Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of astrocytic α7 nicotinic acetylcholine receptors in Alzheimer disease

Abstract

The ongoing search for therapeutic interventions in Alzheimer disease (AD) has highlighted the complexity of this condition and the need for additional biomarkers, beyond amyloid-β (Aβ) and tau, to improve clinical assessment. Astrocytes are brain cells that control metabolic and redox homeostasis, among other functions, and are emerging as an important focus of AD research owing to their swift response to brain pathology in the initial stages of the disease. Reactive astrogliosis — the morphological, molecular and functional transformation of astrocytes during disease — has been implicated in AD progression, and the definition of new astrocytic biomarkers could help to deepen our understanding of reactive astrogliosis along the AD continuum. As we highlight in this Review, one promising biomarker candidate is the astrocytic α7 nicotinic acetylcholine receptor (α7nAChR), upregulation of which correlates with Aβ pathology in the brain of individuals with AD. We revisit the past two decades of research into astrocytic α7nAChRs to shed light on their roles in the context of AD pathology and biomarkers. We discuss the involvement of astrocytic α7nAChRs in the instigation and potentiation of early Aβ pathology and explore their potential as a target for future reactive astrocyte-based therapeutics and imaging biomarkers in AD.

Key points

  • Overexpression of α7 nicotinic acetylcholine receptors (α7nAChRs) in astrocytes correlates with amyloid-β (Aβ) pathology in the brain of individuals with Alzheimer disease (AD).

  • Experiments in animal models of AD indicate that α7nAChRs contribute to Aβ spreading and deposition.

  • Reactive astrocytes characterized by α7nAChR overexpression hold promise as an early biomarker for AD.

  • Experimental work using α7nAChRs agonists suggests that through the modulation of reactive astrogliosis, Aβ spreading might be prevented at an early stage of AD.

  • A multitracer imaging approach with astrocyte and α7nAChR PET radiotracers is essential to further explore the role of α7nAChRs and their interplay with reactive astrogliosis across the AD continuum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of research into α7nAChRs.
Fig. 2: A hypothetical model of α7nAChR–Aβ interactions in AD.

Similar content being viewed by others

References

  1. Davies, P. & Maloney, A. J. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 2, 1403 (1976).

    Article  CAS  PubMed  Google Scholar 

  2. Perry, E. K., Gibson, P. H., Blessed, G., Perry, R. H. & Tomlinson, B. E. Neurotransmitter enzyme abnormalities in senile dementia. Choline acetyltransferase and glutamic acid decarboxylase activities in necropsy brain tissue. J. Neurol. Sci. 34, 247–265 (1977).

    Article  CAS  PubMed  Google Scholar 

  3. Xu, H. et al. Long-term effects of cholinesterase inhibitors on cognitive decline and mortality. Neurology 96, e2220–e2230 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Viejo, L. et al. Systematic review of human post-mortem immunohistochemical studies and bioinformatics analyses unveil the complexity of astrocyte reaction in Alzheimer’s disease. Neuropathol. Appl. Neurobiol. 48, e12753 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Eng, L. F. Glial fibrillary acidic protein (GFAP): the major protein of glial intermediate filaments in differentiated astrocytes. J. Neuroimmunol. 8, 203–214 (1985).

    Article  CAS  PubMed  Google Scholar 

  6. Hanzel, D. K., Trojanowski, J. Q., Johnston, R. F. & Loring, J. F. High-throughput quantitative histological analysis of Alzheimer’s disease pathology using a confocal digital microscanner. Nat. Biotechnol. 17, 53–57 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Serrano-Pozo, A. et al. Reactive glia not only associates with plaques but also parallels tangles in Alzheimer’s disease. Am. J. Pathol. 179, 1373–1384 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ferrari-Souza, J. P. et al. Astrocyte biomarker signatures of amyloid-β and tau pathologies in Alzheimer’s disease. Mol. Psychiatry 27, 4781–4789 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Habib, N. et al. Disease-associated astrocytes in Alzheimer’s disease and aging. Nat. Neurosci. 23, 701–706 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kumar, A. et al. Astroglial tracer BU99008 detects multiple binding sites in Alzheimer’s disease brain. Mol. Psychiatry 26, 5833–5847 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sadick, J. S. et al. Astrocytes and oligodendrocytes undergo subtype-specific transcriptional changes in Alzheimer’s disease. Neuron 110, 1788–1805.e10 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Gotti, C. et al. Purification and characterization of an alpha-bungarotoxin receptor that forms a functional nicotinic channel. Proc. Natl Acad. Sci. USA 88, 3258–3262 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Letsinger, A. C., Gu, Z. & Yakel, J. L. α7 nicotinic acetylcholine receptors in the hippocampal circuit: taming complexity. Trends Neurosci. 45, 145–157 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Gotti, C. et al. A functional α-bungarotoxin receptor is present in chick cerebellum: purification and characterization. Neuroscience 50, 117–127 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Albuquerque, E. X. et al. Neuronal nicotinic receptors in synaptic functions in humans and rats: physiological and clinical relevance. Behav. Brain Res. 113, 131–141 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Meyer, E. M. et al. Neuroprotective and memory-related actions of novel alpha-7 nicotinic agents with different mixed agonist/antagonist properties. J. Pharmacol. Exp. Ther. 284, 1026–1032 (1998).

    CAS  PubMed  Google Scholar 

  17. Bettany, J. H. & Levin, E. D. Ventral hippocampal α7 nicotinic receptor blockade and chronic nicotine effects on memory performance in the radial-arm maze. Pharmacol. Biochem. Behav. 70, 467–474 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Doucette-Stamm, L. et al. Cloning and sequence of the human α7 nicotinic acetylcholine receptor. Drug Dev. Res. 30, 252–256 (1993).

    Article  CAS  Google Scholar 

  19. Hellström-Lindahl, E., Mousavi, M., Zhang, X., Ravid, R. & Nordberg, A. Regional distribution of nicotinic receptor subunit mRNAs in human brain: comparison between Alzheimer and normal brain. Brain Res. Mol. Brain Res. 66, 94–103 (1999).

    Article  PubMed  Google Scholar 

  20. Noviello, C. M. et al. Structure and gating mechanism of the α7 nicotinic acetylcholine receptor. Cell 184, 2121–2134.e13 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rubboli, F. et al. Distribution of nicotinic receptors in the human hippocampus and thalamus. Eur. J. Neurosci. 6, 1596–1604 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Falk, L., Nordberg, A., Seiger, A., Kjaeldgaard, A. & Hellström-Lindahl, E. Higher expression of α7 nicotinic acetylcholine receptors in human fetal compared to adult brain. Brain Res. Dev. Brain Res. 142, 151–160 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Moretti, M. et al. The novel α7β2-nicotinic acetylcholine receptor subtype is expressed in mouse and human basal forebrain: biochemical and pharmacological characterization. Mol. Pharmacol. 86, 306–317 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wu, J. et al. Heteromeric α7β2 nicotinic acetylcholine receptors in the brain. Trends Pharmacol. Sci. 37, 562–574 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Takata, K. et al. Galantamine-induced amyloid-β clearance mediated via stimulation of microglial nicotinic acetylcholine receptors. J. Biol. Chem. 285, 40180–40191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Graham, A. J. et al. Differential nicotinic acetylcholine receptor subunit expression in the human hippocampus. J. Chem. Neuroanat. 25, 97–113 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Sharma, G. & Vijayaraghavan, S. Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proc. Natl Acad. Sci. USA 98, 4148–4153 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shen, J. X. & Yakel, J. L. Functional α7 nicotinic ACh receptors on astrocytes in rat hippocampal CA1 slices. J. Mol. Neurosci. 48, 14–21 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Graham, A. et al. Immunohistochemical localisation of nicotinic acetylcholine receptor subunits in human cerebellum. Neuroscience 113, 493–507 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Teaktong, T. et al. Alzheimer’s disease is associated with a selective increase in α7 nicotinic acetylcholine receptor immunoreactivity in astrocytes. Glia 41, 207–211 (2003).

    Article  PubMed  Google Scholar 

  31. Yu, W. F., Guan, Z. Z., Bogdanovic, N. & Nordberg, A. High selective expression of α7 nicotinic receptors on astrocytes in the brains of patients with sporadic Alzheimer’s disease and patients carrying Swedish APP 670/671 mutation: a possible association with neuritic plaques. Exp. Neurol. 192, 215–225 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Rei, R. T., Sabbagh, M. N., Corey-Bloom, J., Tiraboschi, P. & Thal, L. J. Nicotinic receptor losses in dementia with Lewy bodies: comparisons with Alzheimer’s disease. Neurobiol. Aging 21, 741–746 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Banerjee, C. et al. Cellular expression of α7 nicotinic acetylcholine receptor protein in the temporal cortex in Alzheimer’s and Parkinson’s disease–a stereological approach. Neurobiol. Dis. 7, 666–672 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Wevers, A. et al. Expression of nicotinic acetylcholine receptor subunits in the cerebral cortex in Alzheimer’s disease: histotopographical correlation with amyloid plaques and hyperphosphorylated-tau protein. Eur. J. Neurosci. 11, 2551–2565 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Chu, L. W., Ma, E. S., Lam, K. K., Chan, M. F. & Lee, D. H. Increased alpha 7 nicotinic acetylcholine receptor protein levels in Alzheimer’s disease patients. Dement. Geriatr. Cogn. Disord. 19, 106–112 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Teaktong, T. et al. Nicotinic acetylcholine receptor immunohistochemistry in Alzheimer’s disease and dementia with Lewy bodies: differential neuronal and astroglial pathology. J. Neurol. Sci. 225, 39–49 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Nagele, R. G., D’Andrea, M. R., Anderson, W. J. & Wang, H. Y. Intracellular accumulation of β-amyloid1-42 in neurons is facilitated by the α7 nicotinic acetylcholine receptor in Alzheimer’s disease. Neuroscience 110, 199–211 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Kadir, A. et al. Positron emission tomography imaging and clinical progression in relation to molecular pathology in the first Pittsburgh Compound B positron emission tomography patient with Alzheimer’s disease. Brain 134, 301–317 (2011).

    Article  PubMed  Google Scholar 

  39. Lilja, A. M., Porras, O., Storelli, E., Nordberg, A. & Marutle, A. Functional interactions of fibrillar and oligomeric amyloid-β with alpha7 nicotinic receptors in Alzheimer’s disease. J. Alzheimers Dis. 23, 335–347 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Ikonomovic, M. D. et al. Cortical α7 nicotinic acetylcholine receptor and β-amyloid levels in early Alzheimer disease. Arch. Neurol. 66, 646–651 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ni, R., Marutle, A. & Nordberg, A. Modulation of α7 nicotinic acetylcholine receptor and fibrillar amyloid-β interactions in Alzheimer’s disease brain. J. Alzheimers Dis. 33, 841–851 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Wang, H. Y. et al. β-Amyloid1-42 binds to α7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology. J. Biol. Chem. 275, 5626–5632 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Nagele, R. G., D’Andrea, M. R., Lee, H., Venkataraman, V. & Wang, H. Y. Astrocytes accumulate Aβ42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains. Brain Res. 971, 197–209 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Herber, D. L., Severance, E. G., Cuevas, J., Morgan, D. & Gordon, M. N. Biochemical and histochemical evidence of nonspecific binding of α7nAChR antibodies to mouse brain tissue. J. Histochem. Cytochem. 52, 1367–1376 (2004).

    CAS  PubMed  Google Scholar 

  45. Sokolowski, J. D. & Mandell, J. W. Phagocytic clearance in neurodegeneration. Am. J. Pathol. 178, 1416–1428 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Carter, S. F. et al. Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-L-deprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. J. Nucl. Med. 53, 37–46 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Rodriguez-Vieitez, E. et al. Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer’s disease. Brain 139, 922–936 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Scholl, M. et al. Early astrocytosis in autosomal dominant Alzheimer’s disease measured in vivo by multi-tracer positron emission tomography. Sci. Rep. 5, 16404 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Huang, Y. et al. Microglia use TAM receptors to detect and engulf amyloid β plaques. Nat. Immunol. 22, 586–594 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hernandez, C. M., Kayed, R., Zheng, H., Sweatt, J. D. & Dineley, K. T. Loss of α7 nicotinic receptors enhances β-amyloid oligomer accumulation, exacerbating early-stage cognitive decline and septohippocampal pathology in a mouse model of Alzheimer’s disease. J. Neurosci. 30, 2442–2453 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tropea, M. R. et al. Genetic deletion of α7 nicotinic acetylcholine receptors induces an age-dependent Alzheimer’s disease-like pathology. Prog. Neurobiol. 206, 102154 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, K. et al. Fear learning induces α7-nicotinic acetylcholine receptor-mediated astrocytic responsiveness that is required for memory persistence. Nat. Neurosci. 24, 1686–1698 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Shah, D. et al. Astrocyte calcium dysfunction causes early network hyperactivity in Alzheimer’s disease. Cell Rep. 40, 111280 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. D’Angelo, C. et al. nAChRs gene expression and neuroinflammation in APPswe/PS1dE9 transgenic mouse. Sci. Rep. 11, 9711 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bednar, I. et al. Selective nicotinic receptor consequences in APP(SWE) transgenic mice. Mol. Cell. Neurosci. 20, 354–365 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Rodriguez-Vieitez, E. et al. Astrocytosis precedes amyloid plaque deposition in Alzheimer APPswe transgenic mouse brain: a correlative positron emission tomography and in vitro imaging study. Eur. J. Nucl. Med. Mol. Imaging 42, 1119–1132 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fontana, I. C. et al. Amyloid-β oligomers in cellular models of Alzheimer’s disease. J. Neurochem. 155, 348–369 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Abramov, A. Y., Canevari, L. & Duchen, M. R. β-Amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J. Neurosci. 24, 565–575 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kamynina, A. V., Holmstrom, K. M., Koroev, D. O., Volpina, O. M. & Abramov, A. Y. Acetylcholine and antibodies against the acetylcholine receptor protect neurons and astrocytes against beta-amyloid toxicity. Int. J. Biochem. Cell Biol. 45, 899–907 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Talantova, M. et al. Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc. Natl Acad. Sci. USA 110, E2518–E2527 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee, L., Kosuri, P. & Arancio, O. Picomolar amyloid-β peptides enhance spontaneous astrocyte calcium transients. J. Alzheimers Dis. 38, 49–62 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xiu, J., Nordberg, A., Zhang, J. T. & Guan, Z. Z. Expression of nicotinic receptors on primary cultures of rat astrocytes and up-regulation of the α7, α4 and β2 subunits in response to nanomolar concentrations of the β-amyloid peptide1-42. Neurochem. Int. 47, 281–290 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Dineley, K. T., Bell, K. A., Bui, D. & Sweatt, J. D. β-Amyloid peptide activates α7 nicotinic acetylcholine receptors expressed in Xenopus oocytes. J. Biol. Chem. 277, 25056–25061 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Marutle, A., Warpman, U., Bogdanovic, N. & Nordberg, A. Regional distribution of subtypes of nicotinic receptors in human brain and effect of aging studied by (±)-[3H]epibatidine. Brain Res. 801, 143–149 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Clementi, F., Cabrini, D., Gotti, C. & Sher, E. Pharmacological characterization of cholinergic receptors in a human neuroblastoma cell line. J. Neurochem. 47, 291–297 (1986).

    Article  CAS  PubMed  Google Scholar 

  66. Wang, Y., Zhu, N., Wang, K., Zhang, Z. & Wang, Y. Identification of α7 nicotinic acetylcholine receptor on hippocampal astrocytes cultured in vitro and its role on inflammatory mediator secretion. Neural Regen. Res. 7, 1709–1714 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Westerlund, A., Bjorklund, U., Ronnback, L. & Hansson, E. Long-term nicotine treatment suppresses IL-1β release and attenuates substance P- and 5-HT-evoked Ca2+ responses in astrocytes. Neurosci. Lett. 553, 191–195 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Ren, Z., Yang, M., Guan, Z. & Yu, W. Astrocytic α7 nicotinic receptor activation inhibits amyloid-β aggregation by upregulating endogenous αB-crystallin through the PI3K/Akt signaling pathway. Curr. Alzheimer Res. 16, 39–48 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Shammas, S. L. et al. Binding of the molecular chaperone αB-crystallin to Aβ amyloid fibrils inhibits fibril elongation. Biophys. J. 101, 1681–1689 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hellström-Lindahl, E. et al. Nicotine reduces Aβ in the brain and cerebral vessels of APPsw mice. Eur. J. Neurosci. 19, 2703–2710 (2004).

    Article  PubMed  Google Scholar 

  71. Unger, C., Svedberg, M. M., Yu, W. F., Hedberg, M. M. & Nordberg, A. Effect of subchronic treatment of memantine, galantamine, and nicotine in the brain of Tg2576 (APPswe) transgenic mice. J. Pharmacol. Exp. Ther. 317, 30–36 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Giniatullin, R., Nistri, A. & Yakel, J. L. Desensitization of nicotinic ACh receptors: shaping cholinergic signaling. Trends Neurosci. 28, 371–378 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Hernandez, C. M. & Terry, A. V. Jr. Repeated nicotine exposure in rats: effects on memory function, cholinergic markers and nerve growth factor. Neuroscience 130, 997–1012 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Bodnar, A. L. et al. Discovery and structure-activity relationship of quinuclidine benzamides as agonists of α7 nicotinic acetylcholine receptors. J. Med. Chem. 48, 905–908 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Ren, Z. et al. PNU282987 inhibits amyloid-β aggregation by upregulating astrocytic endogenous αB-crystallin and HSP70 via regulation of the α7AChR, PI3K/Akt/HSF1 signaling axis. Mol. Med. Rep. 22, 201–208 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cao, K., Xiang, J., Dong, Y. T., Xu, Y. & Guan, Z. Z. Activation of α7 nicotinic acetylcholine receptor by its selective agonist improved learning and memory of amyloid precursor protein/presenilin 1 (APP/PS1) mice via the Nrf2/HO-1 pathway. Med. Sci. Monit. 28, e933978 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. van Groen, T., Kiliaan, A. J. & Kadish, I. Deposition of mouse amyloid β in human APP/PS1 double and single AD model transgenic mice. Neurobiol. Dis. 23, 653–662 (2006).

    Article  PubMed  Google Scholar 

  78. Radde, R. et al. Aβ42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep. 7, 940–946 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Arias, H. R., Gu, R. X., Feuerbach, D. & Wei, D. Q. Different interaction between the agonist JN403 and the competitive antagonist methyllycaconitine with the human α7 nicotinic acetylcholine receptor. Biochemistry 49, 4169–4180 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Lilja, A. M. et al. Neural stem cell transplant-induced effect on neurogenesis and cognition in Alzheimer Tg2576 mice is inhibited by concomitant treatment with amyloid-lowering or cholinergic α7 nicotinic receptor drugs. Neural Plast. 2015, 370432 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Coughlin, J. M. et al. The distribution of the alpha7 nicotinic acetylcholine receptor in healthy aging: an in vivo positron emission tomography study with [18F]ASEM. Neuroimage 165, 118–124 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Hashimoto, K. et al. [11C]CHIBA-1001 as a novel PET ligand for α7 nicotinic receptors in the brain: a PET study in conscious monkeys. PLoS ONE 3, e3231 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ding, M. et al. [3H]Chiba-1001(methyl-SSR180711) has low in vitro binding affinity and poor in vivo selectivity to nicotinic alpha-7 receptor in rodent brain. Synapse 66, 315–322 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Toyohara, J. et al. Preclinical and the first clinical studies on [11C]CHIBA-1001 for mapping α7 nicotinic receptors by positron emission tomography. Ann. Nucl. Med. 23, 301–309 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Ogawa, M. et al. Synthesis and evaluation of new imaging agent for central nicotinic acetylcholine receptor α7 subtype. Nucl. Med. Biol. 37, 347–355 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Deuther-Conrad, W. et al. Assessment of α7 nicotinic acetylcholine receptor availability in juvenile pig brain with [18F]NS10743. Eur. J. Nucl. Med. Mol. Imaging 38, 1541–1549 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Deuther-Conrad, W. et al. Molecular imaging of α7 nicotinic acetylcholine receptors: design and evaluation of the potent radioligand [18F]NS10743. Eur. J. Nucl. Med. Mol. Imaging 36, 791–800 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Ettrup, A. et al. 11C-NS14492 as a novel PET radioligand for imaging cerebral α7 nicotinic acetylcholine receptors: in vivo evaluation and drug occupancy measurements. J. Nucl. Med. 52, 1449–1456 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Colas, L. et al. In vivo imaging of A7 nicotinic receptors as a novel method to monitor neuroinflammation after cerebral ischemia. Glia 66, 1611–1624 (2018).

    Article  PubMed  Google Scholar 

  90. Maier, D. L. et al. Pre-clinical validation of a novel alpha-7 nicotinic receptor radiotracer, [3H]AZ11637326: target localization, biodistribution and ligand occupancy in the rat brain. Neuropharmacology 61, 161–171 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Ravert, H. T. et al. Radiochemical synthesis and in vivo evaluation of [18F]AZ11637326: an agonist probe for the α7 nicotinic acetylcholine receptor. Nucl. Med. Biol. 40, 731–739 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Horti, A. G. et al. Synthesis and evaluation of new radioligands [11C]A-833834 and [11C]A-752274 for positron-emission tomography of α7-nicotinic acetylcholine receptors. Nucl. Med. Biol. 40, 395–402 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Schrimpf, M. R. et al. SAR of α7 nicotinic receptor agonists derived from tilorone: exploration of a novel nicotinic pharmacophore. Bioorg. Med. Chem. Lett. 22, 1633–1638 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Hillmer, A. T. et al. PET imaging of α7 nicotinic acetylcholine receptors: a comparative study of [18F]ASEM and [18F]DBT-10 in nonhuman primates, and further evaluation of [18F]ASEM in humans. Eur. J. Nucl. Med. Mol. Imaging 44, 1042–1050 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Teodoro, R. et al. Synthesis and radiofluorination of novel fluoren-9-one based derivatives for the imaging of α7 nicotinic acetylcholine receptor with PET. Bioorg. Med. Chem. Lett. 28, 1471–1475 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Teodoro, R. et al. A promising PET tracer for imaging of α7 nicotinic acetylcholine receptors in the brain: design, synthesis, and in vivo evaluation of a dibenzothiophene-based radioligand. Molecules 20, 18387–18421 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Horti, A. G. et al. 18F-ASEM, a radiolabeled antagonist for imaging the α7-nicotinic acetylcholine receptor with PET. J. Nucl. Med. 55, 672–677 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Wong, D. F. et al. Human brain imaging of α7 nAChR with [18F]ASEM: a new PET radiotracer for neuropsychiatry and determination of drug occupancy. Mol. Imaging Biol. 16, 730–738 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Coughlin, J. et al. The availability of the α7 nicotinic acetylcholine receptor in recent-onset psychosis: a study using 18F-ASEM PET. J. Nucl. Med. 60, 241–243 (2019).

    Article  CAS  Google Scholar 

  100. Coughlin, J. M. et al. High availability of the α7-nicotinic acetylcholine receptor in brains of individuals with mild cognitive impairment: a pilot study using 18F-ASEM PET. J. Nucl. Med. 61, 423–426 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wong, D. F. et al. Brain PET imaging of α7-nAChR with [18F]ASEM: reproducibility, occupancy, receptor density, and changes in schizophrenia. Int. J. Neuropsychopharmacol. 21, 656–667 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mitsis, E. M. et al. Age-related decline in nicotinic receptor availability with [123I]5-IA-85380 SPECT. Neurobiol. Aging 30, 1490–1497 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Sihver, W., Gillberg, P. G., Svensson, A. L. & Nordberg, A. Autoradiographic comparison of [3H](−)nicotine, [3H]cytisine and [3H]epibatidine binding in relation to vesicular acetylcholine transport sites in the temporal cortex in Alzheimer’s disease. Neuroscience 94, 685–696 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Zhou, Y. et al. In silico studies of ASEM analogues targeting α7-nAChR and experimental verification. RSC Adv. 11, 3942–3951 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nag, S. et al. Development of 11C-labeled ASEM analogues for the detection of neuronal nicotinic acetylcholine receptors (α7-nAChR). ACS Chem. Neurosci. 13, 352–362 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Kumar, A., Fontana, I. C. & Nordberg, A. Reactive astrogliosis: a friend or foe in the pathogenesis of Alzheimer’s disease. J. Neurochem. 164, 309–324 (2023).

    Article  CAS  PubMed  Google Scholar 

  107. Arakawa, R. et al. Test–retest reproducibility of [11C]-l-deprenyl-D2 binding to MAO-B in the human brain. EJNMMI Res. 7, 54 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ni, R. et al. In vitro characterization of the regional binding distribution of amyloid PET tracer florbetaben and the glia tracers deprenyl and PK11195 in autopsy Alzheimer’s brain tissue. J. Alzheimers Dis. 80, 1723–1737 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Harada, R. et al. 18F-SMBT-1: a selective and reversible PET tracer for monoamine oxidase-B imaging. J. Nucl. Med. 62, 253–258 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Vetel, S. et al. Longitudinal PET imaging of α7 nicotinic acetylcholine receptors with [18F]ASEM in a rat model of Parkinson’s disease. Mol. Imaging Biol. 22, 348–357 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Chaney, A. M. et al. Prodromal neuroinflammatory, cholinergic and metabolite dysfunction detected by PET and MRS in the TgF344-AD transgenic rat model of AD: a collaborative multi-modal study. Theranostics 11, 6644–6667 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Takata, N. et al. Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo. J. Neurosci. 31, 18155–18165 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Navarrete, M. et al. Astrocytes mediate in vivo cholinergic-induced synaptic plasticity. PLoS Biol. 10, e1001259 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pirttimaki, T. M. et al. α7 Nicotinic receptor-mediated astrocytic gliotransmitter release: Aβ effects in a preclinical Alzheimer’s mouse model. PLoS ONE 8, e81828 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Lezmy, J. et al. Astrocyte Ca2+-evoked ATP release regulates myelinated axon excitability and conduction speed. Science 374, eabh2858 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Papouin, T., Dunphy, J. M., Tolman, M., Dineley, K. T. & Haydon, P. G. Septal cholinergic neuromodulation tunes the astrocyte-dependent gating of hippocampal NMDA receptors to wakefulness. Neuron 94, 840–854.e7 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Patti, L. et al. Evidence that α7 nicotinic receptor modulates glutamate release from mouse neocortical gliosomes. Neurochem. Int. 51, 1–7 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Wu, H. Q. et al. The astrocyte-derived α7 nicotinic receptor antagonist kynurenic acid controls extracellular glutamate levels in the prefrontal cortex. J. Mol. Neurosci. 40, 204–210 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Beggiato, S. et al. Kynurenic acid, by targeting α7 nicotinic acetylcholine receptors, modulates extracellular GABA levels in the rat striatum in vivo. Eur. J. Neurosci. 37, 1470–1477 (2013).

    Article  PubMed  Google Scholar 

  120. Konradsson-Geuken, Å. et al. Second-by-second analysis of alpha 7 nicotine receptor regulation of glutamate release in the prefrontal cortex of awake rats. Synapse 63, 1069–1082 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang, X., Lippi, G., Carlson, D. M. & Berg, D. K. Activation of α7-containing nicotinic receptors on astrocytes triggers AMPA receptor recruitment to glutamatergic synapses. J. Neurochem. 127, 632–643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Beggiato, S. et al. Endogenous kynurenic acid regulates extracellular GABA levels in the rat prefrontal cortex. Neuropharmacology 82, 11–18 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Jo, S. et al. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease. Nat. Med. 20, 886–896 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Nakano, I. & Hirano, A. Parkinson’s disease: neuron loss in the nucleus basalis without concomitant Alzheimer’s disease. Ann. Neurol. 15, 415–418 (1984).

    Article  CAS  PubMed  Google Scholar 

  125. Hall, H. et al. Hippocampal Lewy pathology and cholinergic dysfunction are associated with dementia in Parkinson’s disease. Brain 137, 2493–2508 (2014).

    Article  PubMed  Google Scholar 

  126. Perry, E. K. et al. Cholinergic correlates of cognitive impairment in Parkinson’s disease: comparisons with Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 48, 413–421 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Martin-Ruiz, C. M. et al. Alpha and beta nicotinic acetylcholine receptors subunits and synaptophysin in putamen from Parkinson’s disease. Neuropharmacology 39, 2830–2839 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Guan, Z. Z., Nordberg, A., Mousavi, M., Rinne, J. O. & Hellström-Lindahl, E. Selective changes in the levels of nicotinic acetylcholine receptor protein and of corresponding mRNA species in the brains of patients with Parkinson’s disease. Brain Res. 956, 358–366 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Court, J. A., Martin-Ruiz, C., Graham, A. & Perry, E. Nicotinic receptors in human brain: topography and pathology. J. Chem. Neuroanat. 20, 281–298 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Bordia, T., Grady, S. R., McIntosh, J. M. & Quik, M. Nigrostriatal damage preferentially decreases a subpopulation of α6β2* nAChRs in mouse, monkey, and Parkinson’s disease striatum. Mol. Pharmacol. 72, 52–61 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Kim, K., Bohnen, N. I., Muller, M. & Lustig, C. Compensatory dopaminergic-cholinergic interactions in conflict processing: evidence from patients with Parkinson’s disease. Neuroimage 190, 94–106 (2019).

    Article  CAS  PubMed  Google Scholar 

  132. Kuter, K., Olech, L., Glowacka, U. & Paleczna, M. Astrocyte support is important for the compensatory potential of the nigrostriatal system neurons during early neurodegeneration. J. Neurochem. 148, 63–79 (2019).

    CAS  PubMed  Google Scholar 

  133. Liu, Y. et al. Wnt/β-catenin signaling plays an essential role in α7 nicotinic receptor-mediated neuroprotection of dopaminergic neurons in a mouse Parkinson’s disease model. Biochem. Pharmacol. 140, 115–123 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Liu, Y. et al. α7 nicotinic acetylcholine receptor-mediated neuroprotection against dopaminergic neuron loss in an MPTP mouse model via inhibition of astrocyte activation. J. Neuroinflammation 9, 98 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Vetel, S. et al. Neuroprotective and anti-inflammatory effects of a therapy combining agonists of nicotinic α7 and σ1 receptors in a rat model of Parkinson’s disease. Neural Regen. Res. 16, 1099–1104 (2021).

    Article  CAS  PubMed  Google Scholar 

  136. Jamjoom, A. A. B., Rhodes, J., Andrews, P. J. D. & Grant, S. G. N. The synapse in traumatic brain injury. Brain 144, 18–31 (2021).

    Article  PubMed  Google Scholar 

  137. Stefani, M. A. et al. Elevated glutamate and lactate predict brain death after severe head trauma. Ann. Clin. Transl. Neurol. 4, 392–402 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Rao, V. L., Baskaya, M. K., Dogan, A., Rothstein, J. D. & Dempsey, R. J. Traumatic brain injury down-regulates glial glutamate transporter (GLT-1 and GLAST) proteins in rat brain. J. Neurochem. 70, 2020–2027 (1998).

    CAS  PubMed  Google Scholar 

  139. Perez, E. J. et al. Enhanced astrocytic d-serine underlies synaptic damage after traumatic brain injury. J. Clin. Invest. 127, 3114–3125 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Gatson, J. W., Simpkins, J. W. & Uteshev, V. V. High therapeutic potential of positive allosteric modulation of α7 nAChRs in a rat model of traumatic brain injury: proof-of-concept. Brain Res. Bull. 112, 35–41 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Marutle, A. et al. Laminar distribution of nicotinic receptor subtypes in cortical regions in schizophrenia. J. Chem. Neuroanat. 22, 115–126 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Marsman, A. et al. Glutamate in schizophrenia: a focused review and meta-analysis of 1H-MRS studies. Schizophr. Bull. 39, 120–129 (2013).

    Article  PubMed  Google Scholar 

  143. Plitman, E. et al. Kynurenic acid in schizophrenia: a systematic review and meta-analysis. Schizophr. Bull. 43, 764–777 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Alexander, K. S., Wu, H. Q., Schwarcz, R. & Bruno, J. P. Acute elevations of brain kynurenic acid impair cognitive flexibility: normalization by the alpha7 positive modulator galantamine. Psychopharmacology 220, 627–637 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ work is financially supported by the Swedish Foundation for Strategic Research (SSF; RB13-0192), the Swedish Research Council (projects 2017-02965, 2017-06086, 2020-01990), the Swedish Brain Foundation, the Swedish Alzheimer Foundation, the Swedish Dementia Foundation, the Center for Innovative Medicine (CIMED) Region Stockholm, Åhlens Foundation, the Michael J Fox Foundation (MJFF-019728), the Alzheimer Association USA (AARF-21-848395), Loo and Hans Osterman Foundation for Medical Research, and the Recherche sur Alzheimer Foundation (Paris, France).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and contributed substantially to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Agneta Nordberg.

Ethics declarations

Competing interests

A.N. holds a patent on PET radiotracer analogues of the compound ASEM (PCT/SE 20221050413). I.C.F. and A.K. declare no competing interests.

Peer review

Peer review information

Nature Reviews Neurology thanks A. Verkhratsky, C. Gotti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

11C-l-deprenyl-D2

The most commonly used PET radiotracer in the clinical setting for imaging of monoamine oxidase B in reactive astrocytes.

Aβ isoforms

The range of different amyloid-β (Aβ) peptides, including Aβ1–38, Aβ1–40 and Aβ1–42, that are generated by the sequential cleavage of amyloid precursor protein by β-secretase and γ-secretase.

APP NL-F

APP knock-in mice that express human amyloid-β and have two pathogenic mutations — the Swedish (NL) and the Iberian (F) — in the APP gene.

APP/PS1

Transgenic mouse that mimics amyloid-β pathology in Alzheimer disease. The animals bear the amyloid precursor protein Swedish mutation and the presenilin 1 gene containing an L166P mutation.

Glial fibrillary acidic protein

(GFAP). An intermediate filament protein mostly found in astrocytes. Traditionally considered to be a universal marker of pathological reactive astrogliosis, although advanced transcriptomic and biomarker research indicates that not all reactive astrocytes express GFAP.

Mild cognitive impairment

(MCI). The initial stage of cognitive impairment that is often a precursor to Alzheimer disease.

Soluble Aβ oligomers

A pre-plaque amyloid-β (Aβ) conformational state that comprises around 2–45 Aβ monomers and is suggested to be the main toxic culprit in Alzheimer disease.

Tg2576

A mouse model of amyloid-β pathology that overexpresses a mutant form of amyloid precursor protein (APP; isoform 695) combined with the APP Swedish mutation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fontana, I.C., Kumar, A. & Nordberg, A. The role of astrocytic α7 nicotinic acetylcholine receptors in Alzheimer disease. Nat Rev Neurol 19, 278–288 (2023). https://doi.org/10.1038/s41582-023-00792-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00792-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing