Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Development of disease-modifying drugs for frontotemporal dementia spectrum disorders

Abstract

Frontotemporal dementia (FTD) encompasses a spectrum of clinical syndromes characterized by progressive executive, behavioural and language dysfunction. The various FTD spectrum disorders are associated with brain accumulation of different proteins: tau, the transactive response DNA binding protein of 43 kDa (TDP43), or fused in sarcoma (FUS) protein, Ewing sarcoma protein and TATA-binding protein-associated factor 15 (TAF15) (collectively known as FET proteins). Approximately 60% of patients with FTD have autosomal dominant mutations in C9orf72, GRN or MAPT genes. Currently available treatments are symptomatic and provide limited benefit. However, the increased understanding of FTD pathogenesis is driving the development of potential disease-modifying therapies. Most of these drugs target pathological tau — this category includes tau phosphorylation inhibitors, tau aggregation inhibitors, active and passive anti-tau immunotherapies, and MAPT-targeted antisense oligonucleotides. Some of these therapeutic approaches are being tested in phase II clinical trials. Pharmacological approaches that target the effects of GRN and C9orf72 mutations are also in development. Key results of large clinical trials will be available in a few years. However, clinical trials in FTD pose several challenges, and the development of specific brain imaging and molecular biomarkers could facilitate the recruitment of clinically homogenous groups to improve the chances of positive clinical trial results.

Key points

  • Frontotemporal dementia (FTD) refers to a group of progressive neurodegenerative syndromes with different clinical presentations, the most common of which is behavioural variant FTD.

  • FTD is caused by an accumulation of pathological tau, transactive response DNA binding protein of 43 kDa (TDP43), or fused in sarcoma protein, Ewing sarcoma protein and TATA-binding protein-associated factor 15 (FET proteins).

  • Symptomatic treatments have limited benefits and can exacerbate symptoms.

  • An increased understanding of FTD pathogenesis is helping the development of disease-modifying therapies.

  • Disease-modifying drugs for FTD mainly target tau, but therapies for genetic forms of FTD (caused by mutations in GRN, C9orf72 and MAPT) are also being pursued.

  • Several potential disease-modifying therapies have been or are being tested in phase II clinical trials.

  • Several challenges must be overcome to recruit homogeneous patient cohorts and ensure that appropriate biomarkers and clinical end points are used so that clinical trials produce meaningful results.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Associations of molecular, genetic and neuropathological subtypes of FTLD with different clinical FTD phenotypes.
Fig. 2: Potential therapeutic interventions for FTLD.

Similar content being viewed by others

References

  1. Bang, J., Spina, S. & Miller, B. L. Frontotemporal dementia. Lancet 386, 1672–1682 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Coyle-Gilchrist, I. T. et al. Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes. Neurology 86, 1736–1743 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tsai, R. M. & Boxer, A. L. Therapy and clinical trials in frontotemporal dementia: past, present, and future. J. Neurochem. 138, 211–221 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Young, J. J. et al. Frontotemporal dementia: latest evidence and clinical implications. Ther. Adv. Psychopharmacol. 8, 33–48 (2018).

    Article  PubMed  Google Scholar 

  5. Panza, F. et al. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat. Rev. Neurol. 15, 73–88 (2019).

    Article  PubMed  Google Scholar 

  6. Ihl, R. et al. World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for the biological treatment of Alzheimer’s disease and other dementias. World J. Biol. Psychiatry 12, 2–32 (2011).

    Article  PubMed  Google Scholar 

  7. Huey, E. D., Putnam, K. T. & Grafman, J. A systematic review of neurotransmitter deficits and treatments in frontotemporal dementia. Neurology 66, 17–22 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Li, Y. et al. Cholinesterase inhibitors for rarer dementias associated with neurological conditions. Cochrane Database Syst. Rev. 3, CD009444 (2015).

    Google Scholar 

  9. Buoli, M. et al. Pharmacological management of psychiatric symptoms in frontotemporal dementia: a systematic review. J. Geriatr. Psychiatry Neurol. 30, 162–169 (2017).

    Article  PubMed  Google Scholar 

  10. O’Brien, J. T. et al. Clinical practice with anti-dementia drugs: a revised (third) consensus statement from the British Association for Psychopharmacology. J. Psychopharmacol. 31, 147–166 (2017).

    Article  PubMed  Google Scholar 

  11. Moretti, R. et al. Rivastigmine in frontotemporal dementia: an open-label study. Drugs Aging 21, 931–937 (2019).

    Article  Google Scholar 

  12. Kertesz, A. et al. Galantamine in frontotemporal dementia and primary progressive aphasia. Dement. Geriatr. Cogn. Disord. 25, 178–185 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Litvan, I. et al. Randomized placebo-controlled trial of donepezil in patients with progressive supranuclear palsy. Neurology 57, 467–473 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Kishi, T., Matsunaga, S. & Iwata, N. Memantine for the treatment of frontotemporal dementia: a meta-analysis. Neuropsychiatr. Dis. Treat. 11, 2883–2885 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vercelletto, M. et al. Memantine in behavioral variant frontotemporal dementia: negative results. J. Alzheimer Dis. 23, 749–759 (2011).

    Article  Google Scholar 

  16. Boxer, A. L. et al. Memantine in patients with frontotemporal lobar degeneration: a multicenter, randomized, double-blind, placebo-controlled trial. Lancet Neurol. 12, 149–156 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mendez, M. F. et al. Preliminary findings: behavioral worsening on donepezil in patients with frontotemporal dementia. Am. J. Geriatr. Psychiatr. 15, 84–87 (2007).

    Article  Google Scholar 

  18. Fabbrini, G. et al. Donepezil in the treatment of progressive supranuclear palsy. Acta Neurol. Scand. 103, 123–125 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Liepelt, I. et al. Rivastigmine for the treatment of dementia in patients with progressive supranuclear palsy: clinical observations as a basis for power calculations and safety analysis. Alzheimers Dement. 6, 70–74 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Lozupone, M. et al. Pharmacotherapy for the treatment of depression in patients with Alzheimer’s disease: a treatment-resistant depressive disorder. Expert Opin. Pharmacother. 19, 823–842 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Swartz, J. R. et al. Frontotemporal dementia: treatment response to serotonin selective reuptake inhibitors. J. Clin. Psychiatry 58, 212–216 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Chow, T. W. & Mendez, M. F. Goals in symptomatic pharmacologic management of frontotemporal lobar degeneration. Am. J. Alzheimers Dis. Other Demen. 17, 267–272 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Moretti, R. et al. Frontotemporal dementia: paroxetine as a possible treatment of behavior symptoms. Eur. Neurol. 49, 13–19 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Deakin, J. B. et al. Paroxetine does not improve symptoms and impairs cognition in frontotemporal dementia: a double-blind randomized controlled trial. Psychopharmacology 172, 400–408 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Herrmann, N. et al. Serotonergic function and treatment of behavioral and psychological symptoms of frontotemporal dementia. Am. J. Geriatr. Psychiatry 20, 789–797 (2012).

    Article  PubMed  Google Scholar 

  26. Hughes, L. E. et al. Improving response inhibition systems in frontotemporal dementia with citalopram. Brain 138, 1961–1975 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Meyer, S. et al. Citalopram improves obsessive-compulsive crossword puzzling in frontotemporal dementia. Case Rep. Neurol. 11, 94–105 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lebert, F. et al. Frontotemporal dementia: a randomised, controlled trial with trazodone. Dement. Geriatr. Cogn. Disord. 17, 355–359 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Mendez, M. F., Shapira, J. S. & Miller, B. L. Stereotypical movements and frontotemporal dementia. Mov. Disord. 20, 742–745 (2005).

    Article  PubMed  Google Scholar 

  30. Prodan, C. I., Monnon, M. & Ross, E. D. Behavioral abnormalities associated with rapid deterioration of language functions in semantic dementia respond to sertraline. J. Neurol. Neurosurg. Psychiatry 80, 1416–1417 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Anneser, J. M., Jox, R. J. & Borasio, G. D. Inappropriate sexual behavior in a case of ALS and FTD: successful treatment with sertraline. Amyotroph. Lateral Scler. 8, 189–190 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Ikeda, M. et al. Efficacy of fluvoxamine as a treatment for behavioral symptoms in frontotemporal lobar degeneration patients. Dement. Geriatr. Cogn. Disord. 17, 117–121 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Anderson, I. M., Scott, K. & Harborne, G. Serotonine and depression in frontal lobe dementia. Am. J. Psychiatry 152, 645 (1995).

    CAS  PubMed  Google Scholar 

  34. Panza, F. et al. Progresses in treating agitation: a major clinical challenge in Alzheimer’s disease. Expert Opin. Pharmacother. 16, 2581–2588 (2015).

    Article  PubMed  Google Scholar 

  35. Pijnenburg, Y. A. et al. Vulnerability to neuroleptic side effects in frontotemporal lobar degeneration. Int. J. Geriatr. Psychiatr. 18, 67–72 (2003).

    Article  CAS  Google Scholar 

  36. Curtis, R. C. & Resch, D. S. Case of Pick´s central lobar atrophy with apparent stabilization of cognitive decline after treatment with risperidone. J. Clin. Psychopharmacol. 20, 384–385 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Fellgiebel, A. et al. Clinical improvement in a case of frontotemporal dementia under aripiprazole treatment corresponds to partial recovery of disturbed frontal glucose metabolism. World J. Biol. Psychiatry 8, 123–126 (2007).

    Article  PubMed  Google Scholar 

  38. Moretti, R. et al. Olanzapine as a treatment of neuropsychiatric disorders of Alzheimer’s disease and other dementias: a 24-month follow-up of 68 patients. Am. J. Alzheimers Dis. Other Demen. 18, 205–214 (2003).

    Article  PubMed  Google Scholar 

  39. Jha, M. K. et al. A case of frontotemporal dementia presenting with treatment-refractory psychosis and extreme violence: Response to combination of clozapine, medroxyprogesterone, and sertraline. J. Clin. Psychopharmacol. 35, 732–733 (2015).

    Article  PubMed  Google Scholar 

  40. Riedl, L. et al. Frontotemporal lobar degeneration: current perspectives. Neuropsychiatr. Dis. Treat. 10, 297–310 (2014).

    PubMed  PubMed Central  Google Scholar 

  41. Hodges, J. R. et al. Clinicopathotogical correlates in frontotemporal dementia. Ann. Neurol. 56, 399–406 (2004).

    Article  PubMed  Google Scholar 

  42. Goldman, L. S. et al. Diagnosis and treatment of attention-deficit/hyperactivity disorder in children and adolescents, Council on Scientific Affairs, American Medical Association. JAMA 279, 1100–1107 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Huey, E. D. et al. Stimulant treatment of frontotemporal dementia in 8 patients. J. Clin. Psychiatry 69, 1981–1982 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rahman, S. et al. Methylphenidate (‘Ritalin’) can ameliorate abnormal risk-taking behavior in the frontal variant of frontotemporal dementia. Neuropsychopharmacology 31, 651–658 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Reed, D. A. et al. A clinical trial of bromocriptine for treatment of primary progressive aphasia. Ann. Neurol. 56, 750 (2004).

    Article  PubMed  Google Scholar 

  46. Adler, G., Teufel, M. & Drach, L. M. Pharmacological treatment of frontotemporal dementia: treatment response to the MAO-A inhibitor moclobemide. Int. J. Geriatr. Psychiatry 18, 653–655 (2003).

    Article  PubMed  Google Scholar 

  47. Moretti, R. et al. Effects of selegiline on fronto-temporal dementia: a neuropsychological evaluation. Int. J. Geriatr. Psychiatry 17, 391–392 (2002).

    Article  PubMed  Google Scholar 

  48. Jesso, S. et al. The effects of oxytocin on social cognition and behavior in frontotemporal dementia. Brain 134, 2493–2501 (2011).

    Article  PubMed  Google Scholar 

  49. Finger, E. C. et al. Oxytocin for frontotemporal dementia: a randomized dose-finding study of safety and tolerability. Neurology 84, 174–181 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Callegari, I. et al. Agomelatine improves apathy in frontotemporal dementia. Neurodegener. Dis. 16, 352–356 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Solfrizzi, V. et al. Nutritional interventions and cognitive-related outcomes in patients with late-life cognitive disorders: a systematic review. Neurosci. Biobehav. Rev. 95, 480–498 (2018).

    Article  PubMed  Google Scholar 

  52. Pardini, M. et al. Souvenaid reduces behavioral deficits and improves social cognition skills in frontotemporal dementia: a proof-of-concept study. Neurodegener. Dis. 15, 58–62 (2015).

    Article  PubMed  Google Scholar 

  53. Augustin, K. et al. Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet Neurol. 17, 84–93 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Nygaard, H. B. Pharmacokinetics and dynamics of a ketogenic intervention in Alzheimer’s disease and frontotemporal dementia. Alzheimers Dement. 13, p838 (2017).

    Article  Google Scholar 

  55. Rascovsky, K. et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134, 2456–2477 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Capozzo, R. et al. Clinical and genetic analyses of familial and sporadic frontotemporal dementia patients in Southern Italy. Alzheimers Dement. 13, 858–869 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gorno-Tempini, M. L. et al. Classification of primary progressive aphasia and its variants. Neurology 76, 1006–1014 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Höglinger, G. U. et al. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov. Disord. 32, 853–864 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Armstrong, M. J. et al. Criteria for the diagnosis of corticobasal degeneration. Neurology 80, 496–503 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Strong, M. J. et al. Amyotrophic lateral sclerosis - frontotemporal spectrum disorder (ALS-FTSD): revised diagnostic criteria. Amyotroph. Lateral Scler. Frontotemporal Degener. 18, 153–174 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Josephs, K. A. Frontotemporal dementia and related disorders: deciphering the enigma. Ann. Neurol. 64, 4–14 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Josephs, K. A. et al. Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathol. 122, 137–153 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hutton, M. et al. Association of missense and 5’-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393, 702–705 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Neumann, M. et al. A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain 132, 2922–2931 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kwiatkowski, T. J. Jr. et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323, 1205–1208 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Vance, C. et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323, 1208–1211 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Neumann, M. et al. FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations. Brain 134, 2595–2609 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Brelstaff, J. et al. Transportin1: a marker of FTLD-FUS. Acta Neuropathol. 122, 591–600 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Elahi, F. M. & Miller, B. L. A clinicopathological approach to the diagnosis of dementia. Nat. Rev. Neurol. 13, 457–476 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Rohrer, J. D. et al. Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration. Brain 134, 2565–2581 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Spillantini, M. G. & Goedert, M. Tau pathology and neurodegeneration. Lancet Neurol. 12, 609–622 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Perry, D. C. et al. Clinicopathological correlations in behavioural variant frontotemporal dementia. Brain 140, 3329–3345 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mailliot, C. et al. Phosphorylation of specific sets of tau isoforms explains different neurodegeneration processes. FEBS Lett. 433, 201–204 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Sergeant, N., Wattez, A. & Delacourte, A. Neurofibrillary degeneration in progressive supranuclear palsy and corticobasal degeneration: tau pathologies with exclusively “exon 10” isoforms. J. Neurochem. 72, 1243–1249 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Sergeant, N. et al. Different distribution of phosphorylated tau protein isoforms in Alzheimer’s and Pick’s diseases. FEBS Lett. 412, 578–582 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Togo, T. et al. Argyrophilic grain disease is a sporadic 4-repeat tauopathy. J. Neuropathol. Exp. Neurol. 61, 547–556 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Bigio, E. H. et al. Frontal lobe dementia with novel tauopathy: sporadic multiple system tauopathy with dementia. J. Neuropathol. Exp. Neurol. 60, 328–341 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Goedert, M. & Jakes, R. Mutations causing neurodegenerative tauopathies. Biochim. Biophys. Acta 1739, 240–250 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Ahmed, Z. et al. Globular glial tauopathies (GGT) presenting with motor neuron disease or frontotemporal dementia: an emerging group of 4-repeat tauopathies. Acta Neuropathol. 122, 415–428 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Irwin, D. J. et al. Frontotemporal lobar degeneration: defining phenotypic diversity through personalized medicine. Acta Neuropathol. 129, 469–491 (2015).

    Article  PubMed  Google Scholar 

  82. Neumann, M. & Mackenzie, I. R. Review: neuropathology of non-tau frontotemporal lobar degeneration. Neuropathol. Appl. Neurobiol. 45, 19–40 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Arai, T. et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 351, 602–611 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Mackenzie, I. R. et al. A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol. 122, 111–113 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Mackenzie, I. R. & Neumann, M. Reappraisal of TDP-43 pathology in FTLD-U subtypes. Acta Neuropathol. 134, 79–96 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Dobson-Stone, C. et al. C9ORF72 repeat expansion in clinical and neuropathologic frontotemporal dementia cohorts. Neurology 79, 995–1001 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Tang, W. et al. The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science 332, 478–484 (2001).

    Article  CAS  Google Scholar 

  88. Van Damme, P. et al. Progranulin functions as a neurotrophic factor to regulate neurite outgrowth and enhance neuronal survival. J. Cell Biol. 181, 37–41 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Neumann, M. et al. TDP-43 in the ubiquitin pathology of frontotemporal dementia with VCP gene mutations. J. Neuropathol. Exp. Neurol. 66, 152–157 (2007).

    Article  PubMed  Google Scholar 

  90. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9orf72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ash, P. E. et al. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77, 639–646 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gendron, T. F. et al. Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS. Acta Neuropathol. 126, 829–844 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mori, K. et al. Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins. Acta Neuropathol. 126, 881–893 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Mori, K. et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339, 1335–1338 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Zu, T. et al. RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proc. Natl Acad. Sci. USA 110, E4968–E4977 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Davidson, Y. S. et al. Brain distribution of dipeptide repeat proteins in frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72. Acta Neuropathol. Commun. 2, 70 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Mackenzie, I. R. et al. Quantitative analysis and clinico-pathological correlations of different dipeptide repeat protein pathologies in C9ORF72 mutation carriers. Acta Neuropathol. 130, 845–861 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Neumann, M. et al. Transportin 1 accumulates specifically with FET proteins but no other transportin cargos in FTLD-FUS and is absent in FUS inclusions in ALS with FUS mutations. Acta Neuropathol. 124, 705–716 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Mackenzie, I. R. et al. Atypical frontotemporal lobar degeneration with ubiquitin-positive, TDP-43-negative neuronal inclusions. Brain 131, 1282–1293 (2008).

    Article  PubMed  Google Scholar 

  100. Cairns, N. J. et al. Clinical and neuropathologic variation in neuronal intermediate filament inclusion disease. Neurology 63, 1376–1384 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Munoz, D. G. et al. FUS pathology in basophilic inclusion body disease. Acta Neuropathol. 118, 617–627 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Kusaka, H., Matsumoto, S. & Imai, T. An adult-onset case of sporadic motor neuron disease with basophilic inclusions. Acta Neuropathol. 80, 660–665 (1990).

    Article  CAS  PubMed  Google Scholar 

  103. Kawakami, I. et al. Chorea as a clinical feature of the basophilic inclusion body disease subtype of fused-in-sarcoma associated frontotemporal lobar degeneration. Acta Neuropathol. Commun. 4, 36 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Urwin, H. et al. FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration. Acta Neuropathol. 120, 33–41 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Skibinski, G. et al. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat. Genet. 37, 806–808 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. van der Zee, J. et al. CHMP2B C-truncating mutations in frontotemporal lobar degeneration are associated with an aberrant endosomal phenotype in vitro. Hum. Mol. Genet. 17, 313–322 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Isaacs, A. M. et al. Frontotemporal dementia caused by CHMP2B mutations. Curr. Alzheimer Res. 8, 246–251 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Knopman, D. S. et al. Dementia lacking distinctive histologic features: a common non- Alzheimer degenerative dementia. Neurology 40, 251–256 (1990).

    Article  CAS  PubMed  Google Scholar 

  109. Mackenzie, I. R. et al. Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol. 119, 1–4 (2010).

    Article  PubMed  Google Scholar 

  110. Goldman, J. S. et al. Comparison of family histories in FTLD subtypes and related tauopathies. Neurology 65, 1817–1819 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Rohrer, J. D. et al. The heritability and genetics of frontotemporal lobar degeneration. Neurology 73, 1451–1456 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wood, E. M. et al. Development and validation of pedigree classification criteria for frontotemporal lobar degeneration. JAMA Neurol. 70, 1411–1417 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Greaves, C. V. & Rohrer, J. D. An update on genetic frontotemporal dementia. J. Neurol. 266, 2075–2086 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Mackenzie, I. R. et al. The neuropathology of frontotemporal lobar degeneration caused by mutations in the progranulin gene. Brain 129, 3081–3090 (2006).

    Article  PubMed  Google Scholar 

  115. Masellis, M. et al. Novel splicing mutation in the progranulin gene causing familial corticobasal syndrome. Brain 129, 3115–3123 (2006).

    Article  PubMed  Google Scholar 

  116. Moreno, F. et al. “Frontotemporoparietal” dementia: clinical phenotype associated with the c.709–1G>A PGRN mutation. Neurology 73, 1367–1374 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Ghetti, B., Hutton, M. & Wszolek, Z. Neurodegeneration: the molecular pathology of dementia and movement disorders (ed. Dickson, D.) 86–102 (ISN Neuropath Press, 2003).

  118. Pickering-Brown, S. M. et al. Inherited frontotemporal dementia in nine British families associated with intronic mutations in the tau gene. Brain 125, 732–751 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Watts, G. D. et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat. Genet. 36, 377–381 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Benajiba, L. et al. TARDBP mutations in motoneuron disease with frontotemporal lobar degeneration. Ann. Neurol. 65, 470–473 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Yan, J. et al. Frameshift and novel mutations in FUS in familial amyotrophic lateral sclerosis and ALS/dementia. Neurology 75, 807–814 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Synofzik, M. et al. Screening in ALS and FTD patients reveals 3 novel UBQLN2 mutations outside the PXX domain and a pure FTD phenotype. Neurobiol. Aging 33, 2949.e13-7 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Le Ber, I. et al. SQSTM1 mutations in French patients with frontotemporal dementia or frontotemporal dementia with amyotrophic lateral sclerosis. JAMA Neurol. 70, 1403–1410 (2013).

    PubMed  PubMed Central  Google Scholar 

  124. Bannwarth, S. et al. A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain 137, 2329–2345 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Pottier, C. et al. Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease. Acta Neuropathol. 130, 77–92 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Williams, K. L. et al. CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia. Nat. Commun. 15, 11253 (2016).

    Article  CAS  Google Scholar 

  127. Mackenzie, I. R. et al. TIA1 Mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics. Neuron 95, 808–816 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lattante, S., Rouleau, G. A. & Kabashi, E. TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: summary and update. Hum. Mutat. 34, 812–826 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. de Majo, M. et al. ALS-associated missense and nonsense TBK1 mutations can both cause loss of kinase function. Neurobiol. Aging 71, 266.e1–266.e10 (2018).

    Article  CAS  Google Scholar 

  130. Irwin, D. J. Tauopathies as clinicopathological entities. Parkinsonism Relat. Disord. 22, S29–S33 (2016).

    Article  PubMed  Google Scholar 

  131. Oeckl, P., Steinacker, P., Feneberg, E. & Otto, M. Neurochemical biomarkers in the diagnosis of frontotemporal lobar degeneration: an update. J. Neurochem. 138 (Suppl. 1), 184–192 (2016).

    Article  CAS  PubMed  Google Scholar 

  132. Liu, M. N., Lau, C. I. & Lin, C. P. Precision Medicine for frontotemporal dementia. Front. Psychiatry 10, 75 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Hedl, T. J. et al. Proteomics approaches for biomarker and drug target discovery in ALS and FTD. Front. Neurosci. 13, 548 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Jack, C. R. Jr. et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 14, 535–562 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Boxer, A. L. et al. The advantages of frontotemporal degeneration drug development (part 2 of frontotemporal degeneration: the next therapeutic frontier). Alzheimers Dement. 9, 189–198 (2013).

    Article  PubMed  Google Scholar 

  136. Tang, W. et al. Assessment of CSF Ab42 as an aid to discriminating Alzheimer’s disease from other dementias and mild cognitive impairment: a meta-analysis of 50 studies. J. Neurol. Sci. 345, 26–36 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. van Harten, A. C. et al. Tau and p-tau as CSF biomarkers in dementia: a meta-analysis. Clin. Chem. Lab. Med. 49, 353–366 (2011).

    PubMed  Google Scholar 

  138. Tang, W. et al. Does CSF p-tau181 help to discriminate Alzheimer’s disease from other dementias and mild cognitive impairment? A meta-analysis of the literature. J. Neural. Transm. 121, 1541–1553 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Skillbäck, T. et al. Cerebrospinal fluid tau and amyloid-β1-42 in patients with dementia. Brain 138, 2716–2731 (2015).

    Article  PubMed  Google Scholar 

  140. Baldeiras, I. et al. Cerebrospinal fluid Ab40 is similarly reduced in patients with Frontotemporal lobar degeneration and Alzheimer’s disease. J. Neurol. Sci. 358, 308–316 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Struyfs, H. et al. Cerebrospinal fluid P-Tau181P: biomarker for improved differential dementia diagnosis. Front. Neurol. 6, 138 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  142. de Jong, D. et al. CSF neurofilament proteins in the differential diagnosis of dementia. J. Neurol. Neurosurg. Psychiatry 78, 936–938 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Zerr, I. et al. Cerebrospinal fluid neurofilament light levels in neurodegenerative dementia: Evaluation of diagnostic accuracy in the differential diagnosis of prion diseases. Alzheimers Dement. 14, 751–763 (2018).

    Article  PubMed  Google Scholar 

  144. Herbert, M. K. CSF neurofilament light chain but not FLT3 ligand discriminates Parkinsonian disorders. Front. Neurol. 6, 91 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Magdalinou, N. K. et al. A panel of nine cerebrospinal fluid biomarkers may identify patients with atypical parkinsonian syndromes. J. Neurol. Neurosurg. Psychiatry 86, 1240–1247 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Hu, W. T. et al. Reduced CSF p-Tau181 to Tau ratio is a biomarker for FTLD-TDP. Neurol. 81, 1945–1952 (2013).

    Article  CAS  Google Scholar 

  147. Kortvelyessy, P. et al. CSF biomarkers of neurodegeneration in progressive non-fluent aphasia and other forms of frontotemporal dementia: clues for pathomechanisms? Front. Neurol. 9, 504 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Meeter, L. H. H. et al. Clinical value of neurofilament and phospho-tau/tau ratio in the frontotemporal dementia spectrum. Neurology 90, e1231–e1239 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Foiani, M. S. et al. Plasma tau is increased in frontotemporal dementia. J. Neurol. Neurosurg. Psychiatry 89, 804–807 (2018).

    Article  PubMed  Google Scholar 

  150. Janssens, J. & Van Broeckhoven, C. Pathological mechanisms underlying TDP-43 driven neurodegeneration in FTLD-ALS spectrum disorders. Hum. Mol. Genet. 22, R77–R87 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Borroni, B. et al. Csf p-tau181/tau ratio as biomarker for TDP pathology in frontotemporal dementia. Amyotroph. Lateral Scler. Frontotemporal Degener. 16, 86–91 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Ghidoni, R. et al. Low plasma progranulin levels predict progranulin mutations in frontotemporal lobar degeneration. Neurology 14, 1235–1239 (2008).

    Article  CAS  Google Scholar 

  153. Finch, N. et al. Plasma progranulin levels predict progranulin mutation status in frontotemporal dementia patients and asymptomatic family members. Brain 132, 583–591 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Bruun, M. et al. Detecting frontotemporal dementia syndromes using MRI biomarkers. Neuroimage Clin. 22, 101711 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. D’Alton, S. & Lewis, J. Therapeutic and diagnostic challenges for frontotemporal dementia. Front. Aging Neurosci. 6, 204 (2014).

    PubMed  PubMed Central  Google Scholar 

  156. De Conti, L., Borroni, B. & Baralle, M. New routes in frontotemporal dementia drug discovery. Expert Opin. Drug Discov. 12, 659–671 (2017).

    Article  CAS  PubMed  Google Scholar 

  157. Panza, F. et al. Disease-modifying therapies for tauopathies: agents in the pipeline. Expert Rev. Neurother. 19, 397–408 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Drechsel, D. N. et al. Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol. Biol. Cell 3, 1141–1154 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Goedert, M. et al. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3, 519–526 (1989).

    Article  CAS  PubMed  Google Scholar 

  160. Andreadis, A., Brown, W. M. & Kosik, K. S. Structure and novel exons of the human tau gene. Biochemistry 3, 10626–10633 (1992).

    Article  Google Scholar 

  161. Uversky, V. N. What does it mean to be natively unfolded? Eur. J. Biochem. 269, 2–12 (2002).

    Article  CAS  PubMed  Google Scholar 

  162. Jeganathan, S. et al. The natively unfolded character of tau and its aggregation to Alzheimer-like paired helical filaments. Biochemistry 47, 10526–10539 (2008).

    Article  CAS  PubMed  Google Scholar 

  163. Lindwall, G. & Cole, R. D. Phosphorylation affects the ability of tau protein to promote microtubule assembly. J. Biol. Chem. 259, 5301–5305 (1984).

    CAS  PubMed  Google Scholar 

  164. Holmes, B. B. & Diamond, M. I. Prion-like properties of Tau protein: the importance of extracellular Tau as a therapeutic target. J. Biol. Chem. 18, 19855–19861 (2014).

    Article  CAS  Google Scholar 

  165. Rohrer, J. D. & Warren, J. D. Phenotypic signatures of genetic frontotemporal dementia. Curr. Opin. Neurol. 24, 542–549 (2011).

    Article  PubMed  Google Scholar 

  166. Papazacharias, A. et al. Bipolar disorder and frontotemporal dementia: an intriguing association. J. Alzheimers Dis. 55, 973–979 (2017).

    Article  PubMed  Google Scholar 

  167. Hong, M. et al. Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3. J. Biol. Chem. 272, 25326–25332 (1997).

    Article  CAS  PubMed  Google Scholar 

  168. Noble, W. et al. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc. Natl Acad. Sci. USA 102, 6990–6995 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Engel, T. et al. Chronic lithium administration to FTDP-17 tau and GSK-3β overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. J. Neurochem. 99, 1445–1555 (2006).

    Article  CAS  PubMed  Google Scholar 

  170. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT00703677 (2015).

  171. Höglinger, G. U. et al. Tideglusib reduces progression of brain atrophy in progressive supranuclear palsy in a randomized trial. Mov. Disord. 29, 479–487 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. Tolosa, E. et al. A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Mov. Disord. 29, 470–478 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Wischik, C. M. et al. Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc. Natl Acad. Sci. USA 93, 11213–11218 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Seripa, D. et al. Tau-directed approaches for the treatment of Alzheimer’s disease: focus on leuco-methylthioninium. Expert Rev. Neurother. 16, 259–277 (2016).

    Article  CAS  PubMed  Google Scholar 

  175. Gauthier, S. et al. Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial. Lancet 388, 2873–2884 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. TauRx Pharmaceuticals, Press Release at the 10th International Conference on Frontotemporal Dementias, Munich, August 31–September 2 https://taurx.com/trx-237-007-phase-3-clinical-trial-update.pdf (2016).

  177. Min, S. W. et al. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat. Med. 21, 1154–1162 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02422485 (2018).

  179. Paholikova, K. et al. N-terminal truncation of microtubule associated protein tau dysregulates its cellular localization. J. Alzheimers Dis. 43, 915–926 (2015).

    Article  CAS  PubMed  Google Scholar 

  180. Kontsekova, E. et al. First-in-man tau vaccine targeting structural determinants essential for pathological tau-tau interaction reduces tau oligomerisation and neurofibrillary degeneration in an Alzheimer’s disease model. Alzheimers Res. Ther. 6, 44 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Novak, P. et al. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol. 16, 123–134 (2017).

    Article  CAS  PubMed  Google Scholar 

  182. Panza, F. & Logroscino, G. Anti-tau vaccine in Alzheimer’s disease: a tentative step. Lancet Neurol. 16, 99–100 (2017).

    Article  PubMed  Google Scholar 

  183. Novak, P. et al. FUNDAMANT: an interventional 72-week phase 1 follow-up study of AADvac1, an active immunotherapy against tau protein pathology in Alzheimer’s disease. Alzheimers Res. Ther. 10, 108 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. AXON Neuroscience SE. Axon Announces Positive Results From Phase II ADAMANT Trial for AADvac1 in Alzheimer’s Disease. CISION PR Newswire https://www.prnewswire.com/news-releases/axon-announces-positive-results-from-phase-ii-adamant-trial-for-aadvac1-in-alzheimers-disease-300914509.html (2019).

  185. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03174886 (2019).

  186. Dai, C. L. et al. Passive immunization targeting the N-terminal projection domain of tau decreases tau pathology and improves cognition in a transgenic mouse model of Alzheimer disease and tauopathies. J. Neural. Transm. 122, 607–617 (2015).

    Article  CAS  PubMed  Google Scholar 

  187. Panza, F. et al. Tau-based therapeutics for Alzheimer’s disease: active and passive immunotherapy. Immunotherapy 8, 1119–1134 (2016).

    Article  CAS  PubMed  Google Scholar 

  188. Bright, J. et al. Human secreted tau increases amyloid-β production. Neurobiol. Aging 36, 693–709 (2015).

    Article  CAS  PubMed  Google Scholar 

  189. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02294851 (2017).

  190. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02460094 (2018).

  191. Boxer, A. L. et al. Safety of the tau-directed monoclonal antibody BIIB092 in progressive supranuclear palsy: a randomised, placebo-controlled, multiple ascending dose phase 1b trial. Lancet Neurol. 18, 549–558 (2019).

    Article  CAS  PubMed  Google Scholar 

  192. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03068468 (2019).

  193. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03658135 (2019).

  194. Gosuranemab, Biogen’s Anti-Tau Immunotherapy, Does not fly for PSP. ALZFORUM https://www.alzforum.org/news/research-news/gosuranemab-biogens-anti-tau-immunotherapy-does-not-fly-psp (2019).

  195. Braak, H. & Del Tredici, K. Alzheimer’s pathogenesis: is there neuron-to-neuron propagation? Acta Neuropathol. 121, 589–595 (2011).

    Article  CAS  PubMed  Google Scholar 

  196. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02494024 (2017).

  197. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03413319 (2019).

  198. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02985879 (2020).

  199. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03391765 (2019).

  200. Carroll, J. AbbVie scraps an anti-tau study, and that may foretell more big trouble for a beleaguered Biogen. ENDPOINTS NEWS. https://endpts.com/abbvie-scraps-an-anti-tau-study-and-that-may-foretell-more-big-trouble-for-a-beleaguered-biogen/ (2019).

  201. To Block Tau’s Proteopathic Spread, Antibody Must Attack its Mid-Region. ALZFORUM. https://www.alzforum.org/news/conference-coverage/block-taus-proteopathic-spread-antibody-must-attack-its-mid-region (2018).

  202. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03464227 (2018).

  203. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04185415 (2020).

  204. Jarskog, L. F. et al. Effects of davunetide on N-acetylaspartate and choline in dorsolateral prefrontal cortex in patients with schizophrenia. Neuropsychopharmacology 38, 1245–1252 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Javitt, D. C. et al. Effect of the neuroprotective peptide davunetide (AL-108) on cognition and functional capacity in schizophrenia. Schizophr. Res. 136, 25–31 (2012).

    Article  PubMed  Google Scholar 

  206. Vulih-Shultzman, I. et al. Activity-dependent neuroprotective protein snippet NAP reduces tau hyperphosphorylation and enhances learning in a novel transgenic mouse model. J. Pharmacol. Exp. Ther. 323, 438–449 (2007).

    Article  CAS  PubMed  Google Scholar 

  207. Matsuoka, Y. et al. A neuronal microtubule-interacting agent, NAPVSIPQ, reduces tau pathology and enhances cognitive function in a mouse model of Alzheimer’s disease. J. Pharmacol. Exp. Ther. 325, 146–153 (2008).

    Article  CAS  PubMed  Google Scholar 

  208. Jouroukhin, Y. et al. NAP (davunetide) modifies disease progression in a mouse model of severe neurodegeneration: protection against impairments in axonal transport. Neurobiol. Dis. 56, 79–94 (2013).

    Article  CAS  PubMed  Google Scholar 

  209. Morimoto, B. H. et al. A double-blind, placebo-controlled, ascending-dose, randomized study to evaluate the safety, tolerability and effects on cognition of AL-108 after 12 weeks of intranasal administration in subjects with mild cognitive impairment. Dement. Geriatr. Cogn. Disord. 35, 325–326 (2013).

    Article  CAS  PubMed  Google Scholar 

  210. Boxer, A. L. et al. Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurol. 13, 676–685 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01056965 (2019).

  212. Tsai, R. M. et al. Reactions to multiple ascending doses of the microtubule stabilizer TPI-287 in patients with Alzheimer disease, progressive supranuclear palsy, and corticobasal syndrome: a randomized clinical trial. JAMA Neurol. 77, 215–224 (2020).

    Article  PubMed  Google Scholar 

  213. Sud, R., Geller, E. T. & Schellenberg, G. D. Antisense-mediated exon skipping decreases tau protein expression: a potential therapy for tauopathies. Mol. Ther. Nucleic Acids 3, e180 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Kalbfuss, B., Mabon, S. A. & Misteli, T. Correction of alternative splicing of tau in frontotemporal dementia and parkinsonism linked to chromosome 17. J. Biol. Chem. 276, 42986–42993 (2001).

    Article  CAS  PubMed  Google Scholar 

  215. DeVos, S. L. et al. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci. Transl. Med. 9, eaag0481 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03186989 (2020).

  217. Wang, Y. & Mandelkow, E. Degradation of tau protein by autophagy and proteasomal pathways. Biochem. Soc. Trans. 40, 644–652 (2012).

    Article  CAS  PubMed  Google Scholar 

  218. Khanna, M. R. et al. Therapeutic strategies for the treatment of tauopathies: hopes and challenges. Alzheimers Dement. 12, 1051–1065 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Luo, W. et al. Roles of heat-shock protein 90 in maintaining and facilitating the neurodegenerative phenotype in tauopathies. Proc. Natl Acad. Sci. USA 104, 9511–9516 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Karagoz, G. E. et al. Hsp90-Tau complex reveals molecular basis for specificity in chaperone action. Cell 156, 963–974 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Soga, S., Akinaga, S. & Shiotsu, Y. Hsp90 inhibitors as anti-cancer agents, from basic discoveries to clinical development. Curr. Pharm. Des. 19, 366–376 (2013).

    Article  CAS  PubMed  Google Scholar 

  222. Dickey, C. A. et al. HSP induction mediates selective clearance of tau phosphorylated at proline-directed Ser/Thr sites but not KXGS (MARK) sites. FASEB J. 20, 753–755 (2006).

    Article  CAS  PubMed  Google Scholar 

  223. Kamal, A., Boehm, M. F. & Burrows, F. J. Therapeutic and diagnostic implications of Hsp90 activation. Trends Mol. Med. 10, 283–290 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Bence, N. F., Sampat, R. M. & Kopito, R. R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555 (2001).

    Article  CAS  PubMed  Google Scholar 

  225. Ozcelik, S. et al. Rapamycin attenuates the progression of tau pathology in P301S tau transgenic mice. PLoS One 8, e62459 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Siman, R., Cocca, R. & Dong, Y. The mTOR inhibitor rapamycin mitigates perforant pathway neurodegeneration and synapse loss in a mouse model of early-stage Alzheimer-type tauopathy. PLoS One 10, e0142340 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Orr, M. E., Sullivan, A. C. & Frost, B. A brief overview of tauopathy: causes, consequences, and therapeutic strategies. Trends Pharmacol. Sci. 38, 637–648 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Liu, F. et al. O-GlcNAcylation regulates phosphorylation of tau: A mechanism involved in Alzheimer’s disease. Proc. Natl Acad. Sci. USA 101, 10804–10809 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Liu, F. et al. Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer’s disease. Brain 132, 1820–1832 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Borghgraef, P. et al. Increasing brain protein O-GlcNAc-ylation mitigates breathing defects and mortality of Tau.P301L mice. PLoS One 8, e84442 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Hastings, N. B. et al. Inhibition of O-GlcNAcase leads to elevation of OGlcNAc tau and reduction of tauopathy and cerebrospinal fluid tau in rTg4510 mice. Mol. Neurodegener. 12, 39 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Pooler, A. M. et al. Propagation of tau pathology in Alzheimer’s disease: identification of novel therapeutic targets. Alzheimers Res. Ther. 5, 1–8 (2013).

    Article  CAS  Google Scholar 

  233. Borroni, B. et al. Anti-AMPA GluA3 antibodies in frontotemporal dementia: a new molecular target. Sci. Rep. 7, 6723 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Alberici, A. et al. Autoimmunity and frontotemporal dementia. Curr. Alzheimer Res. 15, 602–609 (2018).

    Article  CAS  PubMed  Google Scholar 

  235. Benussi, A. et al. Toward a glutamate hypothesis of frontotemporal dementia. Front. Neurosci. 13, 304 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Zheng, Y. et al. C-terminus of progranulin interacts with the beta-propeller region of sortilin to regulate progranulin trafficking. PLoS One 6, e21023 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Nonaka, T. et al. Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep. 4, 124–134 (2013).

    Article  CAS  PubMed  Google Scholar 

  238. Kraemer, B. C. et al. Loss of murine TDP-43 disrupts motor function and plays an essential role in embryogenesis. Acta Neuropathol. 119, 409–419 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Yamashita, M. et al. Methylene blue and dimebon inhibit aggregation of TDP-43 in cellular models. FEBS Lett. 583, 2419–2424 (2009).

    Article  CAS  PubMed  Google Scholar 

  240. Boyd, J. D. et al. A high-content screen identifies novel compounds that inhibit stress-induced TDP-43 cellular aggregation and associated cytotoxicity. J. Biomol. Screen. 19, 44–56 (2014).

    Article  CAS  PubMed  Google Scholar 

  241. Capell, A. et al. Rescue of progranulin deficiency associated with frontotemporal lobar degeneration by alkalizing reagents and inhibition of vacuolar ATPase. J. Neurosci. 31, 1885–1894 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Alberici, A. et al. Results from a pilot study on amiodarone administration in monogenic frontotemporal dementia with granulin mutation. Neurol. Sci. 35, 1215–1219 (2014).

    Article  CAS  PubMed  Google Scholar 

  243. Cenik, B. et al. Suberoylanilide hydroxamic acid (vorinostat) up-regulates progranulin transcription: rational therapeutic approach to frontotemporal dementia. J. Biol. Chem. 286, 16101–16108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Patzke, H. et al. Development of the novel histone deacetylase inhibitor EVP-0334 for CNS indications [Poster 831.21/I12]. 38th Annual Meeting for the Society of Neuroscience https://www.abstractsonline.com/plan/ViewAbstract.aspx?mID=1981&sKey=7608b1d6-24c8-4a0d-85e8-68357f77ef82&cKey=b58f0420-5bde-407b-afe3-948d274e708b&mKey=afea068d-d012-4520-8e42-10e4d1af7944 (2008).

  245. Leventhal, L. et al. The histone deacetylase inhibitor EVP-0334 is pro-cognitive in mice [Poster 831.20/I11]. 38th Annual Meeting for the Society of Neuroscience https://www.abstractsonline.com/plan/ViewAbstract.aspx?mID=1981&sKey=7608b1d6-24c8-4a0d-85e8-68357f77ef82&cKey=4256d6f9-3c58-4903-83ed-8d46d22972dd&mKey=afea068d-d012-4520-8e42-10e4d1af7944 (2008).

  246. Patzke, H. et al. The novel histone deacetylase inhibitor EVP-0334 is pro-cognitive in rats [Poster 886.4/FF106]. 39th Annual Meeting for the Society of Neuroscience https://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=74e6ee34-69bf-41db-a73b-fdf5d47df43e&cKey=cfc48c84-c049-4c83-930b-2343b96acb62&mKey=081f7976-e4cd-4f3d-a0af-e8387992a658 (2009).

  247. De Muynck, L. & Van Damme, P. In Frontiers in Clinical Drug Research – Alzheimer Disorders (ed. Atta-ur-Rahman) 231–291 (Bentham Books, 2015).

  248. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02149160 (2016).

  249. Sha, S. J. et al. An 8-week, open-label, dose-finding study of nimodipine for the treatment of progranulin insufficiency from GRN gene mutations. Alzheimers Dement. 3, 507–512 (2017).

    Google Scholar 

  250. Galimberti, D., Fenoglio, C. & Scarpini, E. Progranulin as a therapeutic target for dementia. Expert Opin. Ther. Targets 22, 579–585 (2018).

    Article  CAS  PubMed  Google Scholar 

  251. Hu, F. et al. Sortilin-mediated endocytosis determines levels of the frontotemporal dementia protein, progranulin. Neuron 68, 654–667 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Lee, W. C. et al. Targeted manipulation of the sortilin-progranulin axis rescues progranulin haploinsufficiency. Hum. Mol. Genet. 23, 1467–1478 (2014).

    Article  CAS  PubMed  Google Scholar 

  253. Alector Announces Data from On-going Phase 1b Trial Demonstrating that AL001 Reverses Progranulin Deficiency in Frontotemporal Dementia Patients. BioSpace https://www.biospace.com/article/-alector-announces-data-from-on-going-phase-1b-trial-demonstrating-that-al001-reverses-progranulin-deficiency-in-frontotemporal-dementia-patients/ (2019).

  254. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03987295 (2019).

  255. Bright, F. et al. Neuroinflammation in frontotemporal dementia. Nat. Rev. Neurol. 15, 540–555 (2019).

    Article  PubMed  Google Scholar 

  256. Tang, W. et al. The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science 332, 478–484 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Holler, C. J. et al. Trehalose upregulates progranulin expression in human and mouse models of GRN haploinsufficiency: a novel therapeutic lead to treat frontotemporal dementia. Mol. Neurodegener. 11, 46 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Minami, S. S. et al. Reducing inflammation and rescuing FTD-related behavioral deficits in progranulin-deficient mice with α7 nicotinic acetylcholine receptor agonists. Biochem. Pharmacol. 97, 454–462 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Prevail Therapeutics Announces FDA Orphan Drug Designation Granted to PR006 for the Treatment of Patients with Frontotemporal Dementia with a GRN Mutation. BioSpace https://www.biospace.com/article/releases/prevail-therapeutics-announces-fda-orphan-drug-designation-granted-to-pr006-for-the-treatment-of-patients-with-frontotemporal-dementia-with-a-grn-mutation/ (2019).

  260. Van Der Zee, J. et al. A pan-European study of the C9orf72 repeat associated with FTLD: geographic prevalence, genomic instability, and intermediate repeats. Hum. Mutat. 34, 363–373 (2013).

    Article  CAS  PubMed  Google Scholar 

  261. Kramer, N. J. et al. Spt4 selectively regulates the expression of C9orf72 sense and antisense mutant transcripts. Science 353, 708–712 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Donnelly, C. J. et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80, 415–428 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Sareen, D. et al. Targeting RNA foci in iPSC derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci. Transl Med. 5, 208ra149 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Lagier-Tourenne, C. et al. Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proc. Natl Acad. Sci. USA 19, E4530–E4539 (2013).

    Article  CAS  Google Scholar 

  265. Hu, J. et al. Engineering duplex RNAs for challenging targets: recognition of GGGGCC/CCCCGG repeats at the ALS/FTD C9orf72 locus. Chem. Biol. 22, 1505–1511 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Martier, R. et al. Targeting RNA-mediated toxicity in C9orf72 ALS and/or FTD by RNAi-based gene therapy. Mol. Ther. Nucleic Acids 16, 26–37 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Kapeli, K. et al. Distinct and shared functions of ALS-associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses. Nat. Commun. 7, 12143 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Fujii, S. et al. Treatment with a global methyltransferase inhibitor induces the intranuclear aggregation of ALS-linked FUS mutant in vitro. Neurochem. Res. 41, 826–835 (2016).

    Article  CAS  PubMed  Google Scholar 

  269. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02372773 (2019).

  270. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02365922 (2019).

  271. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02590276 (2016).

  272. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02327845 (2019).

  273. Desmarais, P. et al. Therapeutic trial design for frontotemporal dementia and related disorders. J. Neurol. Neurosurg. Psychiatry 90, 412–442 (2019).

    Article  PubMed  Google Scholar 

  274. Semler, E. et al. A language-based sum score for the course and therapeutic intervention in primary progressive aphasia. Alzheimers Res. Ther. 10, 41 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Staffaroni, A. M. et al. Longitudinal multimodal imaging and clinical endpoints for frontotemporal dementia clinical trials. Brain 142, 443–459 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  276. Ljubenkov, P. A. et al. Cerebrospinal fluid biomarkers predict frontotemporal dementia trajectory. Ann. Clin. Transl Neurol. 5, 1250–1263 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Modrego, P. & Lobo, A. A good marker does not mean a good target for clinical trials in Alzheimer’s disease: the amyloid hypothesis questioned. Neurodegener. Dis. Manag. 9, 119–121 (2019).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

F.P., M.L., D.S., A.D. and B.P.I. researched data for the manuscript. F.P., M.L., M.W. and B.P.I. wrote the manuscript. F.P., M.L., G.G. and B.P.I. contributed substantially to discussions of the article content and review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Francesco Panza.

Ethics declarations

Competing interests

B.P.I. is an employee at Chiesi Farmaceutici and has developed and is co-inventor of patents on anti-Alzheimer disease drugs; he does not hold stock options. All other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neurology thanks D. Galimberti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related link

The Genetic Frontotemporal Dementia Initiative: http://genfi.org.uk/

Glossary

O-GlcNAcylation

A post-translational modification that involves the addition of a single N-acetyl-glucosamine residue (GlcNAc) to specific serine or threonine residues in proteins.

Taxane diterpenoid

A class of diterpenes, some of which are widely used as chemotherapy agents.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panza, F., Lozupone, M., Seripa, D. et al. Development of disease-modifying drugs for frontotemporal dementia spectrum disorders. Nat Rev Neurol 16, 213–228 (2020). https://doi.org/10.1038/s41582-020-0330-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-020-0330-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing