Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The amyotrophic lateral sclerosis exposome: recent advances and future directions

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal disease of motor neuron degeneration with typical survival of only 2–5 years from diagnosis. The causes of ALS are multifactorial: known genetic mutations account for only around 70% of cases of familial ALS and 15% of sporadic cases, and heritability estimates range from 8% to 61%, indicating additional causes beyond genetics. Consequently, interest has grown in environmental contributions to ALS risk and progression. The gene–time–environment hypothesis posits that ALS onset occurs through an interaction of genes with environmental exposures during ageing. An alternative hypothesis, the multistep model of ALS, suggests that several hits, at least some of which could be environmental, are required to trigger disease onset, even in the presence of highly penetrant ALS-associated mutations. Studies have sought to characterize the ALS exposome — the lifetime accumulation of environmental exposures that increase disease risk and affect progression. Identifying the full scope of environmental toxicants that enhance ALS risk raises the prospect of preventing disease by eliminating or mitigating exposures. In this Review, we summarize the evidence for an ALS exposome, discussing the strengths and limitations of epidemiological studies that have identified contributions from various sources. We also consider potential mechanisms of exposure-mediated toxicity and suggest future directions for ALS exposome research.

Key points

  • Amyotrophic lateral sclerosis (ALS) is a fatal disease of motor neuron degeneration, with both genetic and environmental factors contributing to the risk and rate of disease progression.

  • The gene–time–environment hypothesis of ALS posits that disease arises from an interaction of genetic burden with environmental burden over the life course.

  • The multistep model of ALS posits that multiple ‘hits’, some of which are presumed to be environmental in origin, trigger disease onset, even in carriers of highly penetrant mutations.

  • Epidemiological studies suggest potential contributions to the ALS exposome from pesticides, occupational exposures, sports and physical activity, metals, air pollution, trauma, electromagnetic fields, the gut microbiome, diet and lifestyle factors.

  • The mechanisms underlying the effects of environmental factors on ALS risk remain incompletely understood but might involve neurotoxicity from specific environmental toxins, microbiome-mediated changes, epigenetic restructuring, systemic and central inflammation and excitotoxicity.

  • Most studies of the ALS exposome have a retrospective design using questionnaires and are, therefore, prone to recall bias and other limitations. Future studies will require prospective, longitudinal designs that include quantification of exposures in biosamples in addition to questionnaires.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Studying the amyotrophic lateral sclerosis exposome.
Fig. 2: Gene–environment interactions in amyotrophic lateral sclerosis.
Fig. 3: Potential exposome-mediated pathophysiological mechanisms of amyotrophic lateral sclerosis.
Fig. 4: Study design for future amyotrophic lateral sclerosis exposome studies.

Similar content being viewed by others

References

  1. Feldman, E. L. et al. Amyotrophic lateral sclerosis. Lancet 400, 1363–1380 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Brown, R. H. & Al-Chalabi, A. Amyotrophic lateral sclerosis. N. Engl. J. Med. 377, 162–172 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Goutman, S. A. et al. Recent advances in the diagnosis and prognosis of amyotrophic lateral sclerosis. Lancet Neurol. 21, 480–493 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Goutman, S. A. et al. Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. Lancet Neurol. 21, 465–479 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Al-Chalabi, A. & Hardiman, O. The epidemiology of ALS: a conspiracy of genes, environment and time. Nat. Rev. Neurol. 9, 617–628 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Chio, A. et al. The multistep hypothesis of ALS revisited: the role of genetic mutations. Neurology 91, e635–e642 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wild, C. P. Complementing the genome with an ‘exposome’: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomark. Prev. 14, 1847–1850 (2005).

    Article  CAS  Google Scholar 

  8. Vineis, P. et al. What is new in the exposome? Environ. Int. 143, 105887 (2020).

    Article  PubMed  Google Scholar 

  9. Vermeulen, R., Schymanski, E. L., Barabási, A. L. & Miller, G. W. The exposome and health: where chemistry meets biology. Science 367, 392–396 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jiang, C. et al. Dynamic human environmental exposome revealed by longitudinal personal monitoring. Cell 175, 277–291.e231 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Benatar, M. et al. A roadmap to ALS prevention: strategies and priorities. J. Neurol. Neurosurg. Psychiatry 94, 399–402 (2023).

    Article  PubMed  Google Scholar 

  12. Marin, B. et al. Variation in worldwide incidence of amyotrophic lateral sclerosis: a meta-analysis. Int. J. Epidemiol. 46, 57–74 (2017).

    PubMed  Google Scholar 

  13. Chernoff, N. et al. A critical review of the postulated role of the non-essential amino acid, β-N-methylamino-l-alanine, in neurodegenerative disease in humans. J. Toxicol. Environ. Health B Crit. Rev. 20, 1–47 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Spencer, P. S. Hypothesis: etiologic and molecular mechanistic leads for sporadic neurodegenerative diseases based on experience with Western Pacific ALS/PDC. Front. Neurol. 10, 754 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Luker, J., Woodman, R. & Schultz, D. The incidence and prevalence of motor neurone disease in South Australia. Amyotroph. Lateral Scler. Frontotemporal Degener. 24, 195–202 (2023).

    Article  PubMed  Google Scholar 

  16. Newell, M. E., Adhikari, S. & Halden, R. U. Systematic and state-of the science review of the role of environmental factors in amyotrophic lateral sclerosis (ALS) or Lou Gehrig’s disease. Sci. Total Environ. 817, 152504 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Schwartz, G. G., Rundquist, B. C., Simon, I. J. & Swartz, S. E. Geographic distributions of motor neuron disease mortality and well water use in U.S. counties. Amyotroph. Lateral Scler. Frontotemporal Degener. 18, 279–283 (2017).

    Article  PubMed  Google Scholar 

  18. Torbick, N., Hession, S., Stommel, E. & Caller, T. Mapping amyotrophic lateral sclerosis lake risk factors across northern New England. Int. J. Health Geogr. 13, 1 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Brown, C. A., Lally, C., Kupelian, V. & Flanders, W. D. Estimated prevalence and incidence of amyotrophic lateral sclerosis and SOD1 and C9orf72 genetic variants. Neuroepidemiology 55, 342–353 (2021).

    Article  PubMed  Google Scholar 

  20. Elden, A. C. et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466, 1069–1075 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Julian, T. H. et al. Physical exercise is a risk factor for amyotrophic lateral sclerosis: convergent evidence from Mendelian randomisation, transcriptomics and risk genotypes. eBioMedicine 68, 103397 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mandrioli, J. et al. Elevated levels of selenium species in cerebrospinal fluid of amyotrophic lateral sclerosis patients with disease-associated gene mutations. Neurodegener. Dis. 17, 171–180 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. McCann, E. P. et al. Evidence for polygenic and oligogenic basis of Australian sporadic amyotrophic lateral sclerosis. J. Med. Genet. https://doi.org/10.1136/jmedgenet-2020-106866 (2020).

  24. Bandres-Ciga, S. et al. Shared polygenic risk and causal inferences in amyotrophic lateral sclerosis. Ann. Neurol. 85, 470–481 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. van Rheenen, W. et al. Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nat. Genet. 48, 1043–1048 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Al-Chalabi, A. et al. An estimate of amyotrophic lateral sclerosis heritability using twin data. J. Neurol. Neurosurg. Psychiatry 81, 1324–1326 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. McComas, A. J., Upton, A. R. M. & Sica, R. E. P. Motoneurone disease and ageing. Lancet 302, 1477–1480 (1973).

    Article  Google Scholar 

  28. Al-Chalabi, A. et al. Analysis of amyotrophic lateral sclerosis as a multistep process: a population-based modelling study. Lancet Neurol. 13, 1108–1113 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vucic, S. et al. Amyotrophic lateral sclerosis as a multi-step process: an Australia population study. Amyotroph. Lateral Scler. Frontotemporal Degener. 20, 532–537 (2019).

    Article  PubMed  Google Scholar 

  30. Vucic, S. et al. ALS is a multistep process in South Korean, Japanese, and Australian patients. Neurology 94, e1657–e1663 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Armitage, P. & Doll, R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br. J. Cancer 8, 1–12 (1954).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dardiotis, E. et al. Genetic polymorphisms in amyotrophic lateral sclerosis: evidence for implication in detoxification pathways of environmental toxicants. Environ. Int. 116, 122–135 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Vasta, R., Chia, R., Traynor, B. J. & Chiò, A. Unraveling the complex interplay between genes, environment, and climate in ALS. eBioMedicine 75, 103795 (2022).

    Article  PubMed  Google Scholar 

  34. Spencer, P. S. Parkinsonism and motor neuron disorders: lessons from Western Pacific ALS/PDC. J. Neurol. Sci. 433, 120021 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, M. D., Little, J., Gomes, J., Cashman, N. R. & Krewski, D. Identification of risk factors associated with onset and progression of amyotrophic lateral sclerosis using systematic review and meta-analysis. Neurotoxicology 61, 101–130 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Gunnarsson, L. G. & Bodin, L. Amyotrophic lateral sclerosis and occupational exposures: a systematic literature review and meta-analyses. Int. J. Environ. Res. Public Health 15, 2371 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Su, F. C. et al. Association of environmental toxins with amyotrophic lateral sclerosis. JAMA Neurol. 73, 803–811 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vinceti, M. et al. Pesticides, polychlorinated biphenyls and polycyclic aromatic hydrocarbons in cerebrospinal fluid of amyotrophic lateral sclerosis patients: a case–control study. Environ. Res. 155, 261–267 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Vinceti, M. et al. Pesticide exposure assessed through agricultural crop proximity and risk of amyotrophic lateral sclerosis. Environ. Health 16, 91 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Andrew, A. et al. Pesticides applied to crops and amyotrophic lateral sclerosis risk in the U.S. Neurotoxicology 87, 128–135 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Andrew, A. et al. Airborne lead and polychlorinated biphenyls (PCBs) are associated with amyotrophic lateral sclerosis (ALS) risk in the U.S. Sci. Total Environ. 819, 153096 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Goutman, S. A. et al. Associations of self-reported occupational exposures and settings to ALS: a case–control study. Int. Arch. Occup. Environ. Health 95, 1567–1586 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Goutman, S. A. et al. Occupational history associates with ALS survival and onset segment. Amyotroph. Lateral Scler. Frontotemporal Degener. 24, 219–229 (2022).

    Article  PubMed  Google Scholar 

  44. Filippini, T. et al. Environmental and occupational risk factors of amyotrophic lateral sclerosis: a population-based case–control study. Int. J. Environ. Res. Public Health 17, 2882 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Andrew, A. S. et al. Risk factors for amyotrophic lateral sclerosis: a regional United States case–control study. Muscle Nerve 63, 52–59 (2021).

    Article  PubMed  Google Scholar 

  46. Andrew, A. S. et al. Environmental and occupational exposures and amyotrophic lateral sclerosis in New England. Neurodegener. Dis. 17, 110–116 (2017).

    Article  PubMed  Google Scholar 

  47. Peters, T. L. et al. Occupational exposures and the risk of amyotrophic lateral sclerosis. Occup. Environ. Med. 74, 87–92 (2017).

    Article  PubMed  Google Scholar 

  48. Dickerson, A. S., Hansen, J., Gredal, O. & Weisskopf, M. G. Study of occupational chromium, iron, and nickel exposure and amyotrophic lateral sclerosis in Denmark. Int. J. Environ. Res. Public Health 17, 8086 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dickerson, A. S., Hansen, J., Specht, A. J., Gredal, O. & Weisskopf, M. G. Population-based study of amyotrophic lateral sclerosis and occupational lead exposure in Denmark. Occup. Environ. Med. 76, 208–214 (2019).

    Article  PubMed  Google Scholar 

  50. Mitsumoto, H. et al. Case–control study in ALS using the National ALS Registry: lead and agricultural chemicals are potential risk factors. Amyotroph. Lateral Scler. Frontotemporal Degener. 23, 190–202 (2022).

    Article  PubMed  Google Scholar 

  51. Visser, A. E. et al. Multicentre, population-based, case–control study of particulates, combustion products and amyotrophic lateral sclerosis risk. J. Neurol. Neurosurg. Psychiatry 90, 854–860 (2019).

    Article  PubMed  Google Scholar 

  52. Dickerson, A. S., Hansen, J., Gredal, O. & Weisskopf, M. G. Amyotrophic lateral sclerosis and exposure to diesel exhaust in a Danish cohort. Am. J. Epidemiol. 187, 1613–1622 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Seals, R. M., Kioumourtzoglou, M. A., Gredal, O., Hansen, J. & Weisskopf, M. G. Occupational formaldehyde and amyotrophic lateral sclerosis. Eur. J. Epidemiol. 32, 893–899 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McKay, K. A. et al. Military service and related risk factors for amyotrophic lateral sclerosis. Acta Neurol. Scand. 143, 39–50 (2021).

    Article  PubMed  Google Scholar 

  55. Cragg, J. J., Johnson, N. J. & Weisskopf, M. G. Military service and amyotrophic lateral sclerosis in a population-based cohort: extended follow-up 1979-2011. Epidemiology 28, e15–e16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sagiraju, H. K. R. et al. Amyotrophic lateral sclerosis among veterans deployed in support of post-9/11 U.S. conflicts. Mil. Med. 185, e501–e509 (2020).

    Article  PubMed  Google Scholar 

  57. Xu, L. et al. Global variation in prevalence and incidence of amyotrophic lateral sclerosis: a systematic review and meta-analysis. J. Neurol. 267, 944–953 (2020).

    Article  PubMed  Google Scholar 

  58. Bellomo, G. et al. A systematic review on the risk of neurodegenerative diseases and neurocognitive disorders in professional and varsity athletes. Neurol. Sci. 43, 6667–6691 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Daneshvar, D. H. et al. Incidence of and mortality from amyotrophic lateral sclerosis in National Football League athletes. JAMA Netw. Open 4, e2138801 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pupillo, E. et al. Increased risk and early onset of ALS in professional players from Italian Soccer Teams. Amyotroph. Lateral Scler. Frontotemporal Degener. 21, 403–409 (2020).

    Article  PubMed  Google Scholar 

  61. Russell, E. R. et al. Association of field position and career length with risk of neurodegenerative disease in male former professional soccer players. JAMA Neurol. 78, 1057–1063 (2021).

    Article  PubMed  Google Scholar 

  62. Fang, F. et al. Amyotrophic lateral sclerosis among cross-country skiers in Sweden. Eur. J. Epidemiol. 31, 247–253 (2016).

    Article  PubMed  Google Scholar 

  63. Chapman, L., Cooper-Knock, J. & Shaw, P. J. Physical activity as an exogenous risk factor for amyotrophic lateral sclerosis: a review of the evidence. Brain 146, 1745–1757 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Figueroa-Romero, C. et al. Early life metal dysregulation in amyotrophic lateral sclerosis. Ann. Clin. Transl. Neurol. 7, 872–882 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Andrew, A. S. et al. Toenail mercury levels are associated with amyotrophic lateral sclerosis risk. Muscle Nerve https://doi.org/10.1002/mus.26055 (2018).

  66. Andrew, A. S. et al. Keratinous biomarker of mercury exposure associated with amyotrophic lateral sclerosis risk in a nationwide U.S. study. Amyotroph. Lateral Scler. Frontotemporal Degener. 21, 420–427 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Peters, S. et al. Blood metal levels and amyotrophic lateral sclerosis risk: a prospective cohort. Ann. Neurol. 89, 125–133 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Vinceti, M. et al. Lead, cadmium and mercury in cerebrospinal fluid and risk of amyotrophic lateral sclerosis: a case–control study. J. Trace Elem. Med. Biol. 43, 121–125 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Guidotti, T. L., Audette, R. J. & Martin, C. J. Interpretation of the trace metal analysis profile for patients occupationally exposed to metals. Occup. Med. 47, 497–503 (1997).

    Article  CAS  Google Scholar 

  70. Rooney, J. et al. No association between soil constituents and amyotrophic lateral sclerosis relative risk in Ireland. Environ. Res. 147, 102–107 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Parks, R. M. et al. Long-term traffic-related air pollutant exposure and amyotrophic lateral sclerosis diagnosis in Denmark: a Bayesian hierarchical analysis. Epidemiology 33, 757–766 (2022).

    Article  PubMed  Google Scholar 

  72. Yu, Z. et al. Long-term exposure to ultrafine particles and particulate matter constituents and the risk of amyotrophic lateral sclerosis. Environ. Health Perspect. 129, 97702 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Seelen, M. et al. Long-term air pollution exposure and amyotrophic lateral sclerosis in Netherlands: a population-based case–control study. Environ. Health Perspect. 125, 097023 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Malek, A. M. et al. Long-term air pollution and risk of amyotrophic lateral sclerosis mortality in the Women’s Health Initiative cohort. Environ. Res. 216, 114510 (2022).

    Article  PubMed  Google Scholar 

  75. Filippini, T. et al. Risk of amyotrophic lateral sclerosis and exposure to particulate matter from vehicular traffic: a case–control study. Int. J. Environ. Res. Public Health 18, 973 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nunez, Y. et al. PM(2.5) composition and disease aggravation in amyotrophic lateral sclerosis: an analysis of long-term exposure to components of fine particulate matter in New York State. Environ. Epidemiol. 6, e204 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Myung, W., Lee, H. & Kim, H. Short-term air pollution exposure and emergency department visits for amyotrophic lateral sclerosis: a time-stratified case-crossover analysis. Environ. Int. 123, 467–475 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Thomsen, G. M. et al. A model of recurrent concussion that leads to long-term motor deficits, CTE-like tauopathy and exacerbation of an ALS phenotype. J. Trauma Acute Care Surg. 81, 1070–1079 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Anderson, E. N. et al. Traumatic injury induces stress granule formation and enhances motor dysfunctions in ALS/FTD models. Hum. Mol. Genet. 27, 1366–1381 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Walt, G. S. et al. Chronic traumatic encephalopathy within an amyotrophic lateral sclerosis brain bank cohort. J. Neuropathol. Exp. Neurol. 77, 1091–1100 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Blecher, R. et al. Contact sports as a risk factor for amyotrophic lateral sclerosis: a systematic review. Glob. Spine J. 9, 104–118 (2019).

    Article  Google Scholar 

  82. Iverson, G. L. et al. Examining later-in-life health risks associated with sport-related concussion and repetitive head impacts: a systematic review of case–control and cohort studies. Br. J. Sports Med. 57, 810–821 (2023).

    Article  PubMed  Google Scholar 

  83. Filippini, T. et al. Clinical and lifestyle factors and risk of amyotrophic lateral sclerosis: a population-based case–control study. Int. J. Environ. Res. Public Health 17, 857 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Pupillo, E. et al. Trauma and amyotrophic lateral sclerosis: a European population-based case–control study from the EURALS consortium. Amyotroph. Lateral Scler. Frontotemporal Degener. 19, 118–125 (2018).

    Article  PubMed  Google Scholar 

  85. Gu, D. et al. Trauma and amyotrophic lateral sclerosis: a systematic review and meta-analysis. Amyotroph. Lateral Scler. Frontotemporal Degener. 22, 170–185 (2021).

    Article  PubMed  Google Scholar 

  86. Levitt, B. B., Lai, H. C. & Manville, A. M. Effects of non-ionizing electromagnetic fields on flora and fauna, part 1. Rising ambient EMF levels in the environment. Rev. Environ. Health 37, 81–122 (2022).

    Article  PubMed  Google Scholar 

  87. Hu, C., Zuo, H. & Li, Y. Effects of radiofrequency electromagnetic radiation on neurotransmitters in the brain. Front. Public Health 9, 691880 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Luna, J. et al. Residential exposure to ultra high frequency electromagnetic fields emitted by Global system for mobile (GSM) antennas and amyotrophic lateral sclerosis incidence: a geo-epidemiological population-based study. Environ. Res. 176, 108525 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Peters, S. et al. Associations of electric shock and extremely low-frequency magnetic field exposure with the risk of amyotrophic lateral sclerosis. Am. J. Epidemiol. 188, 796–805 (2019).

    Article  PubMed  Google Scholar 

  90. Koeman, T. et al. Occupational exposure and amyotrophic lateral sclerosis in a prospective cohort. Occup. Environ. Med. 74, 578–585 (2017).

    Article  PubMed  Google Scholar 

  91. Vinceti, M. et al. Magnetic fields exposure from high-voltage power lines and risk of amyotrophic lateral sclerosis in two Italian populations. Amyotroph. Lateral Scler. Frontotemporal Degener. 18, 583–589 (2017).

    Article  PubMed  Google Scholar 

  92. Filippini, T., Hatch, E. E. & Vinceti, M. Residential exposure to electromagnetic fields and risk of amyotrophic lateral sclerosis: a dose–response meta-analysis. Sci. Rep. 11, 11939 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Boddy, S. L. et al. The gut microbiome: a key player in the complexity of amyotrophic lateral sclerosis (ALS). BMC Med. 19, 13 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Nicholson, K. et al. The human gut microbiota in people with amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener. 22, 186–194 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Di Gioia, D. et al. A prospective longitudinal study on the microbiota composition in amyotrophic lateral sclerosis. BMC Med. 18, 153 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hertzberg, V. S. et al. Gut microbiome differences between amyotrophic lateral sclerosis patients and spouse controls. Amyotroph. Lateral Scler. Frontotemporal Degener. 23, 91–99 (2022).

    Article  CAS  PubMed  Google Scholar 

  97. Niccolai, E. et al. The gut microbiota–immunity axis in ALS: a role in deciphering disease heterogeneity? Biomedicines 9, 753 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kim, H. S. et al. Gut- and oral-dysbiosis differentially impact spinal- and bulbar-onset ALS, predicting ALS severity and potentially determining the location of disease onset. BMC Neurol. 22, 62 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yu, H., Kim, S. H., Noh, M. Y., Lee, S. & Park, Y. Relationship between dietary fiber intake and the prognosis of amyotrophic lateral sclerosis in Korea. Nutrients 12, 3420 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ngo, S. T. et al. Progression and survival of patients with motor neuron disease relative to their fecal microbiota. Amyotroph. Lateral Scler. Frontotemporal Degener. 21, 549–562 (2020).

    Article  CAS  PubMed  Google Scholar 

  101. Goutman, S. A. et al. Metabolomics identifies shared lipid pathways in independent amyotrophic lateral sclerosis cohorts. Brain 145, 4425–4439 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Zeng, Q. et al. The alteration of gut microbiome and metabolism in amyotrophic lateral sclerosis patients. Sci. Rep. 10, 12998 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gong, Z. et al. Gut microbiota links with cognitive impairment in amyotrophic lateral sclerosis: a multi-omics study. J. Biomed. Res. 37, 125–137 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Zhang, L., Zhuang, Z., Zhang, G., Huang, T. & Fan, D. Assessment of bidirectional relationships between 98 genera of the human gut microbiota and amyotrophic lateral sclerosis: a 2-sample Mendelian randomization study. BMC Neurol. 22, 8 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ning, J. et al. Investigating casual associations among gut microbiota, metabolites, and neurodegenerative diseases: a Mendelian randomization study. J. Alzheimers Dis. 87, 211–222 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Castanedo-Vazquez, D., Bosque-Varela, P., Sainz-Pelayo, A. & Riancho, J. Infectious agents and amyotrophic lateral sclerosis: another piece of the puzzle of motor neuron degeneration. J. Neurol. 266, 27–36 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Levine, K. S. et al. Virus exposure and neurodegenerative disease risk across national biobanks. Neuron 111, 1086–1093.e2 (2023).

    Article  CAS  PubMed  Google Scholar 

  108. French, P. W., Ludowyke, R. & Guillemin, G. J. Fungal neurotoxins and sporadic amyotrophic lateral sclerosis. Neurotox. Res. 35, 969–980 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Pierce, E. S. How did Lou Gehrig get Lou Gehrig’s disease? Mycobacterium avium subspecies paratuberculosis in manure, soil, dirt, dust and grass and amyotrophic lateral sclerosis (motor neurone disease) clusters in football, rugby and soccer players. Med. Hypotheses 119, 1–5 (2018).

    Article  PubMed  Google Scholar 

  110. Pape, J. A. & Grose, J. H. The effects of diet and sex in amyotrophic lateral sclerosis. Rev. Neurol. 176, 301–315 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. D’Amico, E. et al. Metabolic abnormalities, dietary risk factors and nutritional management in amyotrophic lateral sclerosis. Nutrients 13, 2273 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Huisman, M. H. et al. Effect of presymptomatic body mass index and consumption of fat and alcohol on amyotrophic lateral sclerosis. JAMA Neurol. 72, 1155–1162 (2015).

    Article  PubMed  Google Scholar 

  113. Westeneng, H. J. et al. Associations between lifestyle and amyotrophic lateral sclerosis stratified by C9orf72 genotype: a longitudinal, population-based, case-control study. Lancet Neurol. 20, 373–384 (2021).

    Article  CAS  PubMed  Google Scholar 

  114. Goutman, S. A. et al. Body mass index associates with amyotrophic lateral sclerosis survival and metabolomic profiles. Muscle Nerve 67, 208–216 (2023).

    Article  PubMed  Google Scholar 

  115. Fitzgerald, K. C. et al. Dietary ω-3 polyunsaturated fatty acid intake and risk for amyotrophic lateral sclerosis. JAMA Neurol. 71, 1102–1110 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Michels, S. et al. Association of blood lipids with onset and prognosis of amyotrophic lateral sclerosis: results from the ALS Swabia registry. J. Neurol. 270, 3082–3090 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hop, P. J. et al. Genome-wide study of DNA methylation shows alterations in metabolic, inflammatory, and cholesterol pathways in ALS. Sci. Transl. Med. 14, eabj0264 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Pupillo, E. et al. Amyotrophic lateral sclerosis and food intake. Amyotroph. Lateral Scler. Frontotemporal Degener. 19, 267–274 (2018).

    Article  PubMed  Google Scholar 

  119. Jin, Y. et al. Dietary intake of fruits and beta-carotene is negatively associated with amyotrophic lateral sclerosis risk in Koreans: a case–control study. Nutr. Neurosci. 17, 104–108 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Okamoto, K. et al. Fruit and vegetable intake and risk of amyotrophic lateral sclerosis in Japan. Neuroepidemiology 32, 251–256 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Petimar, J. et al. Coffee, tea, and caffeine intake and amyotrophic lateral sclerosis mortality in a pooled analysis of eight prospective cohort studies. Eur. J. Neurol. 26, 468–475 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Goncharova, P. S. et al. Nutrient effects on motor neurons and the risk of amyotrophic lateral sclerosis. Nutrients 13, 3804 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Xia, K. et al. Dietary-derived essential nutrients and amyotrophic lateral sclerosis: a two-sample Mendelian randomization study. Nutrients 14, 920 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Joo, J., Williamson, S. A., Vazquez, A. I., Fernandez, J. R. & Bray, M. S. The influence of 15-week exercise training on dietary patterns among young adults. Int. J. Obes. 43, 1681–1690 (2019).

    Article  Google Scholar 

  125. Julian, T. H. et al. A review of Mendelian randomization in amyotrophic lateral sclerosis. Brain 145, 832–842 (2022).

    Article  PubMed  Google Scholar 

  126. Henry, K. A., Fagliano, J., Jordan, H. M., Rechtman, L. & Kaye, W. E. Geographic variation of amyotrophic lateral sclerosis incidence in New Jersey, 2009–2011. Am. J. Epidemiol. 182, 512–519 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Lian, L. et al. Environmental risk factors and amyotrophic lateral sclerosis (ALS): a case–control study of ALS in China. J. Clin. Neurosci. 66, 12–18 (2019).

    Article  PubMed  Google Scholar 

  128. Beaudin, M., Salachas, F., Pradat, P. F. & Dupré, N. Environmental risk factors for amyotrophic lateral sclerosis: a case–control study in Canada and France. Amyotroph. Lateral Scler. Frontotemporal Degener. 23, 592–600 (2022).

    Article  PubMed  Google Scholar 

  129. Korner, S. et al. Influence of environment and lifestyle on incidence and progress of amyotrophic lateral sclerosis in a German ALS population. Aging Dis. 10, 205–216 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Peters, S. et al. Effect modification of the association between total cigarette smoking and ALS risk by intensity, duration and time-since-quitting: Euro-MOTOR. J. Neurol. Neurosurg. Psychiatry 91, 33–39 (2020).

    Article  PubMed  Google Scholar 

  131. Keren, N. et al. Evidence of an environmental effect on survival in ALS. Amyotroph. Lateral Scler. Frontotemporal Degener. 15, 528–533 (2014).

    Article  PubMed  Google Scholar 

  132. Rooney, J. et al. Survival analysis of geospatial factors in the Irish ALS cohort. Amyotroph. Lateral Scler. Frontotemporal Degener. 17, 555–560 (2016).

    Article  PubMed  Google Scholar 

  133. Goutman, S. A. et al. High plasma concentrations of organic pollutants negatively impact survival in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 90, 907–912 (2019).

    Article  PubMed  Google Scholar 

  134. Farrugia Wismayer, M. et al. Occupation and amyotrophic lateral sclerosis risk: a case–control study in the isolated island population of Malta. Amyotroph. Lateral Scler. Frontotemporal Degener. 22, 528–534 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Furby, A., Beauvais, K., Kolev, I., Rivain, J. G. & Sébille, V. Rural environment and risk factors of amyotrophic lateral sclerosis: a case–control study. J. Neurol. 257, 792–798 (2010).

    Article  PubMed  Google Scholar 

  136. Chio, A. et al. ALS in Italian professional soccer players: the risk is still present and could be soccer-specific. Amyotroph. Lateral Scler. 10, 205–209 (2009).

    Article  PubMed  Google Scholar 

  137. Chiò, A., Benzi, G., Dossena, M., Mutani, R. & Mora, G. Severely increased risk of amyotrophic lateral sclerosis among Italian professional football players. Brain 128, 472–476 (2005).

    Article  PubMed  Google Scholar 

  138. Gotkine, M., Friedlander, Y. & Hochner, H. Triathletes are over-represented in a population of patients with ALS. Amyotroph. Lateral Scler. Frontotemporal Degener. 15, 534–536 (2014).

    Article  PubMed  Google Scholar 

  139. Gamez, J. & Carmona, F. Confirmation of early non-bulbar onset of amyotrophic lateral sclerosis in Spanish league soccer players. J. Neurol. Sci. 428, 117586 (2021).

    Article  PubMed  Google Scholar 

  140. Benatar, M. et al. Preventing amyotrophic lateral sclerosis: insights from pre-symptomatic neurodegenerative diseases. Brain 145, 27–44 (2022).

    Article  PubMed  Google Scholar 

  141. Wills, A. M. et al. Hypercaloric enteral nutrition in patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet 383, 2065–2072 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ludolph, A. C. et al. Effect of high-caloric nutrition on survival in amyotrophic lateral sclerosis. Ann. Neurol. 87, 206–216 (2020).

    Article  PubMed  Google Scholar 

  143. Dorst, J. et al. Effect of high-caloric nutrition on serum neurofilament light chain levels in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 91, 1007–1009 (2020).

    Article  PubMed  Google Scholar 

  144. De Marchi, F. et al. Study protocol on the safety and feasibility of a normocaloric ketogenic diet in people with amyotrophic lateral sclerosis. Nutrition 94, 111525 (2022).

    Article  PubMed  Google Scholar 

  145. Paganoni, S. & Wills, A. M. High-fat and ketogenic diets in amyotrophic lateral sclerosis. J. Child Neurol. 28, 989–992 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  146. De Marchi, F., Venkatesan, S., Saraceno, M., Mazzini, L. & Grossini, E. Acetyl-l-carnitine and amyotrophic lateral sclerosis: current evidence and potential use. CNS Neurol. Disord. Drug. Targets https://doi.org/10.2174/1871527322666230330083757 (2023).

    Article  PubMed  Google Scholar 

  147. Wong, C. et al. Clinical trials in amyotrophic lateral sclerosis: a systematic review and perspective. Brain Commun. 3, fcab242 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Blacher, E. et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature 572, 474–480 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. Burberry, A. et al. C9orf72 suppresses systemic and neural inflammation induced by gut bacteria. Nature 582, 89–94 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Mandrioli, J. et al. FETR-ALS study protocol: a randomized clinical trial of fecal microbiota transplantation in amyotrophic lateral sclerosis. Front. Neurol. 10, 1021 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Lu, G., Wen, Q., Cui, B., Li, Q. & Zhang, F. Washed microbiota transplantation stopped the deterioration of amyotrophic lateral sclerosis: the first case report and narrative review. J. Biomed. Res. 37, 69–76 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Paoli, A. et al. Ketogenic diet and microbiota: friends or enemies? Genes 10, 534 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Rawat, K., Singh, N., Kumari, P. & Saha, L. A review on preventive role of ketogenic diet (KD) in CNS disorders from the gut microbiota perspective. Rev. Neurosci. 32, 143–157 (2021).

    Article  CAS  PubMed  Google Scholar 

  154. Wosiski-Kuhn, M., Lyon, M. S., Caress, J. & Milligan, C. Inflammation, immunity, and amyotrophic lateral sclerosis: II. immune-modulating therapies. Muscle Nerve 59, 23–33 (2019).

    Article  PubMed  Google Scholar 

  155. Johnson, F. O. et al. Exposure to an environmental neurotoxicant hastens the onset of amyotrophic lateral sclerosis-like phenotype in human Cu2+/Zn2+ superoxide dismutase 1 G93A mice: glutamate-mediated excitotoxicity. J. Pharmacol. Exp. Ther. 338, 518–527 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Bailey, J. M., Colón-Rodríguez, A. & Atchison, W. D. Evaluating a gene–environment interaction in amyotrophic lateral sclerosis: methylmercury exposure and mutated SOD1. Curr. Environ. Health Rep. 4, 200–207 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ash, P. E. A. et al. Heavy metal neurotoxicants induce ALS-linked TDP-43 pathology. Toxicol. Sci. 167, 105–115 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Koski, L., Ronnevi, C., Berntsson, E., Wärmländer, S. & Roos, P. M. Metals in ALS TDP-43 pathology. Int. J. Mol. Sci. 22, 12193 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Minj, E., Upadhayay, S. & Mehan, S. Nrf2/HO-1 signaling activator acetyl-11-keto-beta boswellic acid (AKBA)-mediated neuroprotection in methyl mercury-induced experimental model of ALS. Neurochem. Res. 46, 2867–2884 (2021).

    Article  CAS  PubMed  Google Scholar 

  160. Iqubal, A. et al. Environmental neurotoxic pollutants: review. Environ. Sci. Pollut. Res. Int. 27, 41175–41198 (2020).

    Article  CAS  PubMed  Google Scholar 

  161. Kisby, G. E. & Spencer, P. S. Genotoxic damage during brain development presages prototypical neurodegenerative disease. Front. Neurosci. 15, 752153 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Lagrange, E. et al. An amyotrophic lateral sclerosis hot spot in the French Alps associated with genotoxic fungi. J. Neurol. Sci. 427, 117558 (2021).

    Article  CAS  PubMed  Google Scholar 

  163. Costa, L. G. et al. Neurotoxicity of traffic-related air pollution. Neurotoxicology 59, 133–139 (2017).

    Article  CAS  PubMed  Google Scholar 

  164. Pan, Y. & Nicolazzo, J. A. Altered blood–brain barrier and blood–spinal cord barrier dynamics in amyotrophic lateral sclerosis: impact on medication efficacy and safety. Br. J. Pharmacol. 179, 2577–2588 (2022).

    Article  CAS  PubMed  Google Scholar 

  165. Murdock, B. J., Goutman, S. A., Boss, J., Kim, S. & Feldman, E. L. Amyotrophic lateral sclerosis survival associates with neutrophils in a sex-specific manner. Neurol. Neuroimmunol. Neuroinflamm. 8, e953 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Mostafalou, S. & Abdollahi, M. The link of organophosphorus pesticides with neurodegenerative and neurodevelopmental diseases based on evidence and mechanisms. Toxicology 409, 44–52 (2018).

    Article  CAS  PubMed  Google Scholar 

  167. Kulick, D. et al. Amyotrophic lateral sclerosis-associated persistent organic pollutant cis-chlordane causes GABA(A)-independent toxicity to motor neurons, providing evidence toward an environmental component of sporadic amyotrophic lateral sclerosis. ACS Chem. Neurosci. 13, 3567–3577 (2022).

    Article  CAS  PubMed  Google Scholar 

  168. de Vos, W. M., Tilg, H., Van Hul, M. & Cani, P. D. Gut microbiome and health: mechanistic insights. Gut 71, 1020–1032 (2022).

    Article  PubMed  Google Scholar 

  169. Wu, S., Yi, J., Zhang, Y. G., Zhou, J. & Sun, J. Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiol. Rep. 3, e12356 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Zhang, Y. G. et al. Target intestinal microbiota to alleviate disease progression in amyotrophic lateral sclerosis. Clin. Ther. 39, 322–336 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).

    Article  CAS  PubMed  Google Scholar 

  172. Zhang, Y., Ogbu, D., Garrett, S., Xia, Y. & Sun, J. Aberrant enteric neuromuscular system and dysbiosis in amyotrophic lateral sclerosis. Gut Microbes 13, 1996848 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Trabjerg, M. S. et al. Dysregulation of metabolic pathways by carnitine palmitoyl-transferase 1 plays a key role in central nervous system disorders: experimental evidence based on animal models. Sci. Rep. 10, 15583 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Trabjerg, M. S. et al. Downregulating carnitine palmitoyl transferase 1 affects disease progression in the SOD1 G93A mouse model of ALS. Commun. Biol. 4, 509 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Figueroa-Romero, C. et al. Temporal evolution of the microbiome, immune system and epigenome with disease progression in ALS mice. Dis. Model Mech. 13, dmm041947 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Cox, L. M. et al. The microbiota restrains neurodegenerative microglia in a model of amyotrophic lateral sclerosis. Microbiome 10, 47 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Xiao, L. et al. Associations of heavy metals with activities of daily living disability: an epigenome-wide view of DNA methylation and mediation analysis. Environ. Health Perspect. 130, 87009 (2022).

    Article  CAS  PubMed  Google Scholar 

  178. Hoang, T. T. et al. Epigenome-wide DNA methylation and pesticide use in the agricultural lung health study. Environ. Health Perspect. 129, 97008 (2021).

    Article  CAS  PubMed  Google Scholar 

  179. Grova, N., Schroeder, H., Olivier, J. L. & Turner, J. D. Epigenetic and neurological impairments associated with early life exposure to persistent organic pollutants. Int. J. Genomics 2019, 2085496 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Shock, T., Badang, L., Ferguson, B. & Martinez-Guryn, K. The interplay between diet, gut microbes, and host epigenetics in health and disease. J. Nutr. Biochem. 95, 108631 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Paez-Colasante, X., Figueroa-Romero, C., Sakowski, S. A., Goutman, S. A. & Feldman, E. L. Amyotrophic lateral sclerosis: mechanisms and therapeutics in the epigenomic era. Nat. Rev. Neurol. 11, 266–279 (2015).

    Article  CAS  PubMed  Google Scholar 

  182. Paez-Colasante, X. et al. Cytoplasmic TDP43 binds microRNAs: new disease targets in amyotrophic lateral sclerosis. Front. Cell. Neurosci. 14, 117 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Young, P. E., Kum Jew, S., Buckland, M. E., Pamphlett, R. & Suter, C. M. Epigenetic differences between monozygotic twins discordant for amyotrophic lateral sclerosis (ALS) provide clues to disease pathogenesis. PLoS ONE 12, e0182638 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Ruf, W. P. et al. Methylome analysis of ALS patients and presymptomatic mutation carriers in blood cells. Neurobiol. Aging 116, 16–24 (2022).

    Article  CAS  PubMed  Google Scholar 

  185. Zhang, M. et al. Combined epigenetic/genetic study identified an ALS age of onset modifier. Acta Neuropathol. Commun. 9, 75 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Benatar, M., Wuu, J., Andersen, P. M., Lombardi, V. & Malaspina, A. Neurofilament light: a candidate biomarker of presymptomatic amyotrophic lateral sclerosis and phenoconversion. Ann. Neurol. 84, 130–139 (2018).

    Article  CAS  PubMed  Google Scholar 

  187. Bjornevik, K. et al. Prediagnostic plasma metabolomics and the risk of amyotrophic lateral sclerosis. Neurology 92, e2089–e2100 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Bjornevik, K. et al. Pre-diagnostic plasma lipid levels and the risk of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener. 22, 133–143 (2021).

    Article  CAS  PubMed  Google Scholar 

  189. Price, E. J. et al. Merging the exposome into an integrated framework for ‘omics’ sciences. iScience 25, 103976 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Harlan, B. A. et al. Evaluation of the NAD(+) biosynthetic pathway in ALS patients and effect of modulating NAD(+) levels in hSOD1-linked ALS mouse models. Exp. Neurol. 327, 113219 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Liguori, F., Amadio, S. & Volonté, C. Where and why modeling amyotrophic lateral sclerosis. Int. J. Mol. Sci. 22, 3977 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Giacomelli, E. et al. Human stem cell models of neurodegeneration: from basic science of amyotrophic lateral sclerosis to clinical translation. Cell Stem Cell 29, 11–35 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the patients attending the Pranger ALS Clinic at the University of Michigan, along with their families, whose interest in clinical research and participation in studies have made advances in amyotrophic lateral sclerosis (ALS) exposome science possible. The authors also acknowledge the faculty and staff at the ALS Center of Excellence for their help in performing these studies and thank E.J. Koubek for help with the supplementary information. S.A.G. and E.L.F. acknowledge funding from the National ALS Registry/CDC/ATSDR (1R01TS000289, R01TS000327); National ALS Registry/CDC/ATSDR CDCP-DHHS-US (CDC/ATSDR 200-2013-56856); the ALS Association (20-IIA-532); NIEHS (K23ES027221, R01ES030049), NINDS (R01NS127188, R01NS120926); the NeuroNetwork for Emerging Therapies; the NeuroNetwork Therapeutic Discovery Fund; the Peter R. Clark Fund for Amyotrophic Lateral Sclerosis Research; the Sinai Medical Staff Foundation; Scott L. Pranger and the University of Michigan.

Author information

Authors and Affiliations

Authors

Contributions

S.A.G., M.G.S., J.H. and E.L.F. contributed substantially to discussion of the article content. All authors wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Eva L. Feldman.

Ethics declarations

Competing interests

S.A.G., D.-G.J. and E.L.F. are employees of the University of Michigan. M.G.S. and J.H. are employees of the University of North Dakota. S.A.G. and E.L.F. are listed as inventors on a patent, issue number US10660895, held by the University of Michigan, entitled ‘Methods for treating amyotrophic lateral sclerosis’ that targets immune pathways for use in amyotrophic lateral sclerosis (ALS) therapeutics. S.A.G. has served on a Data and Safety Monitoring Board and as a medical adviser for an ALS documentary. E.L.F. has consulted for Biogen.

Peer review

Peer review information

Nature Reviews Neurology thanks J. Mandrioli, S. Vucic and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Review criteria

We searched PubMed for articles in the English language, using with the following terms in addition to ‘amyotrophic lateral sclerosis’: ‘agriculture risk’, ‘air pollution’, ‘clinical trial diet’, ‘detoxifying gene’, ‘detoxifying SNP’, ‘diet risk’, ‘education polygenic’, ‘electromagnetic’, ‘environment’, ‘exposure’, ‘faecal microbiota transplant’, ‘FMT’, ‘gene environment’, ‘gene exposome’, ‘geographic distribution’, ‘head trauma’, ‘immunity environment’, ‘immunity exposome’, and ‘immunity exposure’, ‘infectious agent’, ‘ketogenic diet’, ‘mechanism’, ‘metals’, ‘metals blood’, ‘metals plasma’, ‘microbiome’, ‘microbiome risk’, ‘military’, ‘mutation environment’, ‘mutation exposome’, ‘neuroinflammation environment’, ‘neuroinflammation exposome’, ‘neuroinflammation exposure’, ‘occupational exposure’, ‘persistent organic pollutant’, ‘persistent organic pollutant blood’, ‘persistent organic pollutant plasma’, ‘pesticide’, ‘pesticide blood’, ‘pesticide plasma’, ‘pollutant’, ‘probiotic’, ‘professional sports’, ‘polygenic environment’, ‘polygenic exposome’, ‘socioeconomic’, ‘spatial clustering’, ‘traffic’, ‘trauma’. The search focused on articles published from 1st January 2017 to 23rd November 2022; however, older seminal papers were also considered. In addition, articles from the authors’ personal reference lists were included. Articles were selected on the basis of relevance to this Review.

Supplementary information

Glossary

Dual hit models

Models incorporating both genetic mutations and environmental exposures.

Epigenetic age

A composite measure of DNA methylation across specific CpG sites that is associated with chronological age.

Familial ALS

Heritable amyotrophic lateral sclerosis occurring in individuals with a family history of the illness.

Heritability

The extent to which a trait can be explained by inheritance.

Mendelian randomization

A method that examines causality of a modifiable exposure on a disease by using measured variation in genes with characterized functions.

Microbiome

A community of microorganisms that dwells within a specific habitat. In the context of the human microbiome, the habitat compromises organs, for example, the gut microbiome or the skin microbiome.

Microbiota

All of the living microorganisms within a microbiome.

Monogenic

A mode of inheritance in which a trait is attributable to a single gene.

Penetrant

Penetrance is defined as the extent to which a genetic trait manifests in an individual. Mutations that are highly penetrant are more likely to manifest phenotypically than are those with low penetrance.

Polygenic

A mode of inheritance in which a trait is attributable to several genes.

Sporadic ALS

Amyotrophic lateral sclerosis occurring in individuals without a family history of the illness.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goutman, S.A., Savelieff, M.G., Jang, DG. et al. The amyotrophic lateral sclerosis exposome: recent advances and future directions. Nat Rev Neurol 19, 617–634 (2023). https://doi.org/10.1038/s41582-023-00867-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00867-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing