Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hope for patients with neuromyelitis optica spectrum disorders — from mechanisms to trials

Abstract

Neuromyelitis optica spectrum disorder (NMOSD) is a rare inflammatory CNS disease that primarily manifests as relapsing episodes of severe optic neuritis and myelitis. Diagnosis of NMOSD is supported by the detection of IgG autoantibodies that target the aquaporin 4 (AQP4) water channel, which, in the CNS, is an astrocyte-specific protein. AQP4 antibody binding leads to AQP4 internalization, complement-dependent and antibody-dependent cellular cytotoxicity, and water channel dysfunction. Cumulative attack-related injury causes disability in NMOSD, so the prevention of attacks is expected to prevent disability accrual. Until recently, no regulator-approved therapies were available for NMOSD. Traditional immunosuppressant therapies, including mycophenolate mofetil, azathioprine and rituximab, were widely used but their benefits have not been assessed in controlled studies. In 2019 and 2020, five phase II and III randomized placebo-controlled trials of four mechanism-based therapies for NMOSD were published and demonstrated that all four effectively prolonged the time to first relapse. All four drugs were monoclonal antibodies: the complement C5 antibody eculizumab, the IL-6 receptor antibody satralizumab, the B cell-depleting antibody inebilizumab, which targets CD19, and rituximab, which targets CD20. We review the pathophysiology of NMOSD, the rationale for the development of these mechanism-based drugs, the methodology and outcomes of the five trials, and the implications of these findings for the treatment of NMOSD.

Key points

  • Improved understanding of the pathophysiological mechanisms of neuromyelitis optica spectrum disorder enabled the development and testing of targeted treatments that have now received regulatory approval.

  • Randomized trials of eculizumab, inebilizumab, satralizumab and rituximab demonstrated that all four reduced the time to protocol-defined first relapse, thereby meeting the primary end points.

  • Differences in the trial designs prevent conclusions about which drug is preferable as first-line treatment. Factors that influence treatment decisions include previous experience with therapy, efficacy, safety, accessibility, cost and convenience.

  • The accessibility and affordability of the newly approved treatments for neuromyelitis optica spectrum disorder will vary between countries and regions and will influence decisions to initiate or switch to these drugs.

  • The RIN-1 trial included too few patients for the quantification of risk reduction; however, the extensive clinical experience with rituximab and its relatively low cost mean that it will remain an important treatment option.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathogenesis of neuromyelitis optica and pharmacological targets.
Fig. 2: Relapse-free survival in randomized controlled trials in neuromyelitis optica spectrum disorders.

Similar content being viewed by others

References

  1. Lennon, V. A. et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364, 2106–2112 (2004). This paper reported the discovery of the NMO biomarker NMO-IgG.

    CAS  PubMed  Google Scholar 

  2. Lennon, V. A., Kryzer, T. J., Pittock, S. J., Verkman, A. S. & Hinson, S. R. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J. Exp. Med. 202, 473–477 (2005). This paper reported that AQP4 is the antigenic target of NMO-IgG.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wingerchuk, D. M. et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 85, 177–189 (2015).

    PubMed  PubMed Central  Google Scholar 

  4. Wingerchuk, D. M., Hogancamp, W. F., O’Brien, P. C. & Weinshenker, B. G. The clinical course of neuromyelitis optica (Devic’s syndrome). Neurology 53, 1107–1114 (1999).

    CAS  PubMed  Google Scholar 

  5. Wingerchuk, D. M., Lennon, V. A., Pittock, S. J., Lucchinetti, C. F. & Weinshenker, B. G. Revised diagnostic criteria for neuromyelitis optica. Neurology 66, 1485–1489 (2006).

    CAS  PubMed  Google Scholar 

  6. Wingerchuk, D. M., Lennon, V. A., Lucchinetti, C. F., Pittock, S. J. & Weinshenker, B. G. The spectrum of neuromyelitis optica. Lancet Neurol. 6, 805–815 (2007).

    CAS  PubMed  Google Scholar 

  7. Flanagan, E. P. et al. Epidemiology of aquaporin-4 autoimmunity and neuromyelitis optica spectrum. Ann. Neurol. 79, 775–783 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hor, J. Y. et al. Epidemiology of neuromyelitis optica spectrum disorder and its prevalence and incidence worldwide. Front. Neurol. 11, 501 (2020).

    PubMed  PubMed Central  Google Scholar 

  9. Papp, V. et al. Worldwide incidence and prevalence of neuromyelitis optica: a systematic review. Neurology 96, 59–77 (2021).

    PubMed  PubMed Central  Google Scholar 

  10. Apiwattanakul, M. et al. Diagnostic utility of NMO/AQP4-IgG in evaluating CNS inflammatory disease in Thai patients. J. Neurol. Sci. 320, 118–120 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Nagaishi, A. et al. Clinical features of neuromyelitis optica in a large Japanese cohort: comparison between phenotypes. J. Neurol. Neurosurg. Psychiatry 82, 1360–1364 (2011).

    PubMed  Google Scholar 

  12. Quek, A. M. et al. Effects of age and sex on aquaporin-4 autoimmunity. Arch. Neurol. 69, 1039–1043 (2012).

    PubMed  PubMed Central  Google Scholar 

  13. Wingerchuk, D. M., Pittock, S. J., Lucchinetti, C. F., Lennon, V. A. & Weinshenker, B. G. A secondary progressive clinical course is uncommon in neuromyelitis optica. Neurology 68, 603–605 (2007).

    CAS  PubMed  Google Scholar 

  14. Jacob, A. et al. Treatment of neuromyelitis optica with rituximab: retrospective analysis of 25 patients. Arch. Neurol. 65, 1443–1448 (2008).

    PubMed  Google Scholar 

  15. Costanzi, C. et al. Azathioprine: tolerability, efficacy, and predictors of benefit in neuromyelitis optica. Neurology 77, 659–666 (2011).

    CAS  PubMed  Google Scholar 

  16. Kitley, J. et al. Methotrexate is an alternative to azathioprine in neuromyelitis optica spectrum disorders with aquaporin-4 antibodies. J. Neurol. Neurosurg. Psychiatry 84, 918–921 (2013).

    PubMed  Google Scholar 

  17. Elsone, L. et al. Long-term efficacy, tolerability and retention rate of azathioprine in 103 aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder patients: a multicentre retrospective observational study from the UK. Mult. Scler. 20, 1533–1540 (2014).

    PubMed  Google Scholar 

  18. Jacob, A. et al. Treatment of neuromyelitis optica with mycophenolate mofetil: retrospective analysis of 24 patients. Arch. Neurol. 66, 1128–1133 (2009).

    PubMed  Google Scholar 

  19. Kim, S. H. et al. Clinical efficacy of plasmapheresis in patients with neuromyelitis optica spectrum disorder and effects on circulating anti-aquaporin-4 antibody levels. J. Clin. Neurol. 9, 36–42 (2013).

    PubMed  PubMed Central  Google Scholar 

  20. Kim, S. H., Huh, S. Y., Lee, S. J., Joung, A. & Kim, H. J. A 5-year follow-up of rituximab treatment in patients with neuromyelitis optica spectrum disorder. JAMA Neurol. 70, 1110–1117 (2013).

    PubMed  Google Scholar 

  21. Kitley, J. et al. Prognostic factors and disease course in aquaporin-4 antibody-positive patients with neuromyelitis optica spectrum disorder from the United Kingdom and Japan. Brain 135, 1834–1849 (2012).

    PubMed  Google Scholar 

  22. Cree, B. A. C. et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet 394, 1352–1363 (2019).

    CAS  Google Scholar 

  23. Pittock, S. J. et al. Eculizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder. N. Engl. J. Med. 381, 614–625 (2019).

    CAS  PubMed  Google Scholar 

  24. Yamamura, T. et al. Trial of satralizumab in neuromyelitis optica spectrum disorder. N. Engl. J. Med. 381, 2114–2124 (2019).

    CAS  PubMed  Google Scholar 

  25. Traboulsee, A. et al. Safety and efficacy of satralizumab monotherapy in neuromyelitis optica spectrum disorder: a randomised, double-blind, multicentre, placebo-controlled phase 3 trial. Lancet Neurol. 19, 402–412 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tahara, M. et al. Safety and efficacy of rituximab in neuromyelitis optica spectrum disorders (RIN-1 study): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 19, 298–306 (2020).

    CAS  PubMed  Google Scholar 

  27. Keegan, M. et al. Plasma exchange for severe attacks of CNS demyelination: predictors of response. Neurology 58, 143–146 (2002).

    CAS  PubMed  Google Scholar 

  28. Watanabe, S. et al. Therapeutic efficacy of plasma exchange in NMO-IgG-positive patients with neuromyelitis optica. Mult. Scler. 13, 128–132 (2007).

    CAS  PubMed  Google Scholar 

  29. Bonnan, M. et al. Plasma exchange in severe spinal attacks associated with neuromyelitis optica spectrum disorder. Mult. Scler. 15, 487–492 (2009).

    CAS  PubMed  Google Scholar 

  30. Bonnan, M. & Cabre, P. Plasma exchange in severe attacks of neuromyelitis optica. Mult. Scler. Int. 2012, 787630 (2012).

    PubMed  PubMed Central  Google Scholar 

  31. Lim, Y. M., Pyun, S. Y., Kang, B. H., Kim, J. & Kim, K. K. Factors associated with the effectiveness of plasma exchange for the treatment of NMO-IgG-positive neuromyelitis optica spectrum disorders. Mult. Scler. 19, 1216–1218 (2013).

    PubMed  Google Scholar 

  32. Morgan, S. M., Zantek, N. D. & Carpenter, A. F. Therapeutic plasma exchange in neuromyelitis optica: a case series. J. Clin. Apher. 29, 171–177 (2014).

    PubMed  Google Scholar 

  33. Aungsumart, S. & Apiwattanakul, M. Clinical outcomes and predictive factors related to good outcomes in plasma exchange in severe attack of NMOSD and long extensive transverse myelitis: case series and review of the literature. Mult. Scler. Relat. Disord. 13, 93–97 (2017).

    PubMed  Google Scholar 

  34. Kleiter, I. et al. Apheresis therapies for NMOSD attacks: a retrospective study of 207 therapeutic interventions. Neurol. Neuroimmunol. Neuroinflamm. 5, e504 (2018).

    PubMed  PubMed Central  Google Scholar 

  35. Kumawat, B. L., Choudhary, R., Sharma, C. M., Jain, D. & Hiremath, A. Plasma exchange as a first line therapy in acute attacks of neuromyelitis optica spectrum disorders. Ann. Indian Acad. Neurol. 22, 389–394 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Songthammawat, T. et al. A pilot study comparing treatments for severe attacks of neuromyelitis optica spectrum disorders: Intravenous methylprednisolone (IVMP) with add-on plasma exchange (PLEX) versus simultaneous ivmp and PLEX. Mult. Scler. Relat. Disord. 38, 101506 (2020).

    PubMed  Google Scholar 

  37. Ipe, T. S. et al. Therapeutic plasma exchange for neuromyelitis optica spectrum disorder: a multicenter retrospective study by the ASFA neurologic diseases subcommittee. J. Clin. Apher. 35, 25–32 (2020).

    PubMed  Google Scholar 

  38. Abboud, H. et al. Treatment of acute relapses in neuromyelitis optica: steroids alone versus steroids plus plasma exchange. Mult. Scler. J. 22, 185–192 (2016).

    CAS  Google Scholar 

  39. Mori, S., Kurimoto, T., Ueda, K. & Nakamura, M. Short-term effect of additional apheresis on visual acuity changes in patients with steroid-resistant optic neuritis in neuromyelitis optica spectrum disorders. Jpn. J. Ophthalmol. 62, 525–530 (2018).

    CAS  PubMed  Google Scholar 

  40. Weinshenker, B. G. et al. A randomized trial of plasma exchange in acute central nervous system inflammatory demyelinating disease. Ann. Neurol. 46, 878–886 (1999).

    CAS  PubMed  Google Scholar 

  41. Kleiter, I. et al. Neuromyelitis optica: evaluation of 871 attacks and 1,153 treatment courses. Ann. Neurol. 79, 206–216 (2016).

    CAS  PubMed  Google Scholar 

  42. Weinshenker, B. G. et al. Neuromyelitis optica IgG predicts relapse after longitudinally extensive transverse myelitis. Ann. Neurol. 59, 566–569 (2006).

    CAS  PubMed  Google Scholar 

  43. Matiello, M. et al. NMO-IgG predicts the outcome of recurrent optic neuritis. Neurology 70, 2197–2200 (2008).

    CAS  PubMed  Google Scholar 

  44. [No authors listed] Neuromyelitis optica. Nat. Rev. Dis. Primers 6, 84 (2020).

    Google Scholar 

  45. Cree, B. A. et al. An open label study of the effects of rituximab in neuromyelitis optica. Neurology 64, 1270–1272 (2005).

    CAS  PubMed  Google Scholar 

  46. Damato, V., Evoli, A. & Iorio, R. Efficacy and safety of rituximab therapy in neuromyelitis optica spectrum disorders: a systematic review and meta-analysis. JAMA Neurol. 73, 1342–1348 (2016).

    PubMed  Google Scholar 

  47. Gao, F. et al. Effectiveness of rituximab in neuromyelitis optica: a meta-analysis. BMC Neurol. 19, 36 (2019).

    PubMed  PubMed Central  Google Scholar 

  48. Jeong, I. H. et al. Comparative analysis of treatment outcomes in patients with neuromyelitis optica spectrum disorder using multifaceted endpoints. Mult. Scler. 22, 329–339 (2016).

    CAS  PubMed  Google Scholar 

  49. Kim, S. H. et al. Treatment outcomes with rituximab in 100 patients with neuromyelitis optica: influence of FCGR3A polymorphisms on the therapeutic response to rituximab. JAMA Neurol. 72, 989–995 (2015).

    PubMed  Google Scholar 

  50. Mealy, M. A., Wingerchuk, D. M., Palace, J., Greenberg, B. M. & Levy, M. Comparison of relapse and treatment failure rates among patients with neuromyelitis optica: multicenter study of treatment efficacy. JAMA Neurol. 71, 324–330 (2014).

    PubMed  Google Scholar 

  51. Nosadini, M. et al. Rituximab monitoring and redosing in pediatric neuromyelitis optica spectrum disorder. Neurol. Neuroimmunol. Neuroinflamm. 3, e188 (2016).

    PubMed  PubMed Central  Google Scholar 

  52. Poupart, J. et al. Evaluation of efficacy and tolerability of first-line therapies in NMOSD. Neurology 94, e1645–e1656 (2020).

    CAS  PubMed  Google Scholar 

  53. Zephir, H. et al. Rituximab as first-line therapy in neuromyelitis optica: efficiency and tolerability. J. Neurol. 262, 2329–2335 (2015).

    CAS  PubMed  Google Scholar 

  54. Giovannelli, J. et al. Meta-analysis comparing first-line immunosuppressants in neuromyelitis optica. Ann. Clin. Transl. Neurol. https://doi.org/10.1002/acn3.51451 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Greco, R. et al. Allogeneic hematopoietic stem cell transplantation for neuromyelitis optica. Ann. Neurol. 75, 447–453 (2014).

    PubMed  Google Scholar 

  56. Burt, R. K. et al. Autologous nonmyeloablative hematopoietic stem cell transplantation for neuromyelitis optica. Neurology 93, e1732–e1741 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hau, L. et al. Allogeneic haematopoietic stem cell transplantation in a refractory case of neuromyelitis optica spectrum disorder. Mult. Scler. Relat. Disord. 42, 102110 (2020).

    PubMed  Google Scholar 

  58. Kunchok, A. et al. Application of 2015 seronegative neuromyelitis optica spectrum disorder diagnostic criteria for patients with myelin oligodendrocyte glycoprotein IgG-associated disorders. JAMA Neurol. 77, 1572–1575 (2020).

    PubMed  PubMed Central  Google Scholar 

  59. Reindl, M. & Waters, P. Myelin oligodendrocyte glycoprotein antibodies in neurological disease. Nat. Rev. Neurol. 15, 89–102 (2019). This review provides a clear and concise overview of MOG antibody disease.

    CAS  PubMed  Google Scholar 

  60. Chen, J. J. et al. Steroid-sparing maintenance immunotherapy for MOG-IgG associated disorder. Neurology 95, e111–e120 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hacohen, Y. B. et al. Disease course and treatment responses in children with relapsing myelin oligodendrocyte glycoprotein antibody-associated disease. JAMA Neurol. 75, 478–487 (2018).

    PubMed  PubMed Central  Google Scholar 

  62. Ramanathan, S. et al. Clinical course, therapeutic responses and outcomes in relapsing MOG antibody-associated demyelination. J. Neurol. Neurosurg. Psychiatry 89, 127–137 (2018).

    PubMed  Google Scholar 

  63. Whittam, D. H. et al. Treatment of MOG-IgG-associated disorder with rituximab: an international study of 121 patients. Mult. Scler. Relat. Disord. 44, 102251 (2020).

    PubMed  PubMed Central  Google Scholar 

  64. Cobo-Calvo, A. et al. Evaluation of treatment response in adults with relapsing MOG-Ab-associated disease. J. Neuroinflammation 16, 134 (2019).

    PubMed  PubMed Central  Google Scholar 

  65. Lucchinetti, C. F. et al. A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica. Brain 125, 1450–1461 (2002).

    PubMed  Google Scholar 

  66. Howe, C. L. et al. Neuromyelitis optica IgG stimulates an immunological response in rat astrocyte cultures. Glia 62, 692–708 (2014).

    PubMed  PubMed Central  Google Scholar 

  67. Hinson, S. R. et al. Molecular outcomes of neuromyelitis optica (NMO)-IgG binding to aquaporin-4 in astrocytes. Proc. Natl Acad. Sci. USA 109, 1245–1250 (2012).

    CAS  PubMed  Google Scholar 

  68. Hinson, S. R. et al. Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica. Neurology 69, 2221–2231 (2007).

    CAS  PubMed  Google Scholar 

  69. Hinson, S. R. et al. Aquaporin-4-binding autoantibodies in patients with neuromyelitis optica impair glutamate transport by down-regulating EAAT2. J. Exp. Med. 205, 2473–2481 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Vincent, T. et al. Functional consequences of neuromyelitis optica-IgG astrocyte interactions on blood-brain barrier permeability and granulocyte recruitment. J. Immunol. 181, 5730–5737 (2008).

    CAS  PubMed  Google Scholar 

  71. Duan, T., Smith, A. J. & Verkman, A. S. Complement-independent bystander injury in AQP4-IgG seropositive neuromyelitis optica produced by antibody-dependent cellular cytotoxicity. Acta Neuropathol. Commun. 7, 112 (2019).

    PubMed  PubMed Central  Google Scholar 

  72. Fujihara, K. et al. Interleukin-6 in neuromyelitis optica spectrum disorder pathophysiology. Neurol. Neuroimmunol. Neuroinflamm. 7, e841 (2020).

    PubMed  PubMed Central  Google Scholar 

  73. Sagan, S. A. et al. Tolerance checkpoint bypass permits emergence of pathogenic T cells to neuromyelitis optica autoantigen aquaporin-4. Proc. Natl Acad. Sci. USA 113, 14781–14786 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Pohl, M. et al. T cell-activation in neuromyelitis optica lesions plays a role in their formation. Acta Neuropathol. Commun. 1, 85 (2013).

    PubMed  PubMed Central  Google Scholar 

  75. Vaknin-Dembinsky, A. et al. T-cell responses to distinct AQP4 peptides in patients with neuromyelitis optica (NMO). Mult. Scler. Relat. Disord. 6, 28–36 (2016).

    PubMed  Google Scholar 

  76. Cotzomi, E. et al. Early B cell tolerance defects in neuromyelitis optica favour anti-AQP4 autoantibody production. Brain 142, 1598–1615 (2019).

    PubMed  PubMed Central  Google Scholar 

  77. Bennett, J. L. et al. Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica. Ann. Neurol. 66, 617–629 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Cobo-Calvo, A. et al. Purified IgG from aquaporin-4 neuromyelitis optica spectrum disorder patients alters blood-brain barrier permeability. PLoS ONE 15, e0238301 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Shimizu, F. et al. Sera from neuromyelitis optica patients disrupt the blood-brain barrier. J. Neurol. Neurosurg. Psychiatry 83, 288–297 (2012).

    PubMed  Google Scholar 

  80. Guo, Y. et al. Pathogenic implications of cerebrospinal fluid barrier pathology in neuromyelitis optica. Acta Neuropathol. 133, 597–612 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Shimizu, F. et al. Glucose-regulated protein 78 autoantibody associates with blood-brain barrier disruption in neuromyelitis optica. Sci. Transl Med. 9, eaai9111 (2017).

    PubMed  PubMed Central  Google Scholar 

  82. Tedder, T. F. CD19: a promising B cell target for rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 572–577 (2009).

    CAS  PubMed  Google Scholar 

  83. Lee, D. S. W., Rojas, O. L. & Gommerman, J. L. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nat. Rev. Drug Discov. 20, 179–199 (2021).

    CAS  PubMed  Google Scholar 

  84. Icoz, S. et al. Enhanced IL-6 production in aquaporin-4 antibody positive neuromyelitis optica patients. Int. J. Neurosci. 120, 71–75 (2010).

    PubMed  Google Scholar 

  85. Uzawa, A. et al. Markedly increased CSF interleukin-6 levels in neuromyelitis optica, but not in multiple sclerosis. J. Neurol. 256, 2082–2084 (2009).

    CAS  PubMed  Google Scholar 

  86. Wang, H. et al. Notable increased cerebrospinal fluid levels of soluble interleukin-6 receptors in neuromyelitis optica. Neuroimmunomodulation 19, 304–308 (2012).

    PubMed  Google Scholar 

  87. Chihara, N. et al. Plasmablasts as migratory IgG-producing cells in the pathogenesis of neuromyelitis optica. PLoS ONE 8, e83036 (2013).

    PubMed  PubMed Central  Google Scholar 

  88. Chihara, N. et al. Interleukin 6 signaling promotes anti-aquaporin 4 autoantibody production from plasmablasts in neuromyelitis optica. Proc. Natl Acad. Sci. USA 108, 3701–3706 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Uzawa, A. et al. Interleukin-6 analysis of 572 consecutive CSF samples from neurological disorders: A special focus on neuromyelitis optica. Clin. Chim. Acta 469, 144–149 (2017).

    CAS  PubMed  Google Scholar 

  90. Uzawa, A. et al. Cerebrospinal fluid interleukin-6 and glial fibrillary acidic protein levels are increased during initial neuromyelitis optica attacks. Clin. Chim. Acta 421, 181–183 (2013).

    CAS  PubMed  Google Scholar 

  91. Uzawa, A. et al. Cytokine and chemokine profiles in neuromyelitis optica: significance of interleukin-6. Mult. Scler. 16, 1443–1452 (2010).

    CAS  PubMed  Google Scholar 

  92. Barros, P. O. et al. Prediction of disease severity in neuromyelitis optica by the levels of interleukin (IL)-6 produced during remission phase. Clin. Exp. Immunol. 183, 480–489 (2016).

    CAS  PubMed  Google Scholar 

  93. Takeshita, Y. et al. Effects of neuromyelitis optica-IgG at the blood-brain barrier in vitro. Neurol. Neuroimmunol. Neuroinflamm. 4, e311 (2017).

    PubMed  Google Scholar 

  94. Wilson, R. et al. Condition-dependent generation of aquaporin-4 antibodies from circulating B cells in neuromyelitis optica. Brain 141, 1063–1074 (2018).

    PubMed  PubMed Central  Google Scholar 

  95. Ayzenberg, I. et al. Interleukin 6 receptor blockade in patients with neuromyelitis optica nonresponsive to anti-CD20 therapy. JAMA Neurol. 70, 394–397 (2013).

    PubMed  Google Scholar 

  96. Soltys, J. et al. Membrane assembly of aquaporin-4 autoantibodies regulates classical complement activation in neuromyelitis optica. J. Clin. Invest. 129, 2000–2013 (2019).

    PubMed  PubMed Central  Google Scholar 

  97. Pittock, S. J. et al. Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: an open-label pilot study. Lancet Neurol. 12, 554–562 (2013).

    CAS  PubMed  Google Scholar 

  98. Cree, B. A. et al. Placebo-controlled study in neuromyelitis optica-Ethical and design considerations. Mult. Scler. 22, 862–872 (2016).

    CAS  PubMed  Google Scholar 

  99. Levy, M. The ethics of placebo controlled clinical trials in NMO-a balance of risks. Mult. Scler. Relat. Disord. 4, 512–514 (2015).

    PubMed  PubMed Central  Google Scholar 

  100. Lennon-Chrimes, S. et al. Characterisation of the PK and PD of satralizumab, a recycling antibody, to support Q4W dosing in patients with NMOSD. Eur. J. Neurol. 27, 930 (2020).

    Google Scholar 

  101. Berthele, A. et al. Pharmacokinetic/pharmacodynamic properties of eculizumab support established efficacy in patients with NMOSD: findings from the phase 3 PREVENT study. Eur. J. Neurol. 27, 351 (2020).

    Google Scholar 

  102. Wingerchuk, D. M. et al. Long-term safety and efficacy of eculizumab in aquaporin-4 IgG-positive NMOSD. Ann. Neurol. 89, 1088–1098 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Pittock, S. et al. Long-term efficacy and safety of eculizumab monotherapy in AQP4+ neuromyelitis optica spectrum disorder (1578). Neurology 96, 1578 (2021).

    Google Scholar 

  104. Cree, B. et al. Long term efficacy outcomes with inebilizumab treatment in NMOSD: the N-MOmentum Trial (2329). Neurology 96, 2329 (2021).

    Google Scholar 

  105. Cree, B. et al. Long term safety outcomes with inebilizumab treatment in NMOSD: the N-MOmentum Trial (2283). Neurology 96, 2283 (2021).

    Google Scholar 

  106. Waters, P. J. et al. Serologic diagnosis of NMO: a multicenter comparison of aquaporin-4-IgG assays. Neurology 78, 665–671 (2012). This study provided a blinded comparison of various assay methodologies for the detection of AQP4-IgG.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Levy, M., Fujihara, K. & Palace, J. New therapies for neuromyelitis optica spectrum disorder. Lancet Neurol. 20, 60–67 (2021).

    CAS  PubMed  Google Scholar 

  108. Marignier, R. et al. Disability outcomes in the N-MOmentum trial of inebilizumab in neuromyelitis optica spectrum disorder. Neurol. Neuroimmunol. Neuroinflamm. 8, e978 (2021).

    PubMed  PubMed Central  Google Scholar 

  109. Zhang, C. et al. Safety and efficacy of tocilizumab versus azathioprine in highly relapsing neuromyelitis optica spectrum disorder (TANGO): an open-label, multicentre, randomised, phase 2 trial. Lancet Neurol. 19, 391–401 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Pittock, S. J. et al. Eculizumab monotherapy for NMOSD: data from PREVENT and its open-label extension. Mult. Scler. https://doi.org/10.1177/13524585211038291 (2021).

  111. Luna, G. et al. Infection risks among patients with multiple sclerosis treated with fingolimod, natalizumab, rituximab, and injectable therapies. JAMA Neurol. 77, 184–191 (2020).

    PubMed  Google Scholar 

  112. Pittock, S. J. et al. Response to: Eculizumab package insert recommendations for meningococcal vaccinations: call for clarity and a targeted approach for use of the drug in neuromyelitis optica spectrum disorder. CNS Spectr. 26, 195–196 (2021).

    PubMed  Google Scholar 

  113. Socie, G. et al. Eculizumab in paroxysmal nocturnal haemoglobinuria and atypical haemolytic uraemic syndrome: 10-year pharmacovigilance analysis. Br. J. Haematol. 185, 297–310 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Aktas, O. et al. Serum glial fibrillary acidic protein: a neuromyelitis optica spectrum disorder biomarker. Ann. Neurol. 89, 895–910 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Dacy and M. Curtis for technical assistance and S. Lambert for media support.

Author information

Authors and Affiliations

Authors

Contributions

S.P. wrote the article. S.P. and A.Z. researched data for the article. S.P. and B.G.W. made substantial contributions to discussion of content. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Sean J. Pittock.

Ethics declarations

Competing interests

S.P. reports grants, personal fees and non-financial support from Alexion Pharmaceuticals; grants, personal fees, non-financial support and other support from MedImmune/VielaBio; and personal fees for consulting from Genentech/Roche. He is a named inventor on patent 8,889,102 (Application US12/678,350, Neuromyelitis optica autoantibodies as a marker for neoplasia) and a named inventor and assignee on patent 9,891,219B2 (Application US12/573,942, Methods for treating neuromyelitis optica [NMO] by administration of eculizumab to an individual who is aquaporin 4 (AQP4)-IgG autoantibody positive). B.G.W. receives royalties from Hospices Civil de Lyon, MVZ Labour PD Dr. Volkmann und Kollegen GbR, Oxford University, and RSR for a patent of NMO-IgG as a diagnostic test for neuromyelitis optica spectrum disorders. He has served on adjudication committees for clinical trials in neuromyelitis optica spectrum disorders conducted by Alexion and MedImmune/VielaBio, and has consulted for Chugai/Roche/Genentech and Mitsubishi–Tanabe regarding clinical trial design for neuromyelitis optica spectrum disorders. He has also received honoraria for speaking at internal meetings of Genentech and Novartis and at external meetings for Roche. A.Z. declares no competing interests.

Additional information

Peer review information

Nature Reviews Neurology thanks P. Cabre, M.I. Leite, I. Nakashima and D. Sato for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pittock, S.J., Zekeridou, A. & Weinshenker, B.G. Hope for patients with neuromyelitis optica spectrum disorders — from mechanisms to trials. Nat Rev Neurol 17, 759–773 (2021). https://doi.org/10.1038/s41582-021-00568-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-021-00568-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing