Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Neuromyelitis optica

Abstract

Neuromyelitis optica (NMO; also known as Devic syndrome) is a clinical syndrome characterized by attacks of acute optic neuritis and transverse myelitis. In most patients, NMO is caused by pathogenetic serum IgG autoantibodies to aquaporin 4 (AQP4), the most abundant water-channel protein in the central nervous system. In a subset of patients negative for AQP4-IgG, pathogenetic serum IgG antibodies to myelin oligodendrocyte glycoprotein, an antigen in the outer myelin sheath of central nervous system neurons, are present. Other causes of NMO (such as paraneoplastic disorders and neurosarcoidosis) are rare. NMO was previously associated with a poor prognosis; however, treatment with steroids and plasma exchange for acute attacks and with immunosuppressants (in particular, B cell-depleting agents) for attack prevention has greatly improved the long-term outcomes. Recently, a number of randomized controlled trials have been completed and the first drugs, all therapeutic monoclonal antibodies, have been approved for the treatment of AQP4-IgG-positive NMO and its formes frustes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Prevalence estimates.
Fig. 2: Incidence estimates.
Fig. 3: Mechanisms of disease in individuals with AQP4-IgG.
Fig. 4: Supposed mechanisms of disease in patients positive for MOG-IgG.
Fig. 5: Manifestations of NMO.
Fig. 6: MRI findings in NMO.
Fig. 7: Typical OCT findings in NMO compared with MS and a HC.
Fig. 8: Proposed management algorithm for acute attacks in patients with a diagnosis of NMOSD according to the IPND criteria or of MOG-IgG-associated disease.
Fig. 9: Proposed long-term management of patients with NMOSD according to the IPND criteria except MOG-IgG-positive cases.

Similar content being viewed by others

References

  1. Jarius, S. & Wildemann, B. The history of neuromyelitis optica. J. Neuroinflammation 10, 8 (2013).

    PubMed  PubMed Central  Google Scholar 

  2. Jarius, S. & Wildemann, B. The history of neuromyelitis optica. Part 2: ‘spinal amaurosis’, or how it all began. J. Neuroinflammation 16, 280 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jarius, S. & Wildemann, B. Devic’s index case: a critical reappraisal – AQP4-IgG-mediated neuromyelitis optica spectrum disorder, or rather MOG encephalomyelitis? J. Neurol. Sci. 407, 116396 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Jarius, S. & Wildemann, B. Aquaporin-4 antibodies (NMO-IgG) as a serological marker of neuromyelitis optica: a critical review of the literature. Brain Pathol. 23, 661–683 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lennon, V. A. et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364, 2106–2112 (2004). First report on anti-astrocytic autoantibodies (later identified as antibodies to AQP4) in NMO.

    Article  CAS  PubMed  Google Scholar 

  6. Lennon, V. A., Kryzer, T. J., Pittock, S. J., Verkman, A. S. & Hinson, S. R. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J. Exp. Med. 202, 473–477 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mader, S. et al. Complement activating antibodies to myelin oligodendrocyte glycoprotein in neuromyelitis optica and related disorders. J. Neuroinflammation 8, 184 (2011). First report on autoantibodies to human full-length MOG in patients with NMO.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jarius, S. et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 1: Frequency, syndrome specificity, influence of disease activity, long-term course, association with AQP4-IgG, and origin. J. Neuroinflammation 13, 279 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Jarius, S. et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: Epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. J. Neuroinflammation 13, 280 (2016). Comprehensive study in four parts on the clinical and paraclincal features associated with MOG-IgG.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. McLaughlin, K. A. et al. Age-dependent B cell autoimmunity to a myelin surface antigen in pediatric multiple sclerosis. J. Immunol. 183, 4067–4076 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. O’Connor, K. C. et al. Self-antigen tetramers discriminate between myelin autoantibodies to native or denatured protein. Nat. Med. 13, 211–217 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Reindl, M. & Waters, P. Myelin oligodendrocyte glycoprotein antibodies in neurological disease. Nat. Rev. Neurol. 15, 89–102 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Jarius, S. et al. Mechanisms of Disease: Aquaporin-4 antibodies in neuromyelitis optica. Nat. Clin. Pract. Neurol. 4, 202–214 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Jarius, S. & Wildemann, B. AQP4 antibodies in neuromyelitis optica: diagnostic and pathogenetic relevance. Nat. Rev. Neurol. 6, 383–392 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Jarius, S. et al. Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: a multicentre study of 175 patients. J. Neuroinflammation 9, 14 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kimbrough, D. J. et al. Treatment of neuromyelitis optica: review and recommendations. Mult. Scler. Rel. Dis. 1, 180–187 (2012).

    Article  CAS  Google Scholar 

  17. Trebst, C. et al. Update on the diagnosis and treatment of neuromyelitis optica: Recommendations of the Neuromyelitis Optica Study Group (NEMOS). J. Neurol. 261, 1–16 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Wingerchuk, D. M., Lennon, V. A., Lucchinetti, C. F., Pittock, S. J. & Weinshenker, B. G. The spectrum of neuromyelitis optica. Lancet Neurol. 6, 805–815 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Wingerchuk, D. M. et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 85, 177–189 (2015). Internationally most widely used diagnostic criteria for NMOSD.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mori, M., Kuwabara, S. & Paul, F. Worldwide prevalence of neuromyelitis optica spectrum disorders. J. Neurol. Neurosurg. Psychiatry 89, 555–556 (2018).

    Article  PubMed  Google Scholar 

  21. Flanagan, E. P. et al. Epidemiology of aquaporin-4 autoimmunity and neuromyelitis optica spectrum. Ann. Neurol. 79, 775–783 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bukhari, W. et al. Incidence and prevalence of NMOSD in Australia and New Zealand. J. Neurol. Neurosurg. Psychiatry 88, 632–638 (2017).

    Article  PubMed  Google Scholar 

  23. Hor, J. Y. et al. Prevalence of neuromyelitis optica spectrum disorder in the multi-ethnic Penang Island, Malaysia, and a review of worldwide prevalence. Mult. Scler. Relat. Disord. 19, 20–24 (2018).

    Article  PubMed  Google Scholar 

  24. Aboul-Enein, F. et al. Neuromyelitis optica in Austria in 2011: to bridge the gap between neuroepidemiological research and practice in a study population of 8.4 million people. PLoS ONE 8, e79649 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jonsson, D. I., Sveinsson, O., Hakim, R. & Brundin, L. Epidemiology of NMOSD in Sweden from 1987 to 2013: a nationwide population-based study. Neurology 93, e181–e189 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim, J. E. et al. Prevalence and incidence of neuromyelitis optica spectrum disorder and multiple sclerosis in Korea. Mult. Scler. https://doi.org/10.1177/1352458519888609 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yan, Y. et al. Autoantibody to MOG suggests two distinct clinical subtypes of NMOSD. Sci. China Life Sci. 59, 1270–1281 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Siritho, S., Sato, D. K., Kaneko, K., Fujihara, K. & Prayoonwiwat, N. The clinical spectrum associated with myelin oligodendrocyte glycoprotein antibodies (anti-MOG-Ab) in Thai patients. Mult. Scler. 22, 964–968 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Miyamoto, K. Epidemiology of multiple sclerosis and neuromyelitis optica [Japanese]. Nihon Rinsho 72, 1903–1907 (2014).

    PubMed  Google Scholar 

  30. Rostasy, K. et al. Persisting myelin oligodendrocyte glycoprotein antibodies in aquaporin-4 antibody negative pediatric neuromyelitis optica. Mult. Scler. 19, 1052–1059 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Duignan, S. et al. Myelin oligodendrocyte glycoprotein and aquaporin-4 antibodies are highly specific in children with acquired demyelinating syndromes. Dev. Med. Child. Neurol. 60, 958–962 (2018).

    Article  PubMed  Google Scholar 

  32. Boesen, M. S. et al. Incidence of pediatric neuromyelitis optica spectrum disorder and myelin oligodendrocyte glycoprotein antibody-associated disease in Denmark 2008–2018: a nationwide, population-based cohort study. Mult. Scler. Relat. Disord. 33, 162–167 (2019).

    Article  PubMed  Google Scholar 

  33. Kim, S. M. et al. Antibodies to MOG in adults with inflammatory demyelinating disease of the CNS. Neurol. Neuroimmunol. Neuroinflamm. 2, e163 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kitley, J. et al. Myelin-oligodendrocyte glycoprotein antibodies in adults with a neuromyelitis optica phenotype. Neurology 79, 1273–1277 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Papais-Alvarenga, R. M. et al. Lower frequency of antibodies to MOG in Brazilian patients with demyelinating diseases: an ethnicity influence? Mult. Scler. Relat. Disord. 25, 87–94 (2018).

    Article  PubMed  Google Scholar 

  36. Hoftberger, R. et al. Antibodies to MOG and AQP4 in adults with neuromyelitis optica and suspected limited forms of the disease. Mult. Scler. 21, 866–874 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. de Mol, C. L. et al. The clinical spectrum and incidence of anti-MOG-associated acquired demyelinating syndromes in children and adults. Mult. Scler. 26, 806–814 (2020).

    Article  PubMed  CAS  Google Scholar 

  38. Papp, V. et al. Nationwide prevalence and incidence study of neuromyelitis optica spectrum disorder in Denmark. Neurology 91, e2265–e2275 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Borisow, N. et al. Influence of female sex and fertile age on neuromyelitis optica spectrum disorders. Mult. Scler. 23, 1092–1103 (2017).

    Article  PubMed  Google Scholar 

  40. Quek, A. M. et al. Effects of age and sex on aquaporin-4 autoimmunity. Arch. Neurol. 69, 1039–1043 (2012).

    PubMed  PubMed Central  Google Scholar 

  41. Sepulveda, M. et al. Clinical spectrum associated with MOG autoimmunity in adults: significance of sharing rodent MOG epitopes. J. Neurol. 263, 1349–1360 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bruijstens, A. L. et al. HLA association in MOG-IgG- and AQP4-IgG-related disorders of the CNS in the Dutch population. Neurol. Neuroimmunol. Neuroinflamm. 7, e702 (2020).

  43. Blanco, Y. et al. HLA-DRB1 typing in Caucasians patients with neuromyelitis optica [Spanish]. Rev. Neurol. 53, 146–152 (2011).

    CAS  PubMed  Google Scholar 

  44. Alonso, V. R. et al. Neuromyelitis optica (NMO IgG+) and genetic susceptibility, potential ethnic influences. Cent. Nerv. Syst. Agents Med. Chem. 18, 4–7 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Pandit, L., Malli, C., D’Cunha, A. & Mustafa, S. Human leukocyte antigen association with neuromyelitis optica in a south Indian population. Mult. Scler. 21, 1217–1218 (2015).

    Article  PubMed  Google Scholar 

  46. Alvarenga, M. P. et al. The HLA DRB1*03:01 allele is associated with NMO regardless of the NMO-IgG status in Brazilian patients from Rio de Janeiro. J. Neuroimmunol. 310, 1–7 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Brum, D. G. et al. HLA-DRB association in neuromyelitis optica is different from that observed in multiple sclerosis. Mult. Scler. 16, 21–29 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Deschamps, R. et al. Different HLA class II (DRB1 and DQB1) alleles determine either susceptibility or resistance to NMO and multiple sclerosis among the French Afro-Caribbean population. Mult. Scler. 17, 24–31 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Wang, H. et al. HLA-DPB1*0501 is associated with susceptibility to anti-aquaporin-4 antibodies positive neuromyelitis optica in Southern Han Chinese. J. Neuroimmunol. 233, 181–184 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Yoshimura, S. et al. Distinct genetic and infectious profiles in Japanese neuromyelitis optica patients according to anti-aquaporin 4 antibody status. J. Neurol. Neurosurg. Psychiatry 84, 29–34 (2013).

    Article  PubMed  Google Scholar 

  51. Matsushita, T. et al. Association of the HLA-DPB1*0501 allele with anti-aquaporin-4 antibody positivity in Japanese patients with idiopathic central nervous system demyelinating disorders. Tissue Antigens 73, 171–176 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Zephir, H. et al. Is neuromyelitis optica associated with human leukocyte antigen? Mult. Scler. 15, 571–579 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Ogawa, K. et al. Next-generation sequencing identifies contribution of both class I and II HLA genes on susceptibility of multiple sclerosis in Japanese. J. Neuroinflammation 16, 162 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Brill, L. et al. Increased occurrence of anti-AQP4 seropositivity and unique HLA class II associations with neuromyelitis optica (NMO), among Muslim Arabs in Israel. J. Neuroimmunol. 293, 65–70 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Estrada, K. et al. A whole-genome sequence study identifies genetic risk factors for neuromyelitis optica. Nat. Commun. 9, 1929 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Wang, H. et al. Interleukin 17 gene polymorphism is associated with anti-aquaporin 4 antibody-positive neuromyelitis optica in the Southern Han Chinese – a case control study. J. Neurol. Sci. 314, 26–28 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Graves, J. et al. Protective environmental factors for neuromyelitis optica. Neurology 83, 1923–1929 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Eskandarieh, S. et al. Environmental risk factors in neuromyelitis optica spectrum disorder: a case-control study. Acta Neurol. Belg. 118, 277–287 (2018).

    Article  PubMed  Google Scholar 

  59. Varela, F. et al. Smoking and disease severity in patients with neuromyelitis optica (P6.162). Neurology 86 (Suppl. 16), P6.162 (2016).

    Google Scholar 

  60. Rao, A., Raoand, H. & Shah, R. Tobacco abuse worsening outcome in neuromyelitis optica. J. Neurol. Dis. 6, 56 (2018).

    Google Scholar 

  61. Kremer, L. et al. Tobacco smoking and severity of neuromyelitis optica (S46.002). Neurology 84 (Suppl. 14), S46.002 (2015).

    Google Scholar 

  62. Eskandarieh, S., Moghadasi, A. N., Sahraiain, M. A., Azimi, A. R. & Molazadeh, N. Association of cigarette smoking with neuromyelitis optica-immunoglobulin G sero-positivity in neuromyelitis optica spectrum disorder. Iran. J. Neurol. 18, 93–98 (2019).

    PubMed  PubMed Central  Google Scholar 

  63. Min, J. H. et al. Low levels of vitamin D in neuromyelitis optica spectrum disorder: association with disease disability. PLoS ONE 9, e107274 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Tuzun, E., Kucukhuseyin, O., Kurtuncu, M., Turkoglu, R. & Yaylim, I. Reduced serum vitamin D levels in neuromyelitis optica. Neurol. Sci. 36, 1701–1702 (2015).

    Article  PubMed  Google Scholar 

  65. Jitprapaikulsan, J., Siritho, S. & Prayoonwiwat, N. Vitamin D level status in Thai neuromyelitis optica patients. J. Neuroimmunol. 295–296, 75–78 (2016).

    Article  PubMed  CAS  Google Scholar 

  66. Shan, Y. et al. Serum 25-hydroxyvitamin D3 is associated with disease status in patients with neuromyelitis optica spectrum disorders in south China. J. Neuroimmunol. 299, 118–123 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Kusumadewi, W. et al. Low vitamin D-25(OH) level in Indonesian multiple sclerosis and neuromyelitis optic patients. Mult. Scler. Relat. Disord. 25, 329–333 (2018).

    Article  PubMed  Google Scholar 

  68. Gao, M. et al. Low levels of vitamin D and the relationship between vitamin D and Th2 axis-related cytokines in neuromyelitis optica spectrum disorders. J. Clin. Neurosci. 61, 22–27 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Mealy, M. A. et al. Vaccines and the association with relapses in patients with neuromyelitis optica spectrum disorder. Mult. Scler. Relat. Disord. 23, 78–82 (2018).

    Article  PubMed  Google Scholar 

  70. Nielsen, S. et al. Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J. Neurosci. 17, 171–180 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jung, J. S. et al. Molecular characterization of an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance. Proc. Natl Acad. Sci. USA 91, 13052–13056 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Amiry-Moghaddam, M. & Ottersen, O. P. The molecular basis of water transport in the brain. Nat. Rev. Neurosci. 4, 991–1001 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Rossi, A., Moritz, T. J., Ratelade, J. & Verkman, A. S. Super-resolution imaging of aquaporin-4 orthogonal arrays of particles in cell membranes. J. Cell Sci. 125, 4405–4412 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Owens, G. P. et al. Mutagenesis of the aquaporin 4 extracellular domains defines restricted binding patterns of pathogenic neuromyelitis optica IgG. J. Biol. Chem. 290, 12123–12134 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lucchinetti, C. F. et al. A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica. Brain 125, 1450–1461 (2002).

    Article  PubMed  Google Scholar 

  76. Misu, T. et al. Loss of aquaporin 4 in lesions of neuromyelitis optica: distinction from multiple sclerosis. Brain 130, 1224–1234 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Roemer, S. F. et al. Pattern-specific loss of aquaporin-4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis. Brain 130, 1194–1205 (2007).

    Article  PubMed  Google Scholar 

  78. Misu, T. et al. Presence of six different lesion types suggests diverse mechanisms of tissue injury in neuromyelitis optica. Acta Neuropathol. 125, 815–827 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tradtrantip, L., Yao, X., Su, T., Smith, A. J. & Verkman, A. S. Bystander mechanism for complement-initiated early oligodendrocyte injury in neuromyelitis optica. Acta Neuropathol. 134, 35–44 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hinson, S. R. et al. Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica. Neurology 69, 2221–2231 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Hinson, S. R. et al. Molecular outcomes of neuromyelitis optica (NMO)-IgG binding to aquaporin-4 in astrocytes. Proc. Natl Acad. Sci. USA 109, 1245–1250 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Hinson, S. R. et al. Aquaporin-4-binding autoantibodies in patients with neuromyelitis optica impair glutamate transport by down-regulating EAAT2. J. Exp. Med. 205, 2473–2481 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Melamud, L. et al. Neuromyelitis optica immunoglobulin G present in sera from neuromyelitis optica patients affects aquaporin-4 expression and water permeability of the astrocyte plasma membrane. J. Neurosci. Res. 90, 1240–1248 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Vincent, T. et al. Functional consequences of neuromyelitis optica-IgG astrocyte interactions on blood-brain barrier permeability and granulocyte recruitment. J. Immunol. 181, 5730–5737 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Ratelade, J., Bennett, J. L. & Verkman, A. S. Evidence against cellular internalization in vivo of NMO-IgG, aquaporin-4, and excitatory amino acid transporter 2 in neuromyelitis optica. J. Biol. Chem. 286, 45156–45164 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Felix, C. M., Levin, M. H. & Verkman, A. S. Complement-independent retinal pathology produced by intravitreal injection of neuromyelitis optica immunoglobulin G. J. Neuroinflammation 13, 275 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Pittock, S. J. et al. Neuromyelitis optica brain lesions localized at sites of high aquaporin 4 expression. Arch. Neurol. 63, 964–968 (2006).

    Article  PubMed  Google Scholar 

  88. Matiello, M., Schaefer-Klein, J., Sun, D. & Weinshenker, B. G. Aquaporin 4 expression and tissue susceptibility to neuromyelitis optica. JAMA Neurol. 70, 1118–1125 (2013).

    Article  PubMed  Google Scholar 

  89. Saadoun, S. & Papadopoulos, M. C. Role of membrane complement regulators in neuromyelitis optica. Mult. Scler. 21, 1644–1654 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Yao, X. & Verkman, A. S. Complement regulator CD59 prevents peripheral organ injury in rats made seropositive for neuromyelitis optica immunoglobulin G. Acta Neuropathol. Commun. 5, 57 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Yao, X. & Verkman, A. S. Marked central nervous system pathology in CD59 knockout rats following passive transfer of Neuromyelitis optica immunoglobulin G. Acta Neuropathol. Commun. 5, 15 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Hillebrand, S. et al. Circulating AQP4-specific auto-antibodies alone can induce neuromyelitis optica spectrum disorder in the rat. Acta Neuropathol. 137, 467–485 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Misu, T., Fujihara, K., Nakashima, I., Sato, S. & Itoyama, Y. Intractable hiccup and nausea with periaqueductal lesions in neuromyelitis optica. Neurology 65, 1479–1482 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Jarius, S., Wildemann, B. & Paul, F. Neuromyelitis optica: clinical features, immunopathogenesis and treatment. Clin. Exp. Immunol. 176, 149–164 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Levy, M. et al. Immunopathogenesis of neuromyelitis optica. Adv. Immunol. 121, 213–242 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Chihara, N. et al. Interleukin 6 signaling promotes anti-aquaporin 4 autoantibody production from plasmablasts in neuromyelitis optica. Proc. Natl Acad. Sci. USA 108, 3701–3706 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kim, W. et al. Quantitative measurement of anti-aquaporin-4 antibodies by enzyme-linked immunosorbent assay using purified recombinant human aquaporin-4. Mult. Scler. 18, 578–586 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Takahashi, T. et al. Anti-aquaporin-4 antibody is involved in the pathogenesis of NMO: a study on antibody titre. Brain 130, 1235–1243 (2007).

    Article  PubMed  Google Scholar 

  99. Jarius, S. et al. Antibody to aquaporin-4 in the long-term course of neuromyelitis optica. Brain 131, 3072–3080 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jarius, S. et al. Frequency and prognostic impact of antibodies to aquaporin-4 in patients with optic neuritis. J. Neurol. Sci. 298, 158–162 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Weinshenker, B. G. et al. Neuromyelitis optica IgG predicts relapse after longitudinally extensive transverse myelitis. Ann. Neurol. 59, 566–569 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Waters, P. et al. Aquaporin-4 antibodies in neuromyelitis optica and longitudinally extensive transverse myelitis. Arch. Neurol. 65, 913–919 (2008).

    Article  PubMed  Google Scholar 

  103. Kuroda, H. et al. Increase of complement fragment C5a in cerebrospinal fluid during exacerbation of neuromyelitis optica. J. Neuroimmunol. 254, 178–182 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Jarius, S. et al. Cerebrospinal fluid antibodies to aquaporin-4 in neuromyelitis optica and related disorders: frequency, origin, and diagnostic relevance. J. Neuroinflammation 7, 52 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Bonnan, M. et al. Plasma exchange in severe spinal attacks associated with neuromyelitis optica spectrum disorder. Mult. Scler. 15, 487–492 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Kim, S. H. et al. Clinical efficacy of plasmapheresis in patients with neuromyelitis optica spectrum disorder and effects on circulating anti-aquaporin-4 antibody levels. J. Clin. Neurol. 9, 36–42 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Jacob, A. et al. Treatment of neuromyelitis optica with rituximab: retrospective analysis of 25 patients. Arch. Neurol. 65, 1443–1448 (2008).

    Article  PubMed  Google Scholar 

  108. Yamamura, T. et al. Trial of satralizumab in neuromyelitis optica spectrum disorder. N. Engl. J. Med. 381, 2114–2124 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Traboulsee, A. et al. Safety and efficacy of satralizumab monotherapy in neuromyelitis optica spectrum disorder: a randomised, double-blind, multicentre, placebo-controlled phase 3 trial. Lancet Neurol. 19, 402–412 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cree, B. A. C. et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet 394, 1352–1363 (2019).

    Article  CAS  PubMed  Google Scholar 

  111. Ayzenberg, I. et al. Interleukin 6 receptor blockade in patients with neuromyelitis optica nonresponsive to anti-CD20 therapy. JAMA Neurol. 70, 394–397 (2013).

    Article  PubMed  Google Scholar 

  112. Pittock, S. J. et al. Eculizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder. N. Engl. J. Med. 381, 614–625 (2019). First successfully completed phase III trial in NMOSD.

    Article  CAS  PubMed  Google Scholar 

  113. Pellkofer, H. L. et al. Long-term follow-up of patients with neuromyelitis optica after repeated therapy with rituximab. Neurology 76, 1310–1315 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Saadoun, S. et al. Intra-cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice. Brain 133, 349–361 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Bennett, J. L. et al. Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica. Ann. Neurol. 66, 617–629 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bradl, M. et al. Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo. Ann. Neurol. 66, 630–643 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Kinoshita, M. et al. Anti-aquaporin-4 antibody induces astrocytic cytotoxicity in the absence of CNS antigen-specific T cells. Biochem. Biophys. Res. Commun. 394, 205–210 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Sabater, L. et al. Cytotoxic effect of neuromyelitis optica antibody (NMO-IgG) to astrocytes: an in vitro study. J. Neuroimmunol. 215, 31–35 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Hinson, S. R. et al. Prediction of neuromyelitis optica attack severity by quantitation of complement-mediated injury to aquaporin-4-expressing cells. Arch. Neurol. 66, 1164–1167 (2009).

    Article  PubMed  Google Scholar 

  120. Zhang, H., Bennett, J. L. & Verkman, A. S. Ex vivo spinal cord slice model of neuromyelitis optica reveals novel immunopathogenic mechanisms. Ann. Neurol. 70, 943–954 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tradtrantip, L. et al. Small-molecule inhibitors of NMO-IgG binding to aquaporin-4 reduce astrocyte cytotoxicity in neuromyelitis optica. FASEB J. 26, 2197–2208 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Phuan, P. W. et al. A small-molecule screen yields idiotype-specific blockers of neuromyelitis optica immunoglobulin G binding to aquaporin-4. J. Biol. Chem. 287, 36837–36844 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tradtrantip, L. et al. Anti-aquaporin-4 monoclonal antibody blocker therapy for neuromyelitis optica. Ann. Neurol. 71, 314–322 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Tradtrantip, L., Ratelade, J., Zhang, H. & Verkman, A. S. Enzymatic deglycosylation converts pathogenic neuromyelitis optica anti-aquaporin-4 immunoglobulin G into therapeutic antibody. Ann. Neurol. 73, 77–85 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Tradtrantip, L., Asavapanumas, N. & Verkman, A. S. Therapeutic cleavage of anti-aquaporin-4 autoantibody in neuromyelitis optica by an IgG-selective proteinase. Mol. Pharmacol. 83, 1268–1275 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Soltys, J. et al. Membrane assembly of aquaporin-4 autoantibodies regulates classical complement activation in neuromyelitis optica. J. Clin. Invest. 129, 2000–2013 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Jarius, S. et al. Cerebrospinal fluid findings in aquaporin-4 antibody positive neuromyelitis optica: results from 211 lumbar punctures. J. Neurol. Sci. 306, 82–90 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Jarius, S., Franciotta, D., Bergamaschi, R., Wildemann, B. & Wandinger, K. P. Immunoglobulin M antibodies to aquaporin-4 in neuromyelitis optica and related disorders. Clin. Chem. Lab. Med. 48, 659–663 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Kinoshita, M. et al. Neuromyelitis optica: passive transfer to rats by human immunoglobulin. Biochem. Biophys. Res. Commun. 386, 623–627 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Saadoun, S., Bridges, L. R., Verkman, A. S. & Papadopoulos, M. C. Paucity of natural killer and cytotoxic T cells in human neuromyelitis optica lesions. Neuroreport 23, 1044–1047 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhang, H. & Verkman, A. S. Eosinophil pathogenicity mechanisms and therapeutics in neuromyelitis optica. J. Clin. Invest. 123, 2306–2316 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Saadoun, S. et al. Neutrophil protease inhibition reduces neuromyelitis optica-immunoglobulin G-induced damage in mouse brain. Ann. Neurol. 71, 323–333 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Jacob, A. et al. Detrimental role of granulocyte-colony stimulating factor in neuromyelitis optica: clinical case and histological evidence. Mult. Scler. 18, 1801–1803 (2012).

    Article  PubMed  Google Scholar 

  134. Bennett, J. L. et al. B lymphocytes in neuromyelitis optica. Neurol. Neuroimmunol. Neuroinflamm. 2, e104 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Vaknin-Dembinsky, A., Brill, L., Orpaz, N., Abramsky, O. & Karussis, D. Preferential increase of B-cell activating factor in the cerebrospinal fluid of neuromyelitis optica in a white population. Mult. Scler. 16, 1453–1457 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Wang, H. et al. Cerebrospinal fluid BAFF and APRIL levels in neuromyelitis optica and multiple sclerosis patients during relapse. J. Clin. Immunol. 32, 1007–1011 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Quan, C. et al. Impaired regulatory function and enhanced intrathecal activation of B cells in neuromyelitis optica: distinct from multiple sclerosis. Mult. Scler. 19, 289–298 (2013).

    Article  CAS  PubMed  Google Scholar 

  138. Korn, T. et al. IL-6 controls Th17 immunity in vivo by inhibiting the conversion of conventional T cells into Foxp3+ regulatory T cells. Proc. Natl Acad. Sci. USA 105, 18460–18465 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Goodman, W. A. et al. IL-6 signaling in psoriasis prevents immune suppression by regulatory T cells. J. Immunol. 183, 3170–3176 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Ishizu, T. et al. Intrathecal activation of the IL-17/IL-8 axis in opticospinal multiple sclerosis. Brain 128, 988–1002 (2005).

    Article  PubMed  Google Scholar 

  141. Wang, H. H. et al. Interleukin-17-secreting T cells in neuromyelitis optica and multiple sclerosis during relapse. J. Clin. Neurosci. 18, 1313–1317 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Varrin-Doyer, M. et al. Aquaporin 4-specific T cells in neuromyelitis optica exhibit a Th17 bias and recognize Clostridium ABC transporter. Ann. Neurol. 72, 53–64 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hou, M. M. et al. Proportions of Th17 cells and Th17-related cytokines in neuromyelitis optica spectrum disorders patients: a meta-analysis. Int. Immunopharmacol. 75, 105793 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Jones, M. V., Huang, H., Calabresi, P. A. & Levy, M. Pathogenic aquaporin-4 reactive T cells are sufficient to induce mouse model of neuromyelitis optica. Acta Neuropathol. Commun. 3, 28 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Sagan, S. A. et al. Tolerance checkpoint bypass permits emergence of pathogenic T cells to neuromyelitis optica autoantigen aquaporin-4. Proc. Natl Acad. Sci. USA 113, 14781–14786 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Vaknin-Dembinsky, A. et al. T-cell reactivity against AQP4 in neuromyelitis optica. Neurology 79, 945–946 (2012).

    Article  PubMed  Google Scholar 

  147. Ratelade, J. et al. Neuromyelitis optica IgG and natural killer cells produce NMO lesions in mice without myelin loss. Acta Neuropathol. 123, 861–872 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Saji, E. et al. Cognitive impairment and cortical degeneration in neuromyelitis optica. Ann. Neurol. 73, 65–76 (2013).

    Article  PubMed  Google Scholar 

  149. Cotzomi, E. et al. Early B cell tolerance defects in neuromyelitis optica favour anti-AQP4 autoantibody production. Brain 142, 1598–1615 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Vourc’h, P. & Andres, C. Oligodendrocyte myelin glycoprotein (OMgp): evolution, structure and function. Brain Res. Brain Res. Rev. 45, 115–124 (2004).

    Article  PubMed  CAS  Google Scholar 

  151. Johns, T. G. & Bernard, C. C. The structure and function of myelin oligodendrocyte glycoprotein. J. Neurochem. 72, 1–9 (1999).

    Article  CAS  PubMed  Google Scholar 

  152. von Budingen, H. C. et al. The myelin oligodendrocyte glycoprotein directly binds nerve growth factor to modulate central axon circuitry. J. Cell Biol. 210, 891–898 (2015).

    Article  CAS  Google Scholar 

  153. Takai, Y. et al. Myelin oligodendrocyte glycoprotein antibody-associated disease: an immunopathological study. Brain 143, 1431–1446 (2020).

    Article  PubMed  Google Scholar 

  154. Hoftberger, R. et al. The pathology of central nervous system inflammatory demyelinating disease accompanying myelin oligodendrocyte glycoprotein autoantibody. Acta Neuropathol. 139, 875–892 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Jarius, S. et al. Screening for MOG-IgG and 27 other anti-glial and anti-neuronal autoantibodies in ‘pattern II multiple sclerosis’ and brain biopsy findings in a MOG-IgG-positive case. Mult. Scler. 22, 1541–1549 (2016).

    Article  CAS  PubMed  Google Scholar 

  156. Konig, F. B. et al. Persistence of immunopathological and radiological traits in multiple sclerosis. Arch. Neurol. 65, 1527–1532 (2008).

    Article  PubMed  Google Scholar 

  157. Spadaro, M. et al. Histopathology and clinical course of MOG-antibody-associated encephalomyelitis. Ann. Clin. Transl. Neurol. 2, 295–301 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wang, J. J. et al. Inflammatory demyelination without astrocyte loss in MOG antibody-positive NMOSD. Neurology 87, 229–231 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Lucchinetti, C. et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 47, 707–717 (2000).

    Article  CAS  PubMed  Google Scholar 

  160. Jarius, S. et al. Pattern II and pattern III MS are entities distinct from pattern I MS: evidence from cerebrospinal fluid analysis. J. Neuroinflammation 14, 171 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Young, N. P. et al. Perivenous demyelination: association with clinically defined acute disseminated encephalomyelitis and comparison with pathologically confirmed multiple sclerosis. Brain 133, 333–348 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Bo, L., Vedeler, C. A., Nyland, H. I., Trapp, B. D. & Mork, S. J. Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J. Neuropathol. Exp. Neurol. 62, 723–732 (2003).

    Article  PubMed  Google Scholar 

  163. Junker, A. et al. Extensive subpial cortical demyelination is specific to multiple sclerosis. Brain Pathol. 30, 641–652 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Saadoun, S. et al. Neuromyelitis optica MOG-IgG causes reversible lesions in mouse brain. Acta Neuropathol. Commun. 2, 35 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Jarius, S. et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 3: brainstem involvement - frequency, presentation and outcome. J. Neuroinflammation 13, 281 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Pache, F. et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 4: afferent visual system damage after optic neuritis in MOG-IgG-seropositive versus AQP4-IgG-seropositive patients. J. Neuroinflammation 13, 282 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Peschl, P. et al. Human antibodies against the myelin oligodendrocyte glycoprotein can cause complement-dependent demyelination. J. Neuroinflammation 14, 208 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Mayer, M. C. et al. Distinction and temporal stability of conformational epitopes on myelin oligodendrocyte glycoprotein recognized by patients with different inflammatory central nervous system diseases. J. Immunol. 191, 3594–3604 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Jarius, S. et al. MOG encephalomyelitis: international recommendations on diagnosis and antibody testing. J. Neuroinflammation 15, 134 (2018). Recommendations on indications and methodology of MOG-IgG testing and first set of proposed criteria for MOG-IgG-associated disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Tea, F. et al. Characterization of the human myelin oligodendrocyte glycoprotein antibody response in demyelination. Acta Neuropathol. Commun. 7, 145 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Spadaro, M. et al. Pathogenicity of human antibodies against myelin oligodendrocyte glycoprotein. Ann. Neurol. 84, 315–328 (2018).

    Article  CAS  PubMed  Google Scholar 

  172. Cobo-Calvo, A. et al. Usefulness of MOG-antibody titres at first episode to predict the future clinical course in adults. J. Neurol. 266, 806–815 (2019).

    Article  PubMed  Google Scholar 

  173. Flach, A. C. et al. Autoantibody-boosted T-cell reactivation in the target organ triggers manifestation of autoimmune CNS disease. Proc. Natl Acad. Sci. USA 113, 3323–3328 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Kinzel, S. et al. Myelin-reactive antibodies initiate T cell-mediated CNS autoimmune disease by opsonization of endogenous antigen. Acta Neuropathol. 132, 43–58 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Weber, M. S., Derfuss, T., Metz, I. & Bruck, W. Defining distinct features of anti-MOG antibody associated central nervous system demyelination. Ther. Adv. Neurol. Disord. 11, 1756286418762083 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Asseyer, S., Cooper, G. & Paul, F. Pain in NMOSD and MOGAD: a systematic literature review of pathophysiology, symptoms and current treatment strategies. Front. Neurol. 11, 778 (2020).

    PubMed  PubMed Central  Google Scholar 

  177. Bradl, M. et al. Pain in neuromyelitis optica–prevalence, pathogenesis and therapy. Nat. Rev. Neurol. 10, 529–536 (2014).

    Article  PubMed  Google Scholar 

  178. Nakajima, H. et al. Visual field defects of optic neuritis in neuromyelitis optica compared with multiple sclerosis. BMC Neurol. 10, 45 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Chen, J. J. et al. Myelin oligodendrocyte glycoprotein antibody-positive optic neuritis: clinical characteristics, radiologic clues, and outcome. Am. J. Ophthalmol. 195, 8–15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Mutch, K. et al. Bladder and bowel dysfunction affect quality of life. A cross sectional study of 60 patients with aquaporin-4 antibody positive neuromyelitis optica spectrum disorder. Mult. Scler. Relat. Disord. 4, 614–618 (2015).

    Article  PubMed  Google Scholar 

  181. Etemadifar, M. et al. Prevalence of Lhermitte’s sign in multiple sclerosis versus neuromyelitis optica. Iran. J. Neurol. 13, 50–51 (2014).

    PubMed  PubMed Central  Google Scholar 

  182. McKeon, A. et al. CNS aquaporin-4 autoimmunity in children. Neurology 71, 93–100 (2008).

    Article  CAS  PubMed  Google Scholar 

  183. Shen, C. H. et al. Seizure occurrence in myelin oligodendrocyte glycoprotein antibody-associated disease: a systematic review and meta-analysis. Mult. Scler. Relat. Disord. 42, 102057 (2020).

    Article  PubMed  Google Scholar 

  184. Chavarro, V. S. et al. Insufficient treatment of severe depression in neuromyelitis optica spectrum disorder. Neurol. Neuroimmunol. Neuroinflamm. 3, e286 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Oertel, F. C., Schliesseit, J., Brandt, A. U. & Paul, F. Cognitive impairment in neuromyelitis optica spectrum disorders: a review of clinical and neuroradiological features. Front. Neurol. 10, 608 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Takahashi, T. et al. Intractable hiccup and nausea in neuromyelitis optica with anti-aquaporin-4 antibody: a herald of acute exacerbations. J. Neurol. Neurosurg. Psychiatry 79, 1075–1078 (2008).

    Article  CAS  PubMed  Google Scholar 

  187. Hyun, J. W. et al. Value of area postrema syndrome in differentiating adults with AQP4 vs. MOG antibodies. Front. Neurol. 11, 396 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Dubey, D. et al. Clinical, radiologic, and prognostic features of myelitis associated with myelin oligodendrocyte glycoprotein autoantibody. JAMA Neurol. 76, 301–309 (2019).

    Article  PubMed  Google Scholar 

  189. Kim, H. J. et al. MRI characteristics of neuromyelitis optica spectrum disorder: an international update. Neurology 84, 1165–1173 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Jurynczyk, M. et al. Distinct brain imaging characteristics of autoantibody-mediated CNS conditions and multiple sclerosis. Brain 140, 617–627 (2017).

    Article  PubMed  Google Scholar 

  191. Schmidt, F. et al. Olfactory dysfunction in patients with neuromyelitis optica. Mult. Scler. Int. 2013, 654501 (2013).

    PubMed  PubMed Central  Google Scholar 

  192. Wingerchuk, D. M., Hogancamp, W. F., O’Brien, P. C. & Weinshenker, B. G. The clinical course of neuromyelitis optica (Devic’s syndrome). Neurology 53, 1107–1114 (1999).

    Article  CAS  PubMed  Google Scholar 

  193. Elsone, L., Goh, Y. Y., Trafford, R., Mutch, K. & Jacob, A. How often does respiratory failure occur in neuromyelitis optica? J. Neurol. Neurosurg. Psychiatry 84, e2 (2013).

    Article  Google Scholar 

  194. Asseyer, S. et al. Prodromal headache in MOG-antibody positive optic neuritis. Mult. Scler. Relat. Disord. 40, 101965 (2020).

    Article  PubMed  Google Scholar 

  195. Kim, S. M., Go, M. J., Sung, J. J., Park, K. S. & Lee, K. W. Painful tonic spasm in neuromyelitis optica: incidence, diagnostic utility, and clinical characteristics. Arch. Neurol. 69, 1026–1031 (2012).

    PubMed  Google Scholar 

  196. Liu, J. et al. Painful tonic spasm in neuromyelitis optica spectrum disorders: Prevalence, clinical implications and treatment options. Mult. Scler. Relat. Disord. 17, 99–102 (2017).

    Article  PubMed  Google Scholar 

  197. Kitley, J. et al. Neuromyelitis optica spectrum disorders with aquaporin-4 and myelin-oligodendrocyte glycoprotein antibodies: a comparative study. JAMA Neurol. 71, 276–283 (2014).

    Article  PubMed  Google Scholar 

  198. Deguchi, S. et al. HyperCKemia related to the initial and recurrent attacks of neuromyelitis optica. Intern. Med. 51, 2617–2620 (2012).

    Article  PubMed  Google Scholar 

  199. Di Filippo, M. et al. Recurrent hyperCKemia with normal muscle biopsy in a pediatric patient with neuromyelitis optica. Neurology 79, 1182–1184 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Jarius, S., Lauda, F., Wildemann, B. & Tumani, H. Steroid-responsive hearing impairment in NMO-IgG/aquaporin-4-antibody-positive neuromyelitis optica. J. Neurol. 260, 663–664 (2013).

    Article  CAS  PubMed  Google Scholar 

  201. Jarius, S., Paul, F., Ruprecht, K. & Wildemann, B. Low vitamin B12 levels and gastric parietal cell antibodies in patients with aquaporin-4 antibody-positive neuromyelitis optica spectrum disorders. J. Neurol. 259, 2743–2745 (2012).

    Article  CAS  PubMed  Google Scholar 

  202. Jarius, S. et al. Neuromyelitis optica spectrum disorders in patients with myasthenia gravis: ten new aquaporin-4 antibody positive cases and a review of the literature. Mult. Scler. 18, 1135–1143 (2012).

    Article  CAS  PubMed  Google Scholar 

  203. Leite, M. I. et al. Myasthenia gravis and neuromyelitis optica spectrum disorder: a multicenter study of 16 patients. Neurology 78, 1601–1607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Jarius, S. et al. Neuromyelitis optica in patients with gluten sensitivity associated with antibodies to aquaporin-4. J. Neurol. Neurosurg. Psychiatry 79, 1084 (2008).

    Article  CAS  PubMed  Google Scholar 

  205. Bergamaschi, R. et al. Two cases of benign neuromyelitis optica in patients with celiac disease. J. Neurol. 256, 2097–2099 (2009).

    Article  CAS  PubMed  Google Scholar 

  206. Titulaer, M. J. et al. Overlapping demyelinating syndromes and anti-N-methyl-D-aspartate receptor encephalitis. Ann. Neurol. 75, 411–428 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Chalmoukou, K. et al. Anti-MOG antibodies are frequently associated with steroid-sensitive recurrent optic neuritis. Neurol. Neuroimmunol. Neuroinflamm. 2, e131 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Petzold, A. & Plant, G. T. Chronic relapsing inflammatory optic neuropathy: a systematic review of 122 cases reported. J. Neurol. 261, 17–26 (2014).

    Article  PubMed  Google Scholar 

  209. Ramanathan, S. et al. Antibodies to myelin oligodendrocyte glycoprotein in bilateral and recurrent optic neuritis. Neurol. Neuroimmunol. Neuroinflamm. 1, e40 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Kitley, J. et al. Prognostic factors and disease course in aquaporin-4 antibody-positive patients with neuromyelitis optica spectrum disorder from the United Kingdom and Japan. Brain 135, 1834–1849 (2012).

    Article  PubMed  Google Scholar 

  211. Kim, S.-H. et al. Racial differences in neuromyelitis optica spectrum disorder. Neurology 91, e2089–e2099 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Krumbholz, M. et al. Very late-onset neuromyelitis optica spectrum disorder beyond the age of 75. J. Neurol. 262, 1379–1384 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Collongues, N. et al. Characterization of neuromyelitis optica and neuromyelitis optica spectrum disorder patients with a late onset. Mult. Scler. 20, 1086–1094 (2014).

    Article  CAS  PubMed  Google Scholar 

  214. Jarius, S. et al. Standardized method for the detection of antibodies to aquaporin-4 based on a highly sensitive immunofluorescence assay employing recombinant target antigen. J. Neurol. Sci. 291, 52–56 (2010).

    Article  CAS  PubMed  Google Scholar 

  215. Waters, P. et al. Multicentre comparison of a diagnostic assay: aquaporin-4 antibodies in neuromyelitis optica. J. Neurol. Neurosurg. Psychiatry 87, 1005–1015 (2016).

    Article  PubMed  Google Scholar 

  216. Waters, P. J. et al. Evaluation of aquaporin-4 antibody assays. Clin. Exp. Neuroimmunol. 5, 290–303 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Reindl, M. et al. International multicenter examination of MOG antibody assays. Neurol. Neuroimmunol. Neuroinflamm. 7, e674 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Waters, P. J. et al. A multicenter comparison of MOG-IgG cell-based assays. Neurology 92, e1250–e1255 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Waters, P. J. et al. Serologic diagnosis of NMO: a multicenter comparison of aquaporin-4-IgG assays. Neurology 78, 665–671 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Gastaldi, M. et al. Cell-based assays for the detection of MOG antibodies: a comparative study. J. Neurol. https://doi.org/10.1007/s00415-020-10024-0 (2020).

    Article  PubMed  Google Scholar 

  221. Pittock, S. J. et al. Seroprevalence of aquaporin-4-IgG in a northern California population representative cohort of multiple sclerosis. JAMA Neurol. 71, 1433–1436 (2014).

    Article  PubMed  Google Scholar 

  222. Jarius, S. et al. Testing for antibodies to human aquaporin-4 by ELISA: Sensitivity, specificity, and direct comparison with immunohistochemistry. J. Neurol. Sci. 320, 32–37 (2012).

    Article  CAS  PubMed  Google Scholar 

  223. Nishiyama, S. et al. A case of NMO seropositive for aquaporin-4 antibody more than 10 years before onset. Neurology 72, 1960–1961 (2009).

    Article  CAS  PubMed  Google Scholar 

  224. Mariotto, S. et al. Clinical spectrum and IgG subclass analysis of anti-myelin oligodendrocyte glycoprotein antibody-associated syndromes: a multicenter study. J. Neurol. 264, 2420–2430 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Baumann, M. et al. MRI of the first event in pediatric acquired demyelinating syndromes with antibodies to myelin oligodendrocyte glycoprotein. J. Neurol. 265, 845–855 (2018).

    Article  PubMed  Google Scholar 

  226. Flanagan, E. P. et al. Short myelitis lesions in aquaporin-4-IgG-positive neuromyelitis optica spectrum disorders. JAMA Neurol. 72, 81–87 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Asgari, N., Skejoe, H. P. & Lennon, V. A. Evolution of longitudinally extensive transverse myelitis in an aquaporin-4 IgG-positive patient. Neurology 81, 95–96 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Macaron, G. & Ontaneda, D. MOG-related disorders: a new cause of imaging-negative myelitis? Mult. Scler. 26, 511–515 (2020).

    Article  PubMed  Google Scholar 

  229. Pekcevik, Y. et al. Differentiating neuromyelitis optica from other causes of longitudinally extensive transverse myelitis on spinal magnetic resonance imaging. Mult. Scler. 22, 302–311 (2016).

    Article  CAS  PubMed  Google Scholar 

  230. Chien, C. et al. Spinal cord lesions and atrophy in NMOSD with AQP4-IgG and MOG-IgG associated autoimmunity. Mult. Scler. 25, 1926–1936 (2019).

    Article  CAS  PubMed  Google Scholar 

  231. Asgari, N. et al. Disruption of the leptomeningeal blood barrier in neuromyelitis optica spectrum disorder. Neurol. Neuroimmunol. Neuroinflamm. 4, e343 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Mohseni, S. H. et al. Leptomeningeal and intraparenchymal blood barrier disruption in a MOG-IgG-positive patient. Case Rep. Neurol. Med. 2018, 1365175 (2018).

    PubMed  PubMed Central  Google Scholar 

  233. Ramanathan, S. et al. Radiological differentiation of optic neuritis with myelin oligodendrocyte glycoprotein antibodies, aquaporin-4 antibodies, and multiple sclerosis. Mult. Scler. 22, 470–482 (2016).

    Article  CAS  PubMed  Google Scholar 

  234. Shor, N. et al. Clinical, imaging, and follow-up study of optic neuritis associated with myelin oligodendrocyte glycoprotein antibody: A multicentre study of 62 adult patients. Eur. J. Neurol. 27, 384–391 (2020).

    Article  CAS  PubMed  Google Scholar 

  235. Deneve, M. et al. MRI features of demyelinating disease associated with anti-MOG antibodies in adults. J. Neuroradiol. 46, 312–318 (2019).

    Article  PubMed  Google Scholar 

  236. Filippi, M. et al. Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain 142, 1858–1875 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Shosha, E. et al. Area postrema syndrome: frequency, criteria, and severity in AQP4-IgG-positive NMOSD. Neurology 91, e1642–e1651 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Dubey, D., Pittock, S. J., Krecke, K. N. & Flanagan, E. P. Association of extension of cervical cord lesion and area postrema syndrome with neuromyelitis optica spectrum disorder. JAMA Neurol. 74, 359–361 (2017).

    Article  PubMed  Google Scholar 

  239. Geraldes, R. et al. The current role of MRI in differentiating multiple sclerosis from its imaging mimics. Nat. Rev. Neurol. 14, 199–213 (2018).

    Article  PubMed  Google Scholar 

  240. Budhram, A. et al. Unilateral cortical FLAIR-hyperintense lesions in anti-MOG-associated encephalitis with seizures (FLAMES): characterization of a distinct clinico-radiographic syndrome. J. Neurol. 266, 2481–2487 (2019).

    Article  CAS  PubMed  Google Scholar 

  241. Budhram, A., Sechi, E., Nguyen, A., Lopez-Chiriboga, A. S. & Flanagan, E. P. FLAIR-hyperintense lesions in anti-MOG-associated encephalitis with seizures (FLAMES): is immunotherapy always needed to put out the fire? Mult. Scler. Relat. Disord. 44, 102283 (2020).

    Article  PubMed  Google Scholar 

  242. Ogawa, R. et al. MOG antibody-positive, benign, unilateral, cerebral cortical encephalitis with epilepsy. Neurol. Neuroimmunol. Neuroinflamm. 4, e322 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Hamid, S. H. M. et al. Seizures and encephalitis in myelin oligodendrocyte glycoprotein IgG disease vs aquaporin 4 IgG disease. JAMA Neurol. 75, 65–71 (2018).

    Article  PubMed  Google Scholar 

  244. Sinnecker, T. et al. Distinct lesion morphology at 7-T MRI differentiates neuromyelitis optica from multiple sclerosis. Neurology 79, 708–714 (2012).

    Article  PubMed  Google Scholar 

  245. Sinnecker, T. et al. Evaluation of the central vein sign as a diagnostic imaging biomarker in multiple sclerosis. JAMA Neurol.76, 1446–1456 (2019).

    Article  PubMed  Google Scholar 

  246. Huh, S. Y. et al. The usefulness of brain MRI at onset in the differentiation of multiple sclerosis and seropositive neuromyelitis optica spectrum disorders. Mult. Scler. 20, 695–704 (2014).

    Article  PubMed  Google Scholar 

  247. Pache, F. et al. Brain parenchymal damage in neuromyelitis optica spectrum disorder - a multimodal MRI study. Eur. Radiol. 26, 4413–4422 (2016).

    Article  CAS  PubMed  Google Scholar 

  248. von Glehn, F. et al. Structural brain abnormalities are related to retinal nerve fiber layer thinning and disease duration in neuromyelitis optica spectrum disorders. Mult. Scler. 20, 1189–1197 (2014).

    Article  Google Scholar 

  249. Pasquier, B. et al. Quantitative 7T MRI does not detect occult brain damage in neuromyelitis optica. Neurol. Neuroimmunol. Neuroinflamm. 6, e541 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Blanc, F. et al. White matter atrophy and cognitive dysfunctions in neuromyelitis optica. PLoS ONE 7, e33878 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Finke, C. et al. Normal volumes and microstructural integrity of deep gray matter structures in AQP4+ NMOSD. Neurol. Neuroimmunol. Neuroinflamm. 3, e229 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Solomon, A. J., Watts, R., Dewey, B. E. & Reich, D. S. MRI evaluation of thalamic volume differentiates MS from common mimics. Neurol. Neuroimmunol. Neuroinflamm. 4, e387 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Kremer, S. et al. Use of advanced magnetic resonance imaging techniques in neuromyelitis optica spectrum disorder. JAMA Neurol. 72, 815–822 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Ciccarelli, O. et al. Low myo-inositol indicating astrocytic damage in a case series of neuromyelitis optica. Ann. Neurol. 74, 301–305 (2013).

    CAS  PubMed  Google Scholar 

  255. Matthews, L. et al. Distinction of seropositive NMO spectrum disorder and MS brain lesion distribution. Neurology 80, 1330–1337 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Jurynczyk, M. et al. Brain lesion distribution criteria distinguish MS from AQP4-antibody NMOSD and MOG-antibody disease. J. Neurol. Neurosurg. Psychiatry 88, 132–136 (2017).

    Article  PubMed  Google Scholar 

  257. Jarius, S. et al. Cerebrospinal fluid findings in patients with myelin oligodendrocyte glycoprotein (MOG) antibodies. Part 1: results from 163 lumbar punctures in 100 adult patients. J. Neuroinflammation 17, 261 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Jarius, S. et al. Cerebrospinal fluid findings in patients with myelin oligodendrocyte glycoprotein (MOG) antibodies. Part 2: results from 108 lumbar punctures in 80 pediatric patients. J. Neuroinflammation 17, 262 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Jarius, S. et al. The MRZ reaction as a highly specific marker of multiple sclerosis: re-evaluation and structured review of the literature. J. Neurol. 264, 453–466 (2017).

    Article  CAS  PubMed  Google Scholar 

  260. Jarius, S. et al. Intrathecal polyspecific immune response against neurotropic viruses discriminates between multiple sclerosis and acute demyelinating encephalomyelitis. J. Neurol. 253, P486 (2006).

    Google Scholar 

  261. Correale, J. & Fiol, M. Activation of humoral immunity and eosinophils in neuromyelitis optica. Neurology 63, 2363–2370 (2004).

    Article  PubMed  Google Scholar 

  262. Uzawa, A. et al. Markedly increased CSF interleukin-6 levels in neuromyelitis optica, but not in multiple sclerosis. J. Neurol. 256, 2082–2084 (2009).

    Article  CAS  PubMed  Google Scholar 

  263. Misu, T. et al. Marked increase in cerebrospinal fluid glial fibrillar acidic protein in neuromyelitis optica: an astrocytic damage marker. J. Neurol. Neurosurg. Psychiatry 80, 575–577 (2009).

    Article  CAS  PubMed  Google Scholar 

  264. Watanabe, M. et al. Serum GFAP and neurofilament light as biomarkers of disease activity and disability in NMOSD. Neurology 93, e1299–e1311 (2019).

    Article  CAS  PubMed  Google Scholar 

  265. Biotti, D. et al. Optic neuritis in patients with anti-MOG antibodies spectrum disorder: MRI and clinical features from a large multicentric cohort in France. J. Neurol. 264, 2173–2175 (2017).

    Article  PubMed  Google Scholar 

  266. Jarius, S., Wandinger, K. P., Borowski, K., Stoecker, W. & Wildemann, B. Antibodies to CV2/CRMP5 in neuromyelitis optica-like disease: case report and review of the literature. Clin. Neurol. Neurosurg. 114, 331–335 (2012).

    Article  CAS  PubMed  Google Scholar 

  267. Bennett, J. L. et al. Neuromyelitis optica and multiple sclerosis: Seeing differences through optical coherence tomography. Mult. Scler. 21, 678–688 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Schmidt, F. et al. Severe structural and functional visual system damage leads to profound loss of vision-related quality of life in patients with neuromyelitis optica spectrum disorders. Mult. Scler. Relat. Disord. 11, 45–50 (2017).

    Article  PubMed  Google Scholar 

  269. Petzold, A. et al. Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol. 16, 797–812 (2017).

    Article  PubMed  Google Scholar 

  270. Oertel, F. C. et al. Microstructural visual system changes in AQP4-antibody-seropositive NMOSD. Neurol. Neuroimmunol. Neuroinflamm. 4, e334 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  271. Tian, D. C. et al. Bidirectional degeneration in the visual pathway in neuromyelitis optica spectrum disorder (NMOSD). Mult. Scler. 24, 1585–1593 (2018).

    Article  PubMed  Google Scholar 

  272. Motamedi, S. et al. Altered fovea in AQP4-IgG-seropositive neuromyelitis optica spectrum disorders. Neurol. Neuroimmunol. Neuroinflamm. 7, e805 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  273. Oertel, F. C. et al. Retinal ganglion cell loss in neuromyelitis optica: a longitudinal study. J. Neurol. Neurosurg. Psychiatry 89, 1259–1265 (2018).

    Article  PubMed  Google Scholar 

  274. Akaishi, T. et al. MRI and retinal abnormalities in isolated optic neuritis with myelin oligodendrocyte glycoprotein and aquaporin-4 antibodies: a comparative study. J. Neurol. Neurosurg. Psychiatry 87, 446–448 (2016).

    Article  PubMed  Google Scholar 

  275. Sotirchos, E. S. et al. Aquaporin-4 IgG seropositivity is associated with worse visual outcomes after optic neuritis than MOG-IgG seropositivity and multiple sclerosis, independent of macular ganglion cell layer thinning. Mult. Scler. https://doi.org/10.1177/1352458519864928 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  276. Oertel, F. C. et al. Optical coherence tomography in myelin-oligodendrocyte-glycoprotein antibody-seropositive patients: a longitudinal study. J. Neuroinflammation 16, 154 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  277. Sotirchos, E. S. et al. In vivo identification of morphologic retinal abnormalities in neuromyelitis optica. Neurology 80, 1406–1414 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  278. Ringelstein, M. et al. Visual evoked potentials in neuromyelitis optica and its spectrum disorders. Mult. Scler. 20, 617–620 (2014).

    Article  PubMed  Google Scholar 

  279. Ringelstein, M. et al. Longitudinal optic neuritis-unrelated visual evoked potential changes in NMO spectrum disorders. Neurology 94, e407–e418 (2020).

    Article  PubMed  Google Scholar 

  280. Vabanesi, M. et al. In vivo structural and functional assessment of optic nerve damage in neuromyelitis optica spectrum disorders and multiple sclerosis. Sci. Rep. 9, 10371 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  281. Lucchinetti, C. F. et al. The pathology of an autoimmune astrocytopathy: lessons learned from neuromyelitis optica. Brain Pathol. 24, 83–97 (2014).

    Article  CAS  PubMed  Google Scholar 

  282. Ringelstein, M. et al. Contribution of spinal cord biopsy to diagnosis of aquaporin-4 antibody positive neuromyelitis optica spectrum disorder. Mult. Scler. 20, 882–888 (2014).

    Article  CAS  PubMed  Google Scholar 

  283. Hengstman, G. J., Wesseling, P., Frenken, C. W. & Jongen, P. J. Neuromyelitis optica with clinical and histopathological involvement of the brain. Mult. Scler. 13, 679–682 (2007).

    Article  CAS  PubMed  Google Scholar 

  284. Kim, S. M. et al. Differential diagnosis of neuromyelitis optica spectrum disorders. Ther. Adv. Neurol. Disord. 10, 265–289 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Kitley, J. L., Leite, M. I., George, J. S. & Palace, J. A. The differential diagnosis of longitudinally extensive transverse myelitis. Mult. Scler. 18, 271–285 (2012).

    Article  CAS  PubMed  Google Scholar 

  286. Aktas, O., Kleiter, I., Kümpfel, T. & Trebst, C. In Quality Manual Multiple Sklerose. Recommendations on the therapy of Multiple Sclerosis/Neuromyelitis Optica Spectrum Disorders for Physicians (Krankheitsbezogenes Kompetenznetz Multiple Sklerose, 2020).

  287. Stiebel-Kalish, H. et al. Does time equal vision in the acute treatment of a cohort of AQP4 and MOG optic neuritis? Neurol. Neuroimmunol. Neuroinflamm. 6, e572 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  288. Nakamura, M. et al. Early high-dose intravenous methylprednisolone is effective in preserving retinal nerve fiber layer thickness in patients with neuromyelitis optica. Graefes Arch. Clin. Exp. Ophthalmol. 248, 1777–1785 (2010).

    Article  CAS  PubMed  Google Scholar 

  289. Kleiter, I. et al. Neuromyelitis optica: evaluation of 871 attacks and 1,153 treatment courses. Ann. Neurol. 79, 206–216 (2016).

    Article  CAS  PubMed  Google Scholar 

  290. Weinshenker, B. G. et al. A randomized trial of plasma exchange in acute central nervous system inflammatory demyelinating disease. Ann. Neurol. 46, 878–886 (1999).

    Article  CAS  PubMed  Google Scholar 

  291. Bonnan, M. & Cabre, P. Plasma exchange in severe attacks of neuromyelitis optica. Mult. Scler. Int. 2012, 787630 (2012).

    PubMed  PubMed Central  Google Scholar 

  292. Kleiter, I. et al. Apheresis therapies for NMOSD attacks: a retrospective study of 207 therapeutic interventions. Neurol. Neuroimmunol. Neuroinflamm. 5, e504 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  293. Faissner, S. et al. Immunoadsorption in patients with neuromyelitis optica spectrum disorder. Ther. Adv. Neurol. Disord. 9, 281–286 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Elsone, L. et al. Role of intravenous immunoglobulin in the treatment of acute relapses of neuromyelitis optica: experience in 10 patients. Mult. Scler. 20, 501–504 (2014).

    Article  CAS  PubMed  Google Scholar 

  295. Mandler, R. N., Ahmed, W. & Dencoff, J. E. Devic’s neuromyelitis optica: a prospective study of seven patients treated with prednisone and azathioprine. Neurology 51, 1219–1220 (1998).

    Article  CAS  PubMed  Google Scholar 

  296. Costanzi, C. et al. Azathioprine: tolerability, efficacy, and predictors of benefit in neuromyelitis optica. Neurology 77, 659–666 (2011).

    Article  CAS  PubMed  Google Scholar 

  297. Elsone, L. et al. Long-term efficacy, tolerability and retention rate of azathioprine in 103 aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder patients: a multicentre retrospective observational study from the UK. Mult. Scler. 20, 1533–1540 (2014).

    Article  PubMed  CAS  Google Scholar 

  298. Mealy, M. A., Wingerchuk, D. M., Palace, J., Greenberg, B. M. & Levy, M. Comparison of relapse and treatment failure rates among patients with neuromyelitis optica: multicenter study of treatment efficacy. JAMA Neurol. 71, 324–330 (2014).

    Article  PubMed  Google Scholar 

  299. Torres, J. et al. Analysis of the treatment of neuromyelitis optica. J. Neurol. Sci. 351, 31–35 (2015).

    Article  CAS  PubMed  Google Scholar 

  300. Nikoo, Z., Badihian, S., Shaygannejad, V., Asgari, N. & Ashtari, F. Comparison of the efficacy of azathioprine and rituximab in neuromyelitis optica spectrum disorder: a randomized clinical trial. J. Neurol. 264, 2003–2009 (2017).

    Article  CAS  PubMed  Google Scholar 

  301. Hacohen, Y. et al. Disease course and treatment responses in children with relapsing myelin oligodendrocyte glycoprotein antibody-associated disease. JAMA Neurol. 75, 478–487 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  302. Damato, V., Evoli, A. & Iorio, R. Efficacy and safety of rituximab therapy in neuromyelitis optica spectrum disorders: a systematic review and meta-analysis. JAMA Neurol. 73, 1342–1348 (2016).

    Article  PubMed  Google Scholar 

  303. Tahara, M. et al. Safety and efficacy of rituximab in neuromyelitis optica spectrum disorders (RIN-1 study): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 19, 298–306 (2020).

    Article  CAS  PubMed  Google Scholar 

  304. Whittam, D. H. et al. Treatment of MOG-IgG-associated disorder with rituximab: An international study of 121 patients. Mult. Scler. Rel. Dis. 44, 102251 (2020).

    Article  Google Scholar 

  305. Tallantyre, E. C. et al. Secondary antibody deficiency: a complication of anti-CD20 therapy for neuroinflammation. J. Neurol. 265, 1115–1122 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Marcinno, A. et al. Rituximab-induced hypogammaglobulinemia in patients with neuromyelitis optica spectrum disorders. Neurol. Neuroimmunol. Neuroinflamm. 5, e498 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  307. Mealy, M. A. & Levy, M. Favorable outcome of granulocyte colony-stimulating factor use in neuromyelitis optica patients presenting with agranulocytosis in the setting of rituximab. J. Neuroimmunol. 287, 29–30 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Dooley, M. A. et al. Mycophenolate versus azathioprine as maintenance therapy for lupus nephritis. N. Engl. J. Med. 365, 1886–1895 (2011).

    Article  CAS  PubMed  Google Scholar 

  309. Jacob, A. et al. Treatment of neuromyelitis optica with mycophenolate mofetil: retrospective analysis of 24 patients. Arch. Neurol. 66, 1128–1133 (2009).

    Article  PubMed  Google Scholar 

  310. Mealy, M. A. et al. Aquaporin-4 serostatus does not predict response to immunotherapy in neuromyelitis optica spectrum disorders. Mult. Scler. 24, 1737–1742 (2018).

    Article  CAS  PubMed  Google Scholar 

  311. Huh, S. Y. et al. Mycophenolate mofetil in the treatment of neuromyelitis optica spectrum disorder. JAMA Neurol. 71, 1372–1378 (2014).

    Article  PubMed  Google Scholar 

  312. Montcuquet, A. et al. Effectiveness of mycophenolate mofetil as first-line therapy in AQP4-IgG, MOG-IgG, and seronegative neuromyelitis optica spectrum disorders. Mult. Scler. 23, 1377–1384 (2017).

    Article  CAS  PubMed  Google Scholar 

  313. Cobo-Calvo, A. et al. Evaluation of treatment response in adults with relapsing MOG-Ab-associated disease. J. Neuroinflammation 16, 134 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  314. Kleiter, I. & Gold, R. Present and future therapies in neuromyelitis optica spectrum disorders. Neurotherapeutics 13, 70–83 (2016).

    Article  CAS  PubMed  Google Scholar 

  315. Huang, W. et al. Effectiveness and tolerability of immunosuppressants and monoclonal antibodies in preventive treatment of neuromyelitis optica spectrum disorders: a systematic review and network meta-analysis. Mult. Scler. Relat. Disord. 35, 246–252 (2019).

    Article  PubMed  Google Scholar 

  316. Li, S. et al. Long-term efficacy of mycophenolate mofetil in myelin oligodendrocyte glycoprotein antibody-associated disorders: a prospective study. Neurol. Neuroimmunol. Neuroinflamm. 7, e705 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  317. Araki, M. et al. Efficacy of the anti-IL-6 receptor antibody tocilizumab in neuromyelitis optica: a pilot study. Neurology 82, 1302–1306 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Ringelstein, M. et al. Long-term therapy with interleukin 6 receptor blockade in highly active neuromyelitis optica spectrum disorder. JAMA Neurol. 72, 756–763 (2015).

    Article  PubMed  Google Scholar 

  319. Zhang, C. et al. Safety and efficacy of tocilizumab versus azathioprine in highly relapsing neuromyelitis optica spectrum disorder (TANGO): an open-label, multicentre, randomised, phase 2 trial. Lancet Neurol. 19, 391–401 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Hayward-Koennecke, H., Reindl, M., Martin, R. & Schippling, S. Tocilizumab treatment in severe recurrent anti-MOG-associated optic neuritis. Neurology 92, 765–767 (2019).

    Article  PubMed  Google Scholar 

  321. Novi, G. et al. Tocilizumab in MOG-antibody spectrum disorder: a case report. Mult. Scler. Relat. Disord. 27, 312–314 (2019).

    Article  CAS  PubMed  Google Scholar 

  322. Magraner, M. J., Coret, F. & Casanova, B. The effect of intravenous immunoglobulin on neuromyelitis optica [Spanish]. Neurologia 28, 65–72 (2013).

    Article  CAS  PubMed  Google Scholar 

  323. Ramanathan, S. et al. Clinical course, therapeutic responses and outcomes in relapsing MOG antibody-associated demyelination. J. Neurol. Neurosurg. Psychiatry 89, 127–137 (2018).

    Article  PubMed  Google Scholar 

  324. Viswanathan, S., Wong, A. H., Quek, A. M. & Yuki, N. Intravenous immunoglobulin may reduce relapse frequency in neuromyelitis optica. J. Neuroimmunol. 282, 92–96 (2015).

    Article  CAS  PubMed  Google Scholar 

  325. Weinstock-Guttman, B. et al. Study of mitoxantrone for the treatment of recurrent neuromyelitis optica (Devic disease). Arch. Neurol. 63, 957–963 (2006).

    Article  PubMed  Google Scholar 

  326. Kim, S. H. et al. Efficacy and safety of mitoxantrone in patients with highly relapsing neuromyelitis optica. Arch. Neurol. 68, 473–479 (2011).

    Article  PubMed  Google Scholar 

  327. Cabre, P. et al. Efficacy of mitoxantrone in neuromyelitis optica spectrum: clinical and neuroradiological study. J. Neurol. Neurosurg. Psychiatry 84, 511–516 (2013).

    Article  PubMed  Google Scholar 

  328. Stellmann, J. P. et al. Immunotherapies in neuromyelitis optica spectrum disorder: efficacy and predictors of response. J. Neurol. Neurosurg. Psychiatry 88, 639–647 (2017).

    Article  PubMed  Google Scholar 

  329. Paul, F., Dorr, J., Wurfel, J., Vogel, H. P. & Zipp, F. Early mitoxantrone-induced cardiotoxicity in secondary progressive multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 78, 198–200 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Stroet, A. et al. Incidence of therapy-related acute leukaemia in mitoxantrone-treated multiple sclerosis patients in Germany. Ther. Adv. Neurol. Disord. 5, 75–79 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Borisow, N., Mori, M., Kuwabara, S., Scheel, M. & Paul, F. Diagnosis and treatment of NMO spectrum disorder and MOG-encephalomyelitis. Front. Neurol. 9, 888 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  332. Kitley, J. et al. Methotrexate is an alternative to azathioprine in neuromyelitis optica spectrum disorders with aquaporin-4 antibodies. J. Neurol. Neurosurg. Psychiatry 84, 918–921 (2013).

    Article  PubMed  Google Scholar 

  333. Ramanathan, R. S., Malhotra, K. & Scott, T. Treatment of neuromyelitis optica/neuromyelitis optica spectrum disorders with methotrexate. BMC Neurol. 14, 51 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  334. Minagar, A. & Sheremata, W. A. Treatment of Devic’s disease with methotrexate and prednisone. Int. J. MS Care 2, 39–43 (2000).

    Google Scholar 

  335. Watanabe, S. et al. Low-dose corticosteroids reduce relapses in neuromyelitis optica: a retrospective analysis. Mult. Scler. 13, 968–974 (2007).

    Article  CAS  PubMed  Google Scholar 

  336. Bichuetti, D. B., Oliveira, E. M., Boulos Fde, C. & Gabbai, A. A. Lack of response to pulse cyclophosphamide in neuromyelitis optica: evaluation of 7 patients. Arch. Neurol. 69, 938–939 (2012).

    Article  PubMed  Google Scholar 

  337. Pittock, S. J. et al. Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: an open-label pilot study. Lancet Neurol. 12, 554–562 (2013).

    Article  CAS  PubMed  Google Scholar 

  338. Qian, P. et al. Association of neuromyelitis optica with severe and intractable pain. Arch. Neurol. 69, 1482–1487 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  339. Iida, S., Nakamura, M., Wate, R., Kaneko, S. & Kusaka, H. Successful treatment of paroxysmal tonic spasms with topiramate in a patient with neuromyelitis optica. Mult. Scler. Relat. Disord. 4, 457–459 (2015).

    Article  PubMed  Google Scholar 

  340. Usmani, N., Bedi, G., Lam, B. L. & Sheremata, W. A. Association between paroxysmal tonic spasms and neuromyelitis optica. Arch. Neurol. 69, 121–124 (2012).

    Article  PubMed  Google Scholar 

  341. Schwartz, K. et al. Randomized, placebo-controlled crossover study of dalfampridine extended-release in transverse myelitis. Mult. Scler. J. Exp. Transl. Clin. 3, 2055217317740145 (2017).

    PubMed  PubMed Central  Google Scholar 

  342. Kessler, R. A., Mealy, M. A. & Levy, M. Treatment of neuromyelitis optica spectrum disorder: acute, preventive, and symptomatic. Curr. Treat. Options Neurol. 18, 2 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  343. Wingerchuk, D. M., Lennon, V. A., Pittock, S. J., Lucchinetti, C. F. & Weinshenker, B. G. Revised diagnostic criteria for neuromyelitis optica. Neurology 66, 1485–1489 (2006).

    Article  CAS  PubMed  Google Scholar 

  344. Wildemann, B. et al. Failure of alemtuzumab therapy to control MOG encephalomyelitis. Neurology 89, 207–209 (2017).

    Article  PubMed  Google Scholar 

  345. Beekman, J. et al. Neuromyelitis optica spectrum disorder: patient experience and quality of life. Neurol. Neuroimmunol. Neuroinflamm. 6, e580 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  346. Kanamori, Y. et al. Pain in neuromyelitis optica and its effect on quality of life: a cross-sectional study. Neurology 77, 652–658 (2011).

    Article  CAS  PubMed  Google Scholar 

  347. Asseyer, S. et al. Pain in AQP4-IgG-positive and MOG-IgG-positive neuromyelitis optica spectrum disorders. Mult. Scler. J. Exp. Transl. Clin. 4, 2055217318796684 (2018).

    PubMed  PubMed Central  Google Scholar 

  348. Borsook, D. Neurological diseases and pain. Brain 135, 320–344 (2012).

    Article  PubMed  Google Scholar 

  349. Shi, Z. et al. Factors that impact health-related quality of life in neuromyelitis optica spectrum disorder: anxiety, disability, fatigue and depression. J. Neuroimmunol. 293, 54–58 (2016).

    Article  CAS  PubMed  Google Scholar 

  350. Steinman, L. et al. Restoring immune tolerance in neuromyelitis optica: part I. Neurol. Neuroimmunol. Neuroinflamm. 3, e276 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  351. Bar-Or, A. et al. Restoring immune tolerance in neuromyelitis optica: Part II. Neurol. Neuroimmunol. Neuroinflamm. 3, e277 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  352. Jade, J. D., Bansi, S. & Singhal, B. Rituximab in neuromyelitis optica spectrum disorders: our experience. Ann. Indian Acad. Neurol. 20, 229–232 (2017).

    PubMed  PubMed Central  Google Scholar 

  353. Gmuca, S., Xiao, R., Weiss, P. F., Waldman, A. T. & Gerber, J. S. Use of rituximab and risk of re-hospitalization for children with neuromyelitis optica spectrum disorder. Mult. Scler. Demyelinating Disord. 3, 3 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  354. Ringelstein, M. et al. Long-term interleukin-6-receptor blockade in neuromyelitis optica spectrum disorder and MOG associated encephalomyelitis. ECTRIMS Online Lib. 278546, P1344 (2019).

    Google Scholar 

  355. Lotan, I., Charlson, R. W., Ryerson, L. Z., Levy, M. & Kister, I. Effectiveness of subcutaneous tocilizumab in neuromyelitis optica spectrum disorders. Mult. Scler. Rel. Dis. 39, 101920 (2019).

    Article  Google Scholar 

  356. Chen, B., Wu, Q., Ke, G. & Bu, B. Efficacy and safety of tacrolimus treatment for neuromyelitis optica spectrum disorder. Sci. Rep. 7, 831 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  357. Yaguchi, H. et al. Efficacy of intravenous cyclophosphamide therapy for neuromyelitis optica spectrum disorder. Intern. Med. 52, 969–972 (2013).

    Article  CAS  PubMed  Google Scholar 

  358. Sepulveda, M. et al. Epidemiology of NMOSD in Catalonia: influence of the new 2015 criteria in incidence and prevalence estimates. Mult. Scler. 24, 1843–1851 (2017).

    Article  PubMed  Google Scholar 

  359. Cabrera-Gomez, J. A., Kurtzke, J. F., Gonzalez-Quevedo, A. & Lara-Rodriguez, R. An epidemiological study of neuromyelitis optica in Cuba. J. Neurol. 256, 35–44 (2009).

    Article  PubMed  Google Scholar 

  360. Papp, V. et al. The population-based epidemiological study of neuromyelitis optica spectrum disorder in Hungary. Eur. J. Neurol. 27, 308–317 (2019).

    Article  PubMed  Google Scholar 

  361. Miyamoto, K. et al. Nationwide epidemiological study of neuromyelitis optica in Japan. J. Neurol. Neurosurg. Psychiatry 89, 667–668 (2018).

    Article  PubMed  Google Scholar 

  362. Pandit, L. & Kundapur, R. Prevalence and patterns of demyelinating central nervous system disorders in urban Mangalore, South India. Mult. Scler. 20, 1651–1653 (2014).

    Article  PubMed  Google Scholar 

  363. Jacob, A. et al. The epidemiology of neuromyelitis optica amongst adults in the Merseyside county of United Kingdom. J. Neurol. 260, 2134–2137 (2013).

    Article  PubMed  Google Scholar 

  364. Cossburn, M. et al. The prevalence of neuromyelitis optica in South East Wales. Eur. J. Neurol. 19, 655–659 (2012).

    Article  CAS  PubMed  Google Scholar 

  365. Eskandarieh, S., Nedjat, S., Azimi, A. R., Moghadasi, A. N. & Sahraian, M. A. Neuromyelitis optica spectrum disorders in Iran. Mult. Scler. Relat. Disord. 18, 209–212 (2017).

    Article  PubMed  Google Scholar 

  366. Takai, Y. et al. Perivenous inflammatory demyelination with MOG-dominant myelin loss is a characteristic feature of MOG antibody-associated disease. ECTRIMS Online Lib. 279522, 244 (2019).

    Google Scholar 

  367. Sahraian, M. A., Moghadasi, A. N., Owji, M., Naghshineh, H. & Minagar, A. Neuromyelitis optica with linear enhancement of corpus callosum in brain magnetic resonance imaging with contrast: a case report. J. Med. Case Rep. 9, 137 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  368. Barnett, Y. et al. Conventional and advanced imaging in neuromyelitis optica. AJNR Am. J. Neuroradiol. 35, 1458–1466 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Mao-Draayer, Y. et al. Neuromyelitis optica spectrum disorders and pregnancy: therapeutic considerations. Nat. Rev. Neurol. 16, 154–170 (2020).

    Article  PubMed  Google Scholar 

  370. Reuss, R. et al. A woman with acute myelopathy in pregnancy: case outcome. BMJ 339, b4026 (2009).

    Article  PubMed  Google Scholar 

  371. Reuss, R. et al. Anti-AQP4 AB Might be Relevant in Pregnancy. BMJ http://www.bmj.com/rapid-response/2011/11/02/anti-aqp4-ab-might-be-relevant-pregnancy (2010).

  372. Saadoun, S. et al. Neuromyelitis optica IgG causes placental inflammation and fetal death. J. Immunol. 191, 2999–3005 (2013).

    Article  CAS  PubMed  Google Scholar 

  373. Jarius, S. et al. Frequency and syndrome specificity of antibodies to aquaporin-4 in neurological patients with rheumatic disorders. Mult. Scler. 17, 1067–1073 (2011).

    Article  CAS  PubMed  Google Scholar 

  374. Wandinger, K. P. et al. Autoantibodies against aquaporin-4 in patients with neuropsychiatric systemic lupus erythematosus and primary Sjogren’s syndrome. Arthritis Rheum. 62, 1198–1200 (2010).

    Article  CAS  PubMed  Google Scholar 

  375. Wingerchuk, D. M. & Weinshenker, B. G. The emerging relationship between neuromyelitis optica and systemic rheumatologic autoimmune disease. Mult. Scler. 18, 5–10 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

B.W. thanks the Dietmar Hopp Stiftung, Germany, and Merck Serono for funding research on AQP4-IgG-positive NMOSD and MOG encephalomyelitis. The authors are grateful to C. Chien and J. Kuchling as well as to H. Zimmermann (Charité – University Medicine Berlin) for kindly providing some of the MRI and OCT images shown in this review.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (S.J.); Epidemiology (H.J.K. and S.J.); Mechanisms/pathophysiology (S.J., B.W., M.L.); Diagnosis, screening and prevention (S.J., F.P., H.J.K.); Management (S.J., B.G.W., B.W., H.J.K., M.L., F.P.); Quality of life (M.L.); Outlook (B.G.W., S.J.); Overview of Primer (S.J.).

Corresponding author

Correspondence to Sven Jarius.

Ethics declarations

Competing interests

F.P. served on scientific advisory boards of MedImmune and Novartis; received travel funding and/or speaker honoraria from Alexion, Bayer, Biogen, Chugai, MedImmune, Merck Serono, Novartis, Sanofi-Aventis/Genzyme, Shire and Teva; is an associate editor of Neurology, Neuroimmunology & Neuroinflammation; is an academic editor of PLoS ONE; consulted for Alexion, Biogen, MedImmune, SanofiGenzyme and Shire; received research support from Alexion, Bayer, Biogen, Merck Serono, Novartis, Sanofi-Aventis/Geynzme and Teva; and has received research support from the Arthur Arnstein Stiftung Berlin, EU FP7 Framework Program, German Ministry of Education and Research, German Research Council, Guthy–Jackson Charitable Foundation, National MS Society and Werth Stiftung of the City of Cologne. B.G.W. receives royalties from Hospices Civil de Lyon, Oxford University, RSR Ltd, and MVZ Labour PD Dr Volkmann und Kollegen GbR for a patent of NMO-IgG as a diagnostic test for NMO and related disorders (‘NMO-IgG: A Marker Autoantibody of Neuromyelitis Optica’); serves on an adjudication committee for clinical trials in NMO being conducted by Alexion and MedImmune, and consults for Chugai and Mitsubishi-Tanabe regarding a clinical trial for NMO. M.L. received consulting fees from Alexion, Genentech, and Viela Bio for participation in scientific advisory boards and receives consulting fees from Quest Diagnostics. H.J.K. received a grant from the National Research Foundation of Korea; consultancy/speaker fees from Alexion, Celltrion, Eisai, HanAll BioPharma, Merck Serono, Novartis, Sanofi Genzyme, Teva-Handok, and Viela Bio; is a steering committee member for MedImmune/Viela Bio; co-editor for Multiple Sclerosis Journal and associated editor for the Journal of Clinical Neurology. B.W. received research grants and/or honoraria from Bayer, Biogen, Deutsche Forschungsgemeinschaft (DFG), Dietmar Hopp Foundation, German Federal Ministry of Education and Research (BMBF; FKZ 01GI1602A), Klaus Tschira Foundation, Merck Serono, Novartis, Sanofi Genzyme and Teva. S.J. declares no competing interests.

Additional information

Peer review information

Nature Reviews Disease Primers thanks H. Lassmann, T. Matsushita, T. Misu, M. Mori and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Optic neuritis

(ON). Inflammation of the optic nerve.

Transverse myelitis

(TM). Inflammation of the spinal cord.

Acute disseminated encephalomyelitis

(ADEM). Sudden onset, widespread, polyfocal inflammatory demyelination of the brain and spinal cord, typically following infection or vaccination.

Autoimmune astrocytopathy

An autoimmune disorder primarily directed against astrocytes.

Area postrema syndrome

(APS). Intractable nausea, vomiting or hiccups caused by a lesion in the dorsal medulla oblongata.

Longitudinally extensive transverse myelitis

(LETM). Spinal cord inflammation that extends over three or more vertebral segments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarius, S., Paul, F., Weinshenker, B.G. et al. Neuromyelitis optica. Nat Rev Dis Primers 6, 85 (2020). https://doi.org/10.1038/s41572-020-0214-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-020-0214-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing