by IFN-α: implications for latency and a cure. Cell Mol. Life Sci. 75, 775–783 (2018).

    Article  CAS  PubMed  Google Scholar 

  170. Rivero-Juarez, A., Frias, M. & Rivero, A. Current views on interferon therapy for HIV. Expert Opin. Biol. Ther. 16, 1135–1142 (2016).

    Article  CAS  PubMed  Google Scholar 

  171. Utay, N. S. & Douek, D. C. Interferons and HIV infection: the good, the bad, and the ugly. Pathog. Immun. 1, 107–116 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Noel, N. et al. Interferon-associated therapies toward HIV control: the back and forth. Cytokine Growth Factor. Rev. 40, 99–112 (2018).

    Article  CAS  PubMed  Google Scholar 

  173. Sugawara, S., Thomas, D. L. & Balagopal, A. HIV-1 infection and type 1 interferon: navigating through uncertain waters. AIDS Res. Hum. Retroviruses 35, 25–32 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Gondim, M. V. P. et al. Heightened resistance to host type 1 interferons characterizes HIV-1 at transmission and after antiretroviral therapy interruption. Sci. Transl. Med. 13, eabd8179 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Zhen, A. et al. Targeting type I interferon-mediated activation restores immune function in chronic HIV infection. J. Clin. Invest. 127, 260–268 (2017).

    Article  PubMed  Google Scholar 

  176. Sandstrom, T. S., Ranganath, N. & Angel, J. B. Impairment of the type I interferon response by HIV-1: potential targets for HIV eradication. Cytokine Growth Factor. Rev. 37, 1–16 (2017).

    Article  CAS  PubMed  Google Scholar 

  177. Hua, S. et al. Pegylated interferon-α-induced natural killer cell activation is associated with human immunodeficiency virus-1 DNA decline in antiretroviral therapy-treated HIV-1/hepatitis C virus-coinfected patients. Clin. Infect. Dis. 66, 1910–1917 (2018).

    Article  CAS  PubMed  Google Scholar 

  178. George, J. & Mattapallil, J. J. Interferon-α subtypes as an adjunct therapeutic approach for human immunodeficiency virus functional cure. Front. Immunol. 9, 299 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Paul, S., Ricour, C., Sommereyns, C., Sorgeloos, F. & Michiels, T. Type I interferon response in the central nervous system. Biochimie 89, 770–778 (2007).

    Article  CAS  PubMed  Google Scholar 

  180. Markowitz, C. E. Interferon-beta: mechanism of action and dosing issues. Neurology 68 (Suppl. 4), S8–11 (2007).

    Article  CAS  PubMed  Google Scholar 

  181. Kitai, R., Zhao, M. L., Zhang, N., Hua, L. L. & Lee, S. C. Role of MIP-1β and RANTES in HIV-1 infection of microglia: inhibition of infection and induction by IFNβ. J. Neuroimmunol. 110, 230–239 (2000).

    Article  CAS  PubMed  Google Scholar 

  182. Ferreira, A. C. et al. From the periphery to the brain: Lipocalin-2, a friend or foe? Prog. Neurobiol. 131, 120–136 (2015).

    Article  CAS  PubMed  Google Scholar 

  183. Flo, T. H. et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432, 917–921 (2004).

    Article  CAS  PubMed  Google Scholar 

  184. Yang, J. et al. An iron delivery pathway mediated by a lipocalin. Mol. Cell 10, 1045–1056 (2002).

    Article  CAS  PubMed  Google Scholar 

  185. Bao, G. et al. Iron traffics in circulation bound to a siderocalin (Ngal)-catechol complex. Nat. Chem. Biol. 6, 602–609 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Bachman, M. A., Miller, V. L. & Weiser, J. N. Mucosal lipocalin 2 has pro-inflammatory and iron-sequestering effects in response to bacterial enterobactin. PLoS Pathog. 5, e1000622 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Jha, M. K. et al. Diverse functional roles of lipocalin-2 in the central nervous system. Neurosci. Biobehav. Rev. 49, 135–156 (2015).

    Article  CAS  PubMed  Google Scholar 

  188. Ferreira, A. C. et al. Lipocalin-2 is involved in emotional behaviors and cognitive function. Front. Cell Neurosci. 7, 122 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Ferreira, A. C. et al. Lipocalin-2 regulates adult neurogenesis and contextual discriminative behaviours. Mol. Psychiatry 23, 1031–1039 (2018).

    Article  CAS  PubMed  Google Scholar 

  190. Mucha, M. et al. Lipocalin-2 controls neuronal excitability and anxiety by regulating dendritic spine formation and maturation. Proc. Natl Acad. Sci. USA 108, 18436–18441 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Lee, S. et al. A dual role of lipocalin 2 in the apoptosis and deramification of activated microglia. J. Immunol. 179, 3231–3241 (2007).

    Article  CAS  PubMed  Google Scholar 

  192. Xing, C. et al. Neuronal production of lipocalin-2 as a help-me signal for glial activation. Stroke 45, 2085–2092 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Bi, F. et al. Reactive astrocytes secrete lcn2 to promote neuron death. Proc. Natl Acad. Sci. USA 110, 4069–4074 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Dekens, D. W. et al. Lipocalin 2 as a link between ageing, risk factor conditions and age-related brain diseases. Ageing Res. Rev. 70, 101414 (2021).

    Article  CAS  PubMed  Google Scholar 

  195. Ojeda-Juarez, D. et al. Lipocalin-2 mediates HIV-1 induced neuronal injury and behavioral deficits by overriding CCR5-dependent protection. Brain Behav. Immun. 89, 184–199 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Williams, M. E., Ipser, J. C., Stein, D. J., Joska, J. A. & Naude, P. J. W. The association of immune markers with cognitive performance in South African HIV-positive patients. J. Neuroimmune Pharmacol. 14, 679–687 (2019).

    Article  PubMed  Google Scholar 

  197. Ivey, N. S., MacLean, A. G. & Lackner, A. A. Acquired immunodeficiency syndrome and the blood-brain barrier. J. Neurovirol. 15, 111–122 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Maclean, A. G., Belenchia, G. E., Bieniemy, D. N., Moroney-Rasmussen, T. A. & Lackner, A. A. Simian immunodeficiency virus disrupts extended lengths of the blood–brain barrier. J. Med. Primatol. 34, 237–242 (2005).

    Article  CAS  PubMed  Google Scholar 

  199. Lu, T. S. et al. Cannabinoids inhibit HIV-1 Gp120-mediated insults in brain microvascular endothelial cells. J. Immunol. 181, 6406–6416 (2008).

    Article  CAS  PubMed  Google Scholar 

  200. Eugenin, E. A. et al. Shedding of PECAM-1 during HIV infection: a potential role for soluble PECAM-1 in the pathogenesis of NeuroAIDS. J. Leukoc. Biol. 79, 444–452 (2006).

    Article  CAS  PubMed  Google Scholar 

  201. Persidsky, Y., Zheng, J., Miller, D. & Gendelman, H. E. Mononuclear phagocytes mediate blood-brain barrier compromise and neuronal injury during HIV-1-associated dementia. J. Leukoc. Biol. 68, 413–422 (2000).

    Article  CAS  PubMed  Google Scholar 

  202. Valdebenito, S., Castellano, P., Ajasin, D. & Eugenin, E. A. Astrocytes are HIV reservoirs in the brain: a cell type with poor HIV infectivity and replication but efficient cell-to-cell viral transfer. J. Neurochem. 158, 429–443 (2021).

    Article  CAS  PubMed  Google Scholar 

  203. Churchill, M. J. et al. Extensive astrocyte infection is prominent in human immunodeficiency virus-associated dementia. Ann. Neurol. 66, 253–258 (2009).

    Article  PubMed  Google Scholar 

  204. Wahl, A. & Al-Harthi, L. HIV infection of non-classical cells in the brain. Retrovirology 20, 1 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Bertrand, L., Cho, H. J. & Toborek, M. Blood-brain barrier pericytes as a target for HIV-1 infection. Brain 142, 502–511 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Fattakhov, N., Torices, S., Stangis, M., Park, M. & Toborek, M. Synergistic impairment of the neurovascular unit by HIV-1 infection and methamphetamine use: implications for HIV-1-associated neurocognitive disorders. Viruses 13, 1883 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Toborek, M. et al. HIV-Tat protein induces oxidative and inflammatory pathways in brain endothelium. J. Neurochem. 84, 169–179 (2003).

    Article  CAS  PubMed  Google Scholar 

  209. Avraham, H. K., Jiang, S., Lee, T. H., Prakash, O. & Avraham, S. HIV-1 Tat-mediated effects on focal adhesion assembly and permeability in brain microvascular endothelial cells. J. Immunol. 173, 6228–6233 (2004).

    Article  CAS  PubMed  Google Scholar 

  210. Andras, I. E. et al. HIV-1 Tat protein alters tight junction protein expression and distribution in cultured brain endothelial cells. J. Neurosci. Res. 74, 255–265 (2003).

    Article  CAS  PubMed  Google Scholar 

  211. Andras, I. E. et al. Signaling mechanisms of HIV-1 Tat-induced alterations of claudin-5 expression in brain endothelial cells. J. Cereb. Blood Flow Metab. 25, 1159–1170 (2005).

    Article  CAS  PubMed  Google Scholar 

  212. de Almeida, S. M. et al. Biomarkers of chemotaxis and inflammation in cerebrospinal fluid and serum in individuals with HIV-1 subtype C versus B. J. Neurovirol. 22, 715–724 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Wang, Z., Shang, H. & Jiang, Y. Chemokines and chemokine receptors: accomplices for human immunodeficiency virus infection and latency. Front. Immunol. 8, 1274 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Anderson, A. M. et al. Cerebrospinal fluid CXCL10 is associated with the presence of low level CSF HIV during suppressive antiretroviral therapy. J. Neuroimmunol. 353, 577493 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Letendre, S. L. et al. Chemokines in cerebrospinal fluid correlate with cerebral metabolite patterns in HIV-infected individuals. J. Neurovirol. 17, 63–69 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Alves de Lima, K. et al. Meningeal γδ T cells regulate anxiety-like behavior via IL-17a signaling in neurons. Nat. Immunol. 21, 1421–1429 (2020).

    Article  CAS  PubMed  Google Scholar 

  217. Prieto, G. A. & Cotman, C. W. Cytokines and cytokine networks target neurons to modulate long-term potentiation. Cytokine Growth Factor Rev. 34, 27–33 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Harden, L. M., du Plessis, I., Poole, S. & Laburn, H. P. Interleukin (IL)-6 and IL-1β act synergistically within the brain to induce sickness behavior and fever in rats. Brain Behav. Immun. 22, 838–849 (2008).

    Article  CAS  PubMed  Google Scholar 

  219. Bourgognon, J. M. & Cavanagh, J. The role of cytokines in modulating learning and memory and brain plasticity. Brain Neurosci. Adv. 4, 2398212820979802 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Stein, D. S. et al. Predicting clinical progression or death in subjects with early-stage human immunodeficiency virus (HIV) infection: a comparative analysis of quantification of HIV RNA, soluble tumor necrosis factor type II receptors, neopterin, and β2-microglobulin. J. Infect. Dis. 176, 1161–1167 (1997).

    Article  CAS  PubMed  Google Scholar 

  221. Diez-Ruiz, A. et al. Soluble receptors for tumour necrosis factor in clinical laboratory diagnosis. Eur. J. Haematol. 54, 1–8 (1995).

    Article  CAS  PubMed  Google Scholar 

  222. Savès, M. et al. Prognostic value of plasma markers of immune activation in patients with advanced HIV disease treated by combination antiretroviral therapy. Clin. Immunol. 99, 347–352 (2001).

    Article  PubMed  Google Scholar 

  223. Suh, J. et al. Progressive increase in central nervous system immune activation in untreated primary HIV-1 infection. J. Neuroinflammation 11, 199 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Hagberg, L. et al. Cerebrospinal fluid neopterin: an informative biomarker of central nervous system immune activation in HIV-1 infection. AIDS Res. Ther. 7, 15 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Walsh, J. G. et al. Rapid inflammasome activation in microglia contributes to brain disease in HIV/AIDS. Retrovirology 11, 35 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Mamik, M. K. et al. HIV-1 viral protein R activates NLRP3 inflammasome in microglia: implications for HIV-1 associated neuroinflammation. J. Neuroimmune Pharmacol. 12, 233–248 (2017).

    Article  PubMed  Google Scholar 

  227. Mamik, M. K. & Power, C. Inflammasomes in neurological diseases: emerging pathogenic and therapeutic concepts. Brain 140, 2273–2285 (2017).

    Article  PubMed  Google Scholar 

  228. Sil, S. et al. Role of inflammasomes in HIV-1 and drug abuse mediated neuroinflammaging. Cells 9, 1857 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Periyasamy, P., Thangaraj, A., Bendi, V. S. & Buch, S. HIV-1 Tat-mediated microglial inflammation involves a novel miRNA-34a-NLRC5-NFκB signaling axis. Brain Behav. Immun. 80, 227–237 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Kelley, N., Jeltema, D., Duan, Y. & He, Y. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int. J. Mol. Sci. 20, 3328 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Swanson, K. V., Deng, M. & Ting, J. P. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19, 477–489 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Mullis, C. & Swartz, T. H. NLRP3 inflammasome signaling as a link between HIV-1 infection and atherosclerotic cardiovascular disease. Front. Cardiovasc. Med. 7, 95 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Andrade-Santos, J. L. et al. IL18 gene polymorphism and its influence on CD4+ T-cell recovery in HIV-positive patients receiving antiretroviral therapy. Infect. Genet. Evol. 75, 103997 (2019).

    Article  CAS  PubMed  Google Scholar 

  234. Howren, M. B., Lamkin, D. M. & Suls, J. Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom. Med. 71, 171–186 (2009).

    Article  CAS  PubMed  Google Scholar 

  235. Dowlati, Y. et al. A meta-analysis of cytokines in major depression. Biol. Psychiatry 67, 446–457 (2010).

    Article  CAS  PubMed  Google Scholar 

  236. Haapakoski, R., Mathieu, J., Ebmeier, K. P., Alenius, H. & Kivimaki, M. Cumulative meta-analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive protein in patients with major depressive disorder. Brain Behav. Immun. 49, 206–215 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Miller, A. H., Haroon, E., Raison, C. L. & Felger, J. C. Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress Anxiety 30, 297–306 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Ding, Y. & Dai, J. Advance in stress for depressive disorder. Adv. Exp. Med. Biol. 1180, 147–178 (2019).

    Article  CAS  PubMed  Google Scholar 

  239. Juruena, M. F., Eror, F., Cleare, A. J. & Young, A. H. The role of early life stress in HPA axis and anxiety. Adv. Exp. Med. Biol. 1191, 141–153 (2020).

    Article  CAS  PubMed  Google Scholar 

  240. Smith, S. M. & Vale, W. W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci. 8, 383–395 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Polak, P. & Hall, M. N. mTOR and the control of whole body metabolism. Curr. Opin. Cell Biol. 21, 209–218 (2009).

    Article  CAS  PubMed  Google Scholar 

  242. Laplante, M. & Sabatini, D. M. mTOR signaling at a glance. J. Cell Sci. 122, 3589–3594 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Boden, G. Interaction between free fatty acids and glucose metabolism. Curr. Opin. Clin. Nutr. Metab. Care 5, 545–549 (2002).

    Article  CAS  PubMed  Google Scholar 

  244. Snodgrass, R. G., Huang, S., Choi, I. W., Rutledge, J. C. & Hwang, D. H. Inflammasome-mediated secretion of IL-1β in human monocytes through TLR2 activation; modulation by dietary fatty acids. J. Immunol. 191, 4337–4347 (2013).

    Article  CAS  PubMed  Google Scholar 

  245. Akbay, B., Shmakova, A., Vassetzky, Y. & Dokudovskaya, S. Modulation of mTORC1 signaling pathway by HIV-1. Cells 9, 1090 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Cinti, A. et al. HIV-1 enhances mTORC1 activity and repositions lysosomes to the periphery by co-opting Rag GTPases. Sci. Rep. 7, 5515 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Alirezaei, M., Kiosses, W. B. & Fox, H. S. Decreased neuronal autophagy in HIV dementia: a mechanism of indirect neurotoxicity. Autophagy 4, 963–966 (2008).

    Article  CAS  PubMed  Google Scholar 

  248. Alirezaei, M., Kiosses, W. B., Flynn, C. T., Brady, N. R. & Fox, H. S. Disruption of neuronal autophagy by infected microglia results in neurodegeneration. PLoS One 3, e2906 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Papadopoli, D. et al. mTOR as a central regulator of lifespan and aging. F1000Research 8, 998 (2019).

    Article  CAS  Google Scholar 

  250. Mannick, J. B. et al. mTOR inhibition improves immune function in the elderly. Sci. Transl. Med. 6, 268ra179 (2014).

    Article  PubMed  Google Scholar 

  251. Westendorp, R. G. et al. Nonagenarian siblings and their offspring display lower risk of mortality and morbidity than sporadic nonagenarians: the Leiden Longevity Study. J. Am. Geriatr. Soc. 57, 1634–1637 (2009).

    Article  PubMed  Google Scholar 

  252. Barzilai, N., Gabriely, I., Gabriely, M., Iankowitz, N. & Sorkin, J. D. Offspring of centenarians have a favorable lipid profile. J. Am. Geriatr. Soc. 49, 76–79 (2001).

    Article  CAS  PubMed  Google Scholar 

  253. Zheng, Y. & Jiang, Y. mTOR inhibitors at a glance. Mol. Cell Pharmacol. 7, 15–20 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Avila, C. L. et al. mTOR inhibition suppresses posttransplant alloantibody production through direct inhibition of alloprimed B cells and sparing of CD8+ antibody-suppressing T cells. Transplantation 100, 1898–1906 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Achim, C. L. et al. Increased accumulation of intraneuronal amyloid β in HIV-infected patients. J. Neuroimmune Pharmacol. 4, 190–199 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Soontornniyomkij, V. et al. Cerebral β-amyloid deposition predicts HIV-associated neurocognitive disorders in APOE ε4 carriers. AIDS 26, 2327–2335 (2012).

    Article  CAS  PubMed  Google Scholar 

  257. Green, D. A. et al. Brain deposition of beta-amyloid is a common pathologic feature in HIV positive patients. AIDS 19, 407–411 (2005).

    Article  CAS  PubMed  Google Scholar 

  258. Ortega, M. & Ances, B. M. Role of HIV in amyloid metabolism. J. Neuroimmune Pharmacol. 9, 483–491 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Hategan, A., Masliah, E. & Nath, A. HIV and Alzheimer’s disease: complex interactions of HIV-Tat with amyloid β peptide and Tau protein. J. Neurovirol. 25, 648–660 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Bae, M. et al. Activation of TRPML1 clears intraneuronal Aβ in preclinical models of HIV infection. J. Neurosci. 34, 11485–11503 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Andras, I. E. & Toborek, M. Amyloid beta accumulation in HIV-1-infected brain: the role of the blood brain barrier. IUBMB Life 65, 43–49 (2013).

    Article  CAS  PubMed  Google Scholar 

  262. Breen, E. C. et al. Accelerated aging with HIV begins at the time of initial HIV infection. iScience 25, 104488 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Sehl, M. E. et al. Increased rate of epigenetic aging in men living with HIV prior to treatment. Front. Genet. 12, 796547 (2021).

    Article  CAS  PubMed  Google Scholar 

  264. Gisslen, M. et al. CSF concentrations of soluble TREM2 as a marker of microglial activation in HIV-1 infection. Neurol. Neuroimmunol. Neuroinflamm. 6, e512 (2019).

    Article  PubMed  Google Scholar 

  265. Murray, J. et al. Frontal lobe microglia, neurodegenerative protein accumulation, and cognitive function in people with HIV. Acta Neuropathol. Commun. 10, 69 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Mackiewicz, M. M., Overk, C., Achim, C. L. & Masliah, E. Pathogenesis of age-related HIV neurodegeneration. J. Neurovirol. 25, 622–633 (2019).

    Article  CAS  PubMed  Google Scholar 

  267. Rodriguez-Penney, A. T. et al. Co-morbidities in persons infected with HIV: increased burden with older age and negative effects on health-related quality of life. AIDS Patient Care STDS 27, 5–16 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Allavena, C. et al. Antiretroviral exposure and comorbidities in an aging HIV-infected population: the challenge of geriatric patients. PLoS One 13, e0203895 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Morgello, S. et al. Frailty in medically complex individuals with chronic HIV. AIDS 33, 1603–1611 (2019).

    Article  CAS  PubMed  Google Scholar 

  270. Becker, B. W., Thames, A. D., Woo, E., Castellon, S. A. & Hinkin, C. H. Longitudinal change in cognitive function and medication adherence in HIV-infected adults. AIDS Behav. 15, 1888–1894 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  271. Kamal, S. et al. The presence of human immunodeficiency virus-associated neurocognitive disorders is associated with a lower adherence to combined antiretroviral treatment. Open Forum Infect. Dis. 4, ofx070 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Tedaldi, E. M., Minniti, N. L. & Fischer, T. HIV-associated neurocognitive disorders: the relationship of HIV infection with physical and social comorbidities. Biomed. Res. Int. 2015, 641913 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  273. Ijoma, U. N. et al. Health-related quality of life in people with chronic diseases managed in a low-resource setting — a study from South East Nigeria. Niger. J. Clin. Pract. 22, 1180–1188 (2019).

    Article  CAS  PubMed  Google Scholar 

  274. Morgan, E. E. et al. Synergistic effects of HIV infection and older age on daily functioning. J. Acquir. Immune Defic. Syndr. 61, 341–348 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Tozzi, V. et al. Neurocognitive impairment influences quality of life in HIV-infected patients receiving HAART. Int. J. STD AIDS 15, 254–259 (2004).

    Article  CAS  PubMed  Google Scholar 

  276. Duffau, P. et al. Multimorbidity, age-related comorbidities and mortality: association of activation, senescence and inflammation markers in HIV adults. AIDS 32, 1651–1660 (2018).

    Article  PubMed  Google Scholar 

  277. Banerjee, N., McIntosh, R. C. & Ironson, G. Impaired neurocognitive performance and mortality in HIV: assessing the prognostic value of the HIV-dementia scale. AIDS Behav. 23, 3482–3492 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  278. Erlandson, K. M. et al. Frailty, neurocognitive impairment, or both in predicting poor health outcomes among adults living with human immunodeficiency virus. Clin. Infect. Dis. 68, 131–138 (2019).

    Article  PubMed  Google Scholar 

  279. Naveed, Z. et al. Neurocognitive status and risk of mortality among people living with human immunodeficiency virus: an 18-year retrospective cohort study. Sci. Rep. 11, 3738 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. De Francesco, D. et al. Do people living with HIV experience greater age advancement than their HIV-negative counterparts? AIDS 33, 259–268 (2019).

    Article  PubMed  Google Scholar 

  281. Smith, R. L., de Boer, R., Brul, S., Budovskaya, Y. & van Spek, H. Premature and accelerated aging: HIV or HAART. Front. Genet. 3, 328 (2012).

    PubMed  Google Scholar 

  282. Guaraldi, G. et al. Premature age-related comorbidities among HIV-infected persons compared with the general population. Clin. Infect. Dis. 53, 1120–1126 (2011).

    Article  PubMed  Google Scholar 

  283. Siangphoe, U., Archer, K. J., Nguyen, C. & Lee, K. R. Associations of antiretroviral therapy and comorbidities with neurocognitive outcomes in HIV-1-infected patients. AIDS 34, 893–902 (2020).

    Article  PubMed  Google Scholar 

  284. Becker, J. T. et al. Vascular risk factors, HIV serostatus, and cognitive dysfunction in gay and bisexual men. Neurology 73, 1292–1299 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Wright, E. J. et al. Cardiovascular risk factors associated with lower baseline cognitive performance in HIV-positive persons. Neurology 75, 864–873 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Ellis, R. J., Paolillo, E., Saloner, R. & Heaton, R. K. Higher comorbidity burden predicts worsening neurocognitive trajectories in people with HIV. Clin. Infect. Dis. 74, 1323–1328 (2021).

    Article  PubMed Central  Google Scholar 

  287. Saloner, R. et al. Effects of comorbidity burden and age on brain integrity in HIV. AIDS 33, 1175–1185 (2019).

    Article  PubMed  Google Scholar 

  288. Charlson, M. E., Pompei, P., Ales, K. L. & MacKenzie, C. R. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J. Chronic Dis. 40, 373–383 (1987).

    Article  CAS  PubMed  Google Scholar 

  289. Justice, A. C. et al. Veterans Aging Cohort Study (VACS): overview and description. Med. Care 44 (Suppl. 2), S13–24 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  290. Assmann, G. & Schulte, H. The Prospective Cardiovascular Munster (PROCAM) study: prevalence of hyperlipidemia in persons with hypertension and/or diabetes mellitus and the relationship to coronary heart disease. Am. Heart J. 116, 1713–1724 (1988).

    Article  CAS  PubMed  Google Scholar 

  291. Wong, N. D. & Levy, D. Legacy of the Framingham Heart Study: rationale, design, initial findings, and implications. Glob. Heart 8, 3–9 (2013).

    Article  PubMed  Google Scholar 

  292. Ridker, P. M., Buring, J. E., Rifai, N. & Cook, N. R. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score. JAMA 297, 611–619 (2007).

    Article  CAS  PubMed  Google Scholar 

  293. Ellis, R. J., Paolillo, E., Saloner, R. & Heaton, R. K. Higher comorbidity burden predicts worsening neurocognitive trajectories in people with human immunodeficiency virus. Clin. Infect. Dis. 74, 1323–1328 (2022).

    Article  PubMed  Google Scholar 

  294. Bing, E. G. et al. Psychiatric disorders and drug use among human immunodeficiency virus-infected adults in the United States. Arch. Gen. Psychiatry 58, 721–728 (2001).

    Article  CAS  PubMed  Google Scholar 

  295. Turner, B. J., Laine, C., Cosler, L. & Hauck, W. W. Relationship of gender, depression, and health care delivery with antiretroviral adherence in HIV-infected drug users. J. Gen. Intern. Med. 18, 248–257 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  296. Bigna, J. J., Kenne, A. M., Asangbeh, S. L. & Sibetcheu, A. T. Prevalence of chronic obstructive pulmonary disease in the global population with HIV: a systematic review and meta-analysis. Lancet Glob. Health 6, e193–e202 (2018).

    Article  PubMed  Google Scholar 

  297. Antoniou, T., Yao, Z., Raboud, J. & Gershon, A. S. Incidence of chronic obstructive pulmonary disease in people with HIV in Ontario, 1996-2015: a retrospective population-based cohort study. CMAJ Open 8, E83–E89 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  298. Davis, K. et al. Association between HIV infection and hypertension: a global systematic review and meta-analysis of cross-sectional studies. BMC Med. 19, 105 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  299. van Zoest, R. A., van den Born, B. H. & Reiss, P. Hypertension in people living with HIV. Curr. Opin. HIV AIDS 12, 513–522 (2017).

    Article  PubMed  Google Scholar 

  300. Cholera, R. et al. Depression and engagement in care among newly diagnosed HIV-infected adults in Johannesburg, South Africa. AIDS Behav. 21, 1632–1640 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Pence, B. W. et al. Assessing the effect of measurement-based care depression treatment on HIV medication adherence and health outcomes: rationale and design of the SLAM DUNC Study. Contemp. Clin. Trials 33, 828–838 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  302. Pence, B. W., O’Donnell, J. K. & Gaynes, B. N. Falling through the cracks: the gaps between depression prevalence, diagnosis, treatment, and response in HIV care. AIDS 26, 656–658 (2012).

    Article  PubMed  Google Scholar 

  303. Manner, I. W. et al. Markers of microbial translocation predict hypertension in HIV-infected individuals. HIV Med. 14, 354–361 (2013).

    Article  CAS  PubMed  Google Scholar 

  304. Masenga, S. K. et al. Patho-immune mechanisms of hypertension in HIV: a systematic and thematic review. Curr. Hypertens. Rep. 21, 56 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  305. Ellis, R. J. et al. Higher levels of plasma inflammation biomarkers are associated with depressed mood and quality of life in aging, virally suppressed men, but not women, with HIV. Brain Behav. Immun. Health 7, 100121 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  306. Morris, A. et al. HIV and chronic obstructive pulmonary disease: is it worse and why. Proc. Am. Thorac. Soc. 8, 320–325 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  307. Lee, C. J. et al. The effects of diet alone or in combination with exercise in patients with prehypertension and hypertension: a randomized controlled trial. Korean Circ. J. 48, 637–651 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  308. Miller, E. R. III et al. Results of the diet, exercise, and weight loss intervention trial (DEW-IT). Hypertension 40, 612–618 (2002).

    Article  CAS  PubMed  Google Scholar 

  309. Bliss, E. S., Wong, R. H., Howe, P. R. & Mills, D. E. Benefits of exercise training on cerebrovascular and cognitive function in ageing. J. Cereb. Blood Flow Metab. 41, 447–470 (2021).

    Article  PubMed  Google Scholar 

  310. Yurko-Mauro, K. Cognitive and cardiovascular benefits of docosahexaenoic acid in aging and cognitive decline. Curr. Alzheimer Res. 7, 190–196 (2010).

    Article  CAS  PubMed  Google Scholar 

  311. Coca, A., Monteagudo, E., Domenech, M., Camafort, M. & Sierra, C. Can the treatment of hypertension in the middle-aged prevent dementia in the elderly. High Blood Press. Cardiovasc. Prev. 23, 97–104 (2016).

    Article  PubMed  Google Scholar 

  312. Rouch, L. et al. Blood pressure and cognitive performances in middle-aged adults: the aging, health and work longitudinal study. J. Hypertens. 37, 1244–1253 (2019).

    Article  CAS  PubMed  Google Scholar 

  313. Gupta, A. et al. Treatment of hypertension reduces cognitive decline in older adults: a systematic review and meta-analysis. BMJ Open 10, e038971 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  314. Tadic, M., Cuspidi, C. & Hering, D. Hypertension and cognitive dysfunction in elderly: blood pressure management for this global burden. BMC Cardiovasc. Disord. 16, 208 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  315. Krishnan, S. et al. Metabolic syndrome before and after initiation of antiretroviral therapy in treatment-naive HIV-infected individuals. J. Acquir. Immune Defic. Syndr. 61, 381–389 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Yu, B. et al. Metabolic syndrome and neurocognitive deficits in HIV infection. J. Acquir. Immune Defic. Syndr. 81, 95–101 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  317. McCutchan, J. A. et al. Role of obesity, metabolic variables, and diabetes in HIV-associated neurocognitive disorder. Neurology 78, 485–492 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Panza, F. et al. Metabolic syndrome, mild cognitive impairment, and dementia. Curr. Alzheimer Res. 8, 492–509 (2011).

    Article  CAS  PubMed  Google Scholar 

  319. Morgan, P. K. et al. Macrophage polarization state affects lipid composition and the channeling of exogenous fatty acids into endogenous lipid pools. J. Biol. Chem. 297, 101341 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Bourgeois, C. et al. Contribution of adipose tissue to the chronic immune activation and inflammation associated with HIV infection and its treatment. Front. Immunol. 12, 670566 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Werther, G. A. et al. Localization and characterization of insulin receptors in rat brain and pituitary gland using in vitro autoradiography and computerized densitometry. Endocrinology 121, 1562–1570 (1987).

    Article  CAS  PubMed  Google Scholar 

  322. Marks, J. L., Porte, D. Jr., Stahl, W. L. & Baskin, D. G. Localization of insulin receptor mRNA in rat brain by in situ hybridization. Endocrinology 127, 3234–3236 (1990).

    Article  CAS  PubMed  Google Scholar 

  323. Doré, S., Kar, S., Rowe, W. & Quirion, R. Distribution and levels of [125I]IGF-I, [125I]IGF-II and [125I]insulin receptor binding sites in the hippocampus of aged memory-unimpaired and -impaired rats. Neuroscience 80, 1033–1040 (1997).

    Article  PubMed  Google Scholar 

  324. Schulingkamp, R. J., Pagano, T. C., Hung, D. & Raffa, R. B. Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci. Biobehav. Rev. 24, 855–872 (2000).

    Article  CAS  PubMed  Google Scholar 

  325. Mamik, M. K. et al. Insulin treatment prevents neuroinflammation and neuronal injury with restored neurobehavioral function in models of HIV/AIDS neurodegeneration. J. Neurosci. 36, 10683–10695 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Kim, B. H. et al. Intranasal insulin therapy reverses hippocampal dendritic injury and cognitive impairment in a model of HIV-associated neurocognitive disorders in EcoHIV-infected mice. AIDS 33, 973–984 (2019).

    Article  CAS  PubMed  Google Scholar 

  327. de la Monte, S. M. Intranasal insulin therapy for cognitive impairment and neurodegeneration: current state of the art. Expert Opin. Drug Deliv. 10, 1699–1709 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  328. Hallschmid, M. Intranasal insulin for Alzheimer’s disease. CNS Drugs 35, 21–37 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Craft, S. et al. Safety, efficacy, and feasibility of intranasal insulin for the treatment of mild cognitive impairment and Alzheimer disease dementia: a randomized clinical trial. JAMA Neurol. 77, 1099–1109 (2020).

    Article  PubMed  Google Scholar 

  330. Chang, C. C. et al. HIV and co-infections. Immunol. Rev. 254, 114–142 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  331. Brites, C., Borges, A. H., Sprinz, E. & Page, K. Editorial: HIV and viral co-infections. Front. Microbiol. 12, 731337 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  332. Di Gennaro, F., Vergori, A. & Bavaro, D. F. HIV and co-infections: updates and insights. Viruses 15, 1097 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  333. Fialho, R. et al. Cognitive impairment in HIV and HCV co-infected patients: a systematic review and meta-analysis. AIDS Care 28, 1481–1494 (2016).

    Article  Google Scholar 

  334. Bharti, A. R. et al. Asymptomatic malaria co-infection of HIV-infected adults in nigeria: prevalence of and impact on cognition, mood, and biomarkers of systemic inflammation. J. Acquir. Immune Defic. Syndr. 86, 91–97 (2021).

    Article  CAS  PubMed  Google Scholar 

  335. Hestad, K. A. et al. Cognitive impairment in Zambians with HIV infection and pulmonary tuberculosis. J. Acquir. Immune Defic. Syndr. 80, 110–117 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  336. Ramlall, S. et al. Neurocognitive functioning in MDR-TB patients with and without HIV in KwaZulu-Natal, South Africa. Trop. Med. Int. Health 25, 919–927 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  337. Carlson, R. D. et al. Predictors of neurocognitive outcomes on antiretroviral therapy after cryptococcal meningitis: a prospective cohort study. Metab. Brain Dis. 29, 269–279 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Letendre, S. et al. Higher anti-CMV IgG concentrations are associated with worse neurocognitive performance during suppressive antiretroviral therapy. Clin. Infect. Dis. 67, 770–777 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Brunt, S. J. et al. Short communication: do cytomegalovirus antibody levels associate with age-related syndromes in HIV patients stable on antiretroviral therapy? AIDS Res. Hum. Retroviruses 32, 567–572 (2016).

    Article  CAS  PubMed  Google Scholar 

  340. Gianella, S. & Letendre, S. Cytomegalovirus and HIV: a dangerous Pas de Deux.J. Infect. Dis. 214, S67–S74 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Roberts, E. T., Haan, M. N., Dowd, J. B. & Aiello, A. E. Cytomegalovirus antibody levels, inflammation, and mortality among elderly Latinos over 9 years of follow-up. Am. J. Epidemiol. 172, 363–371 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  342. Wu, M. et al. HIV disease and diabetes interact to affect brain white matter hyperintensities and cognition. AIDS 32, 1803–1810 (2018).

    Article  PubMed  Google Scholar 

  343. Vance, D. E. et al. The synergistic effects of HIV, diabetes, and aging on cognition: implications for practice and research. J. Neurosci. Nurs. 46, 292 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  344. Huck, D. M. et al. Carotid artery stiffness and cognitive decline among women with or at risk for HIV infection. J. Acquired Immune Defic. Syndromes 78, 338–347 (2018).

    Article  Google Scholar 

  345. Freeman, M. L. et al. CD8 T-cell expansion and inflammation linked to CMV coinfection in ART-treated HIV infection. Clin. Infect. Dis. 62, 392–396 (2016).

    Article  CAS  PubMed  Google Scholar 

  346. Sacre, K. et al. A role for cytomegalovirus-specific CD4+CX3CR1+ T cells and cytomegalovirus-induced T-cell immunopathology in HIV-associated atherosclerosis. AIDS 26, 805–814 (2012).

    Article  CAS  PubMed  Google Scholar 

  347. Lupia, T. et al. Presence of Epstein-Barr virus DNA in cerebrospinal fluid is associated with greater HIV RNA and inflammation. AIDS 34, 373–380 (2020).

    Article  CAS  PubMed  Google Scholar 

  348. van der Walt, J. M. et al. Mitochondrial polymorphisms significantly reduce the risk of Parkinson disease. Am. J. Hum. Genet. 72, 804–811 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  349. Wang, D. B. et al. Declines in Drp1 and parkin expression underlie DNA damage-induced changes in mitochondrial length and neuronal death. J. Neurosci. 33, 1357–1365 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Ye, X., Tai, W. & Zhang, D. The early events of Alzheimer’s disease pathology: from mitochondrial dysfunction to BDNF axonal transport deficits. Neurobiol. Aging 33, 1122.e1-10 (2012).

    Article  PubMed  Google Scholar 

  351. Tsunemi, T. et al. PGC-1α rescues Huntington’s disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci. Transl. Med. 4, 142ra197 (2012).

    Article  Google Scholar 

  352. Cotto, B., Natarajaseenivasan, K. & Langford, D. Astrocyte activation and altered metabolism in normal aging, age-related CNS diseases, and HAND. J. Neurovirol. 25, 722–733 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  353. Yellen, G. Fueling thought: management of glycolysis and oxidative phosphorylation in neuronal metabolism. J. Cell Biol. 217, 2235–2246 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Van den Bossche, J., O’Neill, L. A. & Menon, D. Macrophage immunometabolism: where are we (going). Trends Immunol. 38, 395–406 (2017).

    Article  PubMed  Google Scholar 

  355. Devanney, N. A., Stewart, A. N. & Gensel, J. C. Microglia and macrophage metabolism in CNS injury and disease: the role of immunometabolism in neurodegeneration and neurotrauma. Exp. Neurol. 329, 113310 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Yin, F., Sancheti, H., Patil, I. & Cadenas, E. Energy metabolism and inflammation in brain aging and Alzheimer’s disease. Free Radic. Biol. Med. 100, 108–122 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Jiang, T. & Cadenas, E. Astrocytic metabolic and inflammatory changes as a function of age. Aging Cell 13, 1059–1067 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. Swinton, M. K. et al. Mitochondrial biogenesis is altered in HIV+ brains exposed to ART: implications for therapeutic targeting of astroglia. Neurobiol. Dis. 130, 104502 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Fields, J. A. et al. Tenofovir disoproxil fumarate induces peripheral neuropathy and alters inflammation and mitochondrial biogenesis in the brains of mice. Sci. Rep. 9, 17158 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  360. Natarajaseenivasan, K. et al. Astrocytic metabolic switch is a novel etiology for cocaine and HIV-1 Tat-mediated neurotoxicity. Cell Death Dis. 9, 415 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  361. Samikkannu, T., Atluri, V. S. & Nair, M. P. HIV and cocaine impact glial metabolism: energy sensor AMP-activated protein kinase role in mitochondrial biogenesis and epigenetic remodeling. Sci. Rep. 6, 31784 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Sivalingam, K., Cirino, T. J., McLaughlin, J. P. & Samikkannu, T. HIV-Tat and cocaine impact brain energy metabolism: redox modification and mitochondrial biogenesis influence NRF transcription-mediated neurodegeneration. Mol. Neurobiol. 58, 490–504 (2021).

    Article  CAS  PubMed  Google Scholar 

  363. Fields, J. A. & Ellis, R. J. HIV in the cART era and the mitochondrial: immune interface in the CNS. Int. Rev. Neurobiol. 145, 29–65 (2019).

    Article  CAS  PubMed  Google Scholar 

  364. Fields, J. A. et al. HIV alters neuronal mitochondrial fission/fusion in the brain during HIV-associated neurocognitive disorders. Neurobiol. Dis. 86, 154–169 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  365. Avdoshina, V. et al. The HIV protein gp120 alters mitochondrial dynamics in neurons. Neurotox. Res. 29, 583–593 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Vallee, K. J. & Fields, J. A. Caloric restriction mimetic 2-deoxyglucose reduces inflammatory signaling in human astrocytes: implications for therapeutic strategies targeting neurodegenerative diseases. Brain Sci. 12, 308 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  367. Fields, J. A., Swinton, M. K., Montilla-Perez, P., Ricciardelli, E. & Telese, F. The cannabinoid receptor agonist, WIN-55212-2, suppresses the activation of pro-inflammatory genes induced by interleukin 1 beta in human astrocytes. Cannabis Cannabinoid Res. 7, 78–92 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. Sheng, W. S. et al. Synthetic cannabinoid WIN55,212-2 inhibits generation of inflammatory mediators by IL-1β-stimulated human astrocytes. Glia 49, 211–219 (2005).

    Article  PubMed  Google Scholar 

  369. Halcrow, P. W. et al. HIV-1 gp120-induced endolysosome de-acidification leads to efflux of endolysosome iron, and increases in mitochondrial iron and reactive oxygen species. J. Neuroimmune Pharmacol. 17, 181–194 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  370. Halcrow, P. W. et al. Heterogeneity of ferrous iron-containing endolysosomes and effects of endolysosome iron on endolysosome numbers, sizes, and localization patterns. J. Neurochem. 161, 69–83 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Halcrow, P. W., Lynch, M. L., Geiger, J. D. & Ohm, J. E. Role of endolysosome function in iron metabolism and brain carcinogenesis. Semin. Cancer Biol. 76, 74–85 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  372. Kallianpur, A. R. et al. Hemochromatosis (HFE) gene mutations and peripheral neuropathy during antiretroviral therapy. AIDS 20, 1503–1513 (2006).

    Article  CAS  PubMed  Google Scholar 

  373. Fennema-Notestine, C. et al. Iron-regulatory genes are associated with Neuroimaging measures in HIV infection. Brain Imaging Behav. 14, 2037–2049 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  374. Kallianpur, A. R. et al. Genetic variation in iron metabolism is associated with neuropathic pain and pain severity in HIV-infected patients on antiretroviral therapy. PLoS One 9, e103123 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  375. Huang, J. et al. Exercise activates lysosomal function in the brain through AMPK-SIRT1-TFEB pathway. CNS Neurosci. Ther. 25, 796–807 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  376. Bernardo, T. C. et al. Physical exercise and brain mitochondrial fitness: the possible role against Alzheimer’s disease. Brain Pathol. 26, 648–663 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. Ruegsegger, G. N. et al. Exercise and metformin counteract altered mitochondrial function in the insulin-resistant brain. JCI Insight 4, e130681 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  378. Cheng, A. et al. Mitochondrial SIRT3 mediates adaptive responses of neurons to exercise and metabolic and excitatory challenges. Cell Metab. 23, 128–142 (2016).

    Article  CAS  PubMed  Google Scholar 

  379. Park, H. S. et al. Physical exercise prevents cognitive impairment by enhancing hippocampal neuroplasticity and mitochondrial function in doxorubicin-induced chemobrain. Neuropharmacology 133, 451–461 (2018).

    Article  CAS  PubMed  Google Scholar 

  380. Steiner, J. L., Murphy, E. A., McClellan, J. L., Carmichael, M. D. & Davis, J. M. Exercise training increases mitochondrial biogenesis in the brain. J. Appl. Physiol. 111, 1066–1071 (2011).

    Article  CAS  PubMed  Google Scholar 

  381. Ichimura, Y. et al. A ubiquitin-like system mediates protein lipidation. Nature 408, 488–492 (2000).

    Article  CAS  PubMed  Google Scholar 

  382. Kametaka, S., Okano, T., Ohsumi, M. & Ohsumi, Y. Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. J. Biol. Chem. 273, 22284–22291 (1998).

    Article  CAS  PubMed  Google Scholar 

  383. Baba, M., Takeshige, K., Baba, N. & Ohsumi, Y. Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization. J. Cell Biol. 124, 903–913 (1994).

    Article  CAS  PubMed  Google Scholar 

  384. Takeshige, K., Baba, M., Tsuboi, S., Noda, T. & Ohsumi, Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J. Cell Biol. 119, 301–311 (1992).

    Article  CAS  PubMed  Google Scholar 

  385. Brier, L. W. et al. Regulation of LC3 lipidation by the autophagy-specific class III phosphatidylinositol-3 kinase complex. Mol. Biol. Cell 30, 1098–1107 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Ge, L., Baskaran, S., Schekman, R. & Hurley, J. H. The protein-vesicle network of autophagy. Curr. Opin. Cell Biol. 29, 18–24 (2014).

    Article  CAS  PubMed  Google Scholar 

  387. Fields, J. et al. Age-dependent molecular alterations in the autophagy pathway in HIVE patients and in a gp120 tg mouse model: reversal with beclin-1 gene transfer. J. Neurovirol. 19, 89–101 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  388. Fields, J. et al. HIV-1 Tat alters neuronal autophagy by modulating autophagosome fusion to the lysosome: implications for HIV-associated neurocognitive disorders. J. Neurosci. 35, 1921–1938 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  389. Hui, L., Chen, X., Haughey, N. J. & Geiger, J. D. Role of endolysosomes in HIV-1 Tat-induced neurotoxicity. ASN Neuro 4, 243–252 (2012).

    Article  CAS  PubMed  Google Scholar 

  390. Patton, S. M. et al. Cerebrospinal fluid (CSF) biomarkers of iron status are associated with CSF viral load, antiretroviral therapy, and demographic factors in HIV-infected adults. Fluids Barriers CNS 14, 11 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  391. Abioye, A. I., Andersen, C. T., Sudfeld, C. R. & Fawzi, W. W. Anemia, iron status, and HIV: a systematic review of the evidence. Adv. Nutr. 11, 1334–1363 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  392. Paul, B. T., Manz, D. H., Torti, F. M. & Torti, S. V. Mitochondria and iron: current questions. Expert Rev. Hematol. 10, 65–79 (2017).

    Article  CAS  PubMed  Google Scholar 

  393. Khan, N. et al. Endolysosome iron restricts Tat-mediated HIV-1 LTR transactivation by increasing HIV-1 Tat oligomerization and β-catenin expression. J. Neurovirol. 27, 755–773 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  394. Abdel-Haq, R., Schlachetzki, J. C. M., Glass, C. K. & Mazmanian, S. K. Microbiome-microglia connections via the gut-brain axis. J. Exp. Med. 216, 41–59 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  395. Fang, P., Kazmi, S. A., Jameson, K. G. & Hsiao, E. Y. The microbiome as a modifier of neurodegenerative disease risk. Cell Host Microbe 28, 201–222 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  396. Ma, Q. et al. Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. J. Neuroinflammation 16, 53 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  397. Byrnes, S. J. et al. Chronic immune activation and gut barrier dysfunction is associated with neuroinflammation in ART-suppressed SIV+ rhesus macaques. PLoS Pathog. 19, e1011290 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  398. Fuchs, D. et al. Decreased serum tryptophan in patients with HIV-1 infection correlates with increased serum neopterin and with neurologic/psychiatric symptoms. J. Acquir. Immune Defic. Syndr. 3, 873–876 (1990).

    CAS  PubMed  Google Scholar 

  399. Underwood, J., Robertson, K. R. & Winston, A. Could antiretroviral neurotoxicity play a role in the pathogenesis of cognitive impairment in treated HIV disease? AIDS 29, 253–261 (2015).

    Article  CAS  PubMed  Google Scholar 

  400. Lanman, T., Letendre, S., Ma, Q., Bang, A. & Ellis, R. CNS neurotoxicity of antiretrovirals. J. Neuroimmune Pharmacol. 16, 130–143 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  401. Bertrand, L., Velichkovska, M. & Toborek, M. Cerebral vascular toxicity of antiretroviral therapy. J. Neuroimmune Pharmacol. 16, 74–89 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  402. Alonso-Villaverde, C. et al. Host–pathogen interactions in the development of metabolic disturbances and atherosclerosis in HIV infection: the role of CCL2 genetic variants. Cytokine 51, 251–258 (2010).

    Article  CAS  PubMed  Google Scholar 

  403. Tarr, P. E. & Telenti, A. Genetic screening for metabolic and age-related complications in HIV-infected persons. F1000 Med. Rep. 2, 83 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  404. Klotz, U. Pharmacokinetics and drug metabolism in the elderly. Drug Metab. Rev. 41, 67–76 (2009).

    Article  CAS  PubMed  Google Scholar 

  405. Mangoni, A. A. & Jackson, S. H. Age‐related changes in pharmacokinetics and pharmacodynamics: basic principles and practical applications. Br. J. Clin. Pharmacol. 57, 6–14 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  406. Winston, A. et al. Effects of age on antiretroviral plasma drug concentration in HIV-infected subjects undergoing routine therapeutic drug monitoring. J. Antimicrob. Chemother. 68, 1354–1359 (2013).

    CAS  PubMed  Google Scholar 

  407. Bertrand, L., Nair, M. & Toborek, M. Solving the blood-brain barrier challenge for the effective treatment of HIV replication in the central nervous system. Curr. Pharm. Des. 22, 5477–5486 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  408. Nwogu, J. N. et al. Pharmacokinetic, pharmacogenetic, and other factors influencing CNS penetration of antiretrovirals. AIDS Res. Treat. 2016, 2587094 (2016).

    PubMed  PubMed Central  Google Scholar 

  409. Decloedt, E. H., Rosenkranz, B., Maartens, G. & Joska, J. Central nervous system penetration of antiretroviral drugs: pharmacokinetic, pharmacodynamic and pharmacogenomic considerations. Clin. Pharmacokinet. 54, 581–598 (2015).

    Article  CAS  PubMed  Google Scholar 

  410. Schifitto, G. et al. Memantine and HIV-associated cognitive impairment: a neuropsychological and proton magnetic resonance spectroscopy study. AIDS 21, 1877–1886 (2007).

    Article  CAS  PubMed  Google Scholar 

  411. Schifitto, G. et al. A multicenter trial of selegiline transdermal system for HIV-associated cognitive impairment. Neurology 69, 1314–1321 (2007).

    Article  CAS  PubMed  Google Scholar 

  412. Nakasujja, N. et al. Randomized trial of minocycline in the treatment of HIV-associated cognitive impairment. Neurology 80, 196–202 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  413. Sacktor, N. et al. Minocycline treatment for HIV-associated cognitive impairment: results from a randomized trial. Neurology 77, 1135–1142 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  414. Meulendyke, K. A. et al. Combination fluconazole/paroxetine treatment is neuroprotective despite ongoing neuroinflammation and viral replication in an SIV model of HIV neurological disease. J. Neurovirol. 20, 591–602 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  415. Sacktor, N. et al. Paroxetine and fluconazole therapy for HIV-associated neurocognitive impairment: results from a double-blind, placebo-controlled trial. J. Neurovirol. 24, 16–27 (2018).

    Article  CAS  PubMed  Google Scholar 

  416. Rezaie-Majd, A. et al. Simvastatin reduces expression of cytokines interleukin-6, interleukin-8, and monocyte chemoattractant protein-1 in circulating monocytes from hypercholesterolemic patients. Arterioscler. Thromb. Vasc. Biol. 22, 1194–1199 (2002).

    Article  PubMed  Google Scholar 

  417. Gerena, Y. et al. Soluble and cell-associated insulin receptor dysfunction correlates with severity of HAND in HIV-infected women. PLoS One 7, e37358 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  418. Velichkovska, M., Surnar, B., Nair, M., Dhar, S. & Toborek, M. Targeted mitochondrial coq10 delivery attenuates antiretroviral drug-induced senescence of neural progenitor cells. Mol. Pharm. 16, 724–736 (2018).

    Article  PubMed Central  Google Scholar 

  419. Cross, S. A. et al. Dimethyl fumarate, an immune modulator and inducer of the antioxidant response, suppresses HIV replication and macrophage-mediated neurotoxicity: a novel candidate for HIV neuroprotection. J. Immunol. 187, 5015–5025 (2011).

    Article  CAS  PubMed  Google Scholar 

  420. Louboutin, J.-P. & Strayer, D. S. in HIV/AIDS 107–123 (Elsevier, 2018).

  421. Rochira, V. & Guaraldi, G. Growth hormone deficiency and human immunodeficiency virus. Best Pract. Res. Clin. Endocrinol. Metab. 31, 91–111 (2017).

    Article  CAS  PubMed  Google Scholar 

  422. Stanley, T. L. et al. Effect of tesamorelin on visceral fat and liver fat in HIV-infected patients with abdominal fat accumulation: a randomized clinical trial. JAMA 312, 380–389 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  423. Stanley, T. L. et al. Reduction in visceral adiposity is associated with an improved metabolic profile in HIV-infected patients receiving tesamorelin. Clin. Infect. Dis. 54, 1642–1651 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  424. Wrigley, S., Arafa, D. & Tropea, D. Insulin-like growth factor 1: at the crossroads of brain development and aging. Front. Cell Neurosci. 11, 14 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  425. Rui-Hua, C., Yong-de, P., Xiao-Zhen, J., Chen, J. & Bin, Z. Decreased levels of serum IGF-1 and vitamin D are associated with cognitive impairment in patients with type 2 diabetes. Am. J. Alzheimers Dis. Other Demen. 34, 450–456 (2019).

    Article  PubMed  Google Scholar 

  426. Aleman, A. et al. Insulin-like growth factor-I and cognitive function in healthy older men. J. Clin. Endocrinol. Metab. 84, 471–475 (1999).

    Article  CAS  PubMed  Google Scholar 

  427. Kalmijn, S., Janssen, J. A., Pols, H. A., Lamberts, S. W. & Breteler, M. M. A prospective study on circulating insulin-like growth factor I (IGF-I), IGF-binding proteins, and cognitive function in the elderly. J. Clin. Endocrinol. Metab. 85, 4551–4555 (2000).

    Article  CAS  PubMed  Google Scholar 

  428. de la Monte, S. M. & Wands, J. R. Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J. Alzheimers Dis. 7, 45–61 (2005).

    Article  PubMed  Google Scholar 

  429. Nazem, F., Farhangi, N. & Neshat-Gharamaleki, M. Beneficial effects of endurance exercise with rosmarinus officinalis labiatae leaves extract on blood antioxidant enzyme activities and lipid peroxidation in streptozotocin-induced diabetic rats. Can. J. Diabetes 39, 229–234 (2015).

    Article  PubMed  Google Scholar 

  430. Gleeson, M. et al. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat. Rev. Immunol. 11, 607–615 (2011).

    Article  CAS  PubMed  Google Scholar 

  431. Horowitz, A. M. et al. Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain. Science 369, 167–173 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  432. Abdolmaleki, F. & Heidarianpour, A. Endurance exercise training restores diabetes-induced alteration in circulating Glycosylphosphatidylinositol-specific phospholipase D levels in rats. Diabetol. Metab. Syndr. 12, 43 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  433. Qin, W., Liang, Y. Z., Qin, B. Y., Zhang, J. L. & Xia, N. The clinical significance of glycoprotein phospholipase D levels in distinguishing early stage latent autoimmune diabetes in adults and type 2 diabetes. PLoS One 11, e0156959 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  434. Baker, S. K. et al. Blood-derived plasminogen drives brain inflammation and plaque deposition in a mouse model of Alzheimer’s disease. Proc. Natl Acad. Sci. USA 115, E9687–E9696 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  435. Deeg, M. A. et al. Increased expression of GPI-specific phospholipase D in mouse models of type 1 diabetes. Am. J. Physiol. Endocrinol. Metab. 281, E147–154 (2001).

    Article  CAS  PubMed  Google Scholar 

  436. O’Brien, K. D., Pineda, C., Chiu, W. S., Bowen, R. & Deeg, M. A. Glycosylphosphatidylinositol-specific phospholipase D is expressed by macrophages in human atherosclerosis and colocalizes with oxidation epitopes. Circulation 99, 2876–2882 (1999).

    Article  PubMed  Google Scholar 

  437. Montoya, J. L. et al. Coagulation imbalance and neurocognitive functioning in older HIV-positive adults on suppressive antiretroviral therapy. AIDS 31, 787–795 (2017).

    Article  PubMed  Google Scholar 

  438. Lee, K. A. et al. Types of sleep problems in adults living with HIV/AIDS. J. Clin. Sleep. Med. 8, 67–75 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  439. Rubinstein, M. L. & Selwyn, P. A. High prevalence of insomnia in an outpatient population with HIV infection. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 19, 260–265 (1998).

    Article  CAS  PubMed  Google Scholar 

  440. Wiegand, M., Moller, A. A., Schreiber, W., Krieg, J. C. & Holsboer, F. Alterations of nocturnal sleep in patients with HIV infection. Acta Neurol. Scand. 83, 141–142 (1991).

    Article  CAS  PubMed  Google Scholar 

  441. Nokes, K. M. & Kendrew, J. Correlates of sleep quality in persons with HIV disease. J. Assoc. Nurses AIDS Care 12, 17–22 (2001).

    Article  CAS  PubMed  Google Scholar 

  442. Mahmood, Z., Hammond, A., Nunez, R. A., Irwin, M. R. & Thames, A. D. Effects of sleep health on cognitive function in HIV+ and HIV adults. J. Int. Neuropsychol. Soc. 24, 1038–1046 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  443. Gamaldo, C. E. et al. Evaluating sleep and cognition in HIV. J. Acquir. Immune Defic. Syndr. 63, 609–616 (2013).

    Article  PubMed  Google Scholar 

  444. Shokri-Kojori, E. et al. β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc. Natl Acad. Sci. USA 115, 4483–4488 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  445. Kardassis, D., Grote, L., Sjostrom, L., Hedner, J. & Karason, K. Sleep apnea modifies the long-term impact of surgically induced weight loss on cardiac function and inflammation. Obesity 21, 698–704 (2013).

    Article  CAS  PubMed  Google Scholar 

  446. Wirth, M. D. et al. Association of markers of inflammation with sleep and physical activity among people living with HIV or AIDS. AIDS Behav. 19, 1098–1107 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  447. Vecchio, L. M. et al. The neuroprotective effects of exercise: maintaining a healthy brain throughout aging. Brain Plast. 4, 17–52 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  448. Dufour, C. A. et al. A longitudinal analysis of the impact of physical activity on neurocognitive functioning among HIV-infected adults. AIDS Behav. 22, 1562–1572 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  449. Fazeli, P. L. et al. Physical activity is associated with better neurocognitive and everyday functioning among older adults with HIV disease. AIDS Behav. 19, 1470–1477 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  450. Montoya, J. L., Henry, B. & Moore, D. J. Behavioral and physical activity interventions for HAND. Curr. Top. Behav. Neurosci. 50, 479–501 (2019).

    Article  Google Scholar 

  451. Montoya, J. L. et al. Evidence-informed practical recommendations for increasing physical activity among persons living with HIV. AIDS 33, 931–939 (2019).

    Article  PubMed  Google Scholar 

  452. Dufour, C. A. et al. Physical exercise is associated with less neurocognitive impairment among HIV-infected adults. J. Neurovirol. 19, 410–417 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  453. Monroe, A. K. et al. The association between physical activity and cognition in men with and without HIV infection. HIV Med. 18, 555–563 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  454. Henry, B. L. & Moore, D. J. Preliminary findings describing participant experience with iSTEP, an mHealth intervention to increase physical activity and improve neurocognitive function in people living with HIV. J. Assoc. Nurses AIDS Care 27, 495–511 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  455. Vance, D. E. et al. Computerized cognitive training for the neurocognitive complications of HIV infection: a systematic review. J. Assoc. Nurses AIDS Care 30, 51–72 (2019).

    Article  PubMed  Google Scholar 

  456. Wei, J. et al. Evaluation of computerized cognitive training and cognitive and daily function in patients living with HIV: a meta-analysis. JAMA Netw. Open 5, e220970 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  457. Abers, M. S., Shandera, W. X. & Kass, J. S. Neurological and psychiatric adverse effects of antiretroviral drugs. CNS Drugs 28, 131–145 (2014).

    Article  CAS  PubMed  Google Scholar 

  458. Scherzer, R. & Shlipak, M. G. Risk factors: individual assessment of CKD risk in HIV-positive patients. Nat. Rev. Nephrol. 11, 392 (2015).

    Article  PubMed  Google Scholar 

  459. Rodriguez-Nóvoa, S., Alvarez, E., Labarga, P. & Soriano, V. Renal toxicity associated with tenofovir use. Expert Opin. Drug Saf. 9, 545–559 (2010).

    Article  PubMed  Google Scholar 

  460. Kakuda, T. N. Pharmacology of nucleoside and nucleotide reverse transcriptase inhibitor-induced mitochondrial toxicity. Clin. Ther. 22, 685–708 (2000).

    Article  CAS  PubMed  Google Scholar 

  461. Kohler, J. J. & Lewis, W. A brief overview of mechanisms of mitochondrial toxicity from NRTIs. Env. Mol. Mutagen. 48, 166–172 (2007).

    Article  CAS  Google Scholar 

  462. Lewis, W., Day, B. J. & Copeland, W. C. Mitochondrial toxicity of NRTI antiviral drugs: an integrated cellular perspective. Nat. Rev. Drug Discov. 2, 812–822 (2003).

    Article  CAS  PubMed  Google Scholar 

  463. Nooka, S. & Ghorpade, A. Organellar stress intersects the astrocyte endoplasmic reticulum, mitochondria and nucleolus in HIV associated neurodegeneration. Cell Death Dis. 9, 317 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  464. Nagiah, S., Phulukdaree, A. & Chuturgoon, A. A. Lon protease and eiF2α are involved in acute, but not prolonged, antiretroviral induced stress response in HepG2 cells. Chem. Biol. Interact. 252, 82–86 (2016).

    Article  CAS  PubMed  Google Scholar 

  465. Stankov, M. V., Lucke, T., Das, A. M., Schmidt, R. E. & Behrens, G. M. Mitochondrial DNA depletion and respiratory chain activity in primary human subcutaneous adipocytes treated with nucleoside analogue reverse transcriptase inhibitors. Antimicrob. Agents Chemother. 54, 280–287 (2010).

    Article  CAS  PubMed  Google Scholar 

  466. Young, M. J. Off-target effects of drugs that disrupt human mitochondrial DNA maintenance. Front. Mol. Biosci. 4, 74 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  467. Allen Reeves, A. et al. Neurotoxicities in the treatment of HIV between dolutegravir, rilpivirine and dolutegravir/rilpivirine: a meta-analysis. Sex. Transm. Infect. 97, 261–267 (2021).

    Article  PubMed  Google Scholar 

  468. Apostolova, N. et al. Efavirenz and the CNS: what we already know and questions that need to be answered. J. Antimicrob. Chemother. 70, 2693–2708 (2015).

    Article  CAS  PubMed  Google Scholar 

  469. Blas-García, A. et al. Lack of mitochondrial toxicity of darunavir, raltegravir and rilpivirine in neurons and hepatocytes: a comparison with efavirenz. J. Antimicrob. Chemother. 69, 2995–3000 (2014).

    Article  PubMed  Google Scholar 

  470. Markowitz, M. et al. A preliminary study of ritonavir, an inhibitor of HIV-1 protease, to treat HIV-1 infection. N. Engl. J. Med. 333, 1534–1540 (1995).

    Article  CAS  PubMed  Google Scholar 

  471. Jensen, B. K. et al. Altered oligodendrocyte maturation and myelin maintenance: the role of antiretrovirals in HIV-associated neurocognitive disorders. J. Neuropathol. Exp. Neurol. 74, 1093–1118 (2015).

    Article  CAS  PubMed  Google Scholar 

  472. Vivithanaporn, P., Asahchop, E. L., Acharjee, S., Baker, G. B. & Power, C. HIV protease inhibitors disrupt astrocytic glutamate transporter function and neurobehavioral performance. AIDS 30, 543–552 (2016).

    Article  CAS  PubMed  Google Scholar 

  473. Ekins, S. et al. α7-Nicotinic acetylcholine receptor inhibition by indinavir: implications for cognitive dysfunction in treated HIV disease. AIDS 31, 1083–1089 (2017).

    Article  CAS  PubMed  Google Scholar 

  474. Soontornniyomkij, V. et al. HIV protease inhibitor exposure predicts cerebral small vessel disease. AIDS 28, 1297 (2014).

    Article  CAS  PubMed  Google Scholar 

  475. Stern, A. L. et al. Differential effects of antiretroviral drugs on neurons in vitro: roles for oxidative stress and integrated stress response. J. Neuroimmune Pharmacol. 13, 64–76 (2018).

    Article  PubMed  Google Scholar 

  476. del Mar Gutierrez, M., Mateo, M. G., Vidal, F. & Domingo, P. Drug safety profile of integrase strand transfer inhibitors. Expert Opin. Drug Saf. 13, 431–445 (2014).

    Article  Google Scholar 

  477. Abrams, E. & Myer, L. Lessons from dolutegravir and neural tube defects. Lancet HIV 8, e3–e4 (2021).

    Article  CAS  PubMed  Google Scholar 

  478. Gray, J. & Young, B. Acute onset insomnia associated with the initiation of raltegravir: a report of two cases and literature review. AIDS Patient Care STDS 23, 689–690 (2009).

    Article  PubMed  Google Scholar 

  479. Capetti, A. et al. Morning dosing for dolutegravir-related insomnia and sleep disorders. HIV Med. 838, e62–e63 (2017).

    Google Scholar 

  480. Latronico, T. et al. In vitro effect of antiretroviral drugs on cultured primary astrocytes: analysis of neurotoxicity and matrix metalloproteinase inhibition. J. Neurochem. 144, 271–284 (2018).

    Article  CAS  PubMed  Google Scholar 

  481. Reust, C. E. Common adverse effects of antiretroviral therapy for HIV disease. Am. Fam. Physician 83, 1443–1451 (2011).

    PubMed  Google Scholar 

  482. Treisman, G. J. & Soudry, O. Neuropsychiatric effects of HIV antiviral medications. Drug Saf. 39, 945–957 (2016).

    Article  CAS  PubMed  Google Scholar 

  483. Manfredi, R. & Sabbatani, S. A novel antiretroviral class (fusion inhibitors) in the management of HIV infection. Present features and future perspectives of enfuvirtide (T-20). Curr. Med. Chem. 13, 2369–2384 (2006).

    Article  CAS  PubMed  Google Scholar 

  484. LaBonte, J., Lebbos, J. & Kirkpatrick, P. Enfuvirtide. Nat. Rev. Drug Discov. 2, 345–346 (2003).

  485. Oldfield, V., Keating, G. M. & Plosker, G. Enfuvirtide: a review of its use in the management of HIV infection. Drugs 65, 1139–1160 (2005).

    Article  CAS  PubMed  Google Scholar 

  486. Curtis, L. et al. Dolutegravir: clinical and laboratory safety in integrase inhibitor–naive patients. HIV Clin. Trials 15, 199–208 (2014).

    Article  CAS  PubMed  Google Scholar 

  487. Harris, M., Larsen, G. & Montaner, J. S. Exacerbation of depression associated with starting raltegravir: a report of four cases. AIDS 22, 1890–1892 (2008).

    Article  PubMed  Google Scholar 

  488. Fettiplace, A. et al. Psychiatric symptoms in patients receiving dolutegravir. J. Acquir. Immune Defic. Syndr. 74, 423–431 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  489. Harris, M. What did we learn from the bictegravir switch studies? Lancet HIV 5, e336–e337 (2018).

    Article  PubMed  Google Scholar 

  490. Zhao, Y. et al. Memantine for AIDS dementia complex: open-label report of ACTG 301. HIV Clin. Trials 11, 59–67 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  491. Yacoub, A. D. et al. Intranasal Insulin Improves Attention and Memory in People with HIV https://www.natap.org/2021/CROI/croi_91.htm (2021).

  492. Yadav, A. et al. Lack of atorvastatin effect on monocyte gene expression and inflammatory markers in HIV-1-infected ART-suppressed Individuals at risk of non-AIDS comorbidities. Pathog. Immun. 6, 1–26 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  493. Zhou, F. et al. Iptakalim alleviates rotenone-induced degeneration of dopaminergic neurons through inhibiting microglia-mediated neuroinflammation. Neuropsychopharmacology 32, 2570–2580 (2007).

    Article  CAS  PubMed  Google Scholar 

  494. Cheng, L. et al. Blocking type I interferon signaling enhances T cell recovery and reduces HIV-1 reservoirs. J. Clin. Invest. 127, 269–279 (2017).

    Article  PubMed  Google Scholar 

  495. Azzoni, L. et al. Pegylated interferon alfa-2a monotherapy results in suppression of HIV type 1 replication and decreased cell-associated HIV DNA integration. J. Infect. Dis. 207, 213–222 (2013).

    Article  CAS  PubMed  Google Scholar 

  496. Lazi, E., Burns, J. M. & Swerdlow, R. H. Effect of high-intensity exercise on aged mouse brain mitochondria, neurogenesis, and inflammation. Neurobiol. Aging 35, 2574–2583 (2014).

    Article  Google Scholar 

  497. Fortier, M. et al. A ketogenic drink improves cognition in mild cognitive impairment: results of a 6-month RCT. Alzheimers Dement. 17, 543–552 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. National Institutes of Health grants MH128108, AG066215 (Fields); K24AG075240 (Marquine); R01DA052209, R01MH104131, R01MH087332 (Kaul); R01DA056058, R01DA043430, R01MH128869 (Ellis), and R21MH134401 (Schlachetzki).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Ronald J. Ellis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks Deanna Saylor, Bruce Brew and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellis, R.J., Marquine, M.J., Kaul, M. et al. Mechanisms underlying HIV-associated cognitive impairment and emerging therapies for its management. Nat Rev Neurol 19, 668–687 (2023). https://doi.org/10.1038/s41582-023-00879-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00879-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing