Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Technology of deep brain stimulation: current status and future directions

Abstract

Deep brain stimulation (DBS) is a neurosurgical procedure that allows targeted circuit-based neuromodulation. DBS is a standard of care in Parkinson disease, essential tremor and dystonia, and is also under active investigation for other conditions linked to pathological circuitry, including major depressive disorder and Alzheimer disease. Modern DBS systems, borrowed from the cardiac field, consist of an intracranial electrode, an extension wire and a pulse generator, and have evolved slowly over the past two decades. Advances in engineering and imaging along with an improved understanding of brain disorders are poised to reshape how DBS is viewed and delivered to patients. Breakthroughs in electrode and battery designs, stimulation paradigms, closed-loop and on-demand stimulation, and sensing technologies are expected to enhance the efficacy and tolerability of DBS. In this Review, we provide a comprehensive overview of the technical development of DBS, from its origins to its future. Understanding the evolution of DBS technology helps put the currently available systems in perspective and allows us to predict the next major technological advances and hurdles in the field.

Key points

  • Deep brain stimulation (DBS) is a neurosurgical procedure that allows targeted circuit-based neuromodulation and is commonly used for the treatment of movement disorders such as Parkinson disease, tremor and dystonia.

  • Innovations in the field of cardiac pacemakers have enabled pulse generators for DBS to evolve from external devices to small rechargeable, implantable devices.

  • With directional DBS leads, the current can be directed or shaped to personalize stimulation to individual anatomical structures.

  • Closed-loop DBS systems simultaneously record and stimulate neural activity, allowing the stimulation to be adjusted according to disease-specific neural biomarkers.

  • Open-access software can be used to localize DBS electrodes and, on the basis of the stimulation parameters, to model the volume of tissue activated around the electrodes, shedding light on key neurocircuitry elements.

  • As DBS systems become compatible with wireless networks, remote programming by physicians will become possible but privacy issues will also need to be addressed to prevent misuse, including ‘brainjacking’.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of technology development for DBS.
Fig. 2: DBS electrode configurations.
Fig. 3: Stimulation waveform shapes and temporal stimulation patterns.
Fig. 4: Adaptive DBS in Parkinson disease.
Fig. 5: DBS neuroimaging.
Fig. 6: Future visions for DBS.

Similar content being viewed by others

References

  1. Lozano, A. M. et al. Deep brain stimulation: current challenges and future directions. Nat. Rev. Neurol. 15, 148–160 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fasano, A., Aquino, C. C., Krauss, J. K., Honey, C. R. & Bloem, B. R. Axial disability and deep brain stimulation in patients with Parkinson disease. Nat. Rev. Neurol. 11, 98–110 (2015).

    Article  PubMed  Google Scholar 

  3. Moro, E. et al. Efficacy of pallidal stimulation in isolated dystonia: a systematic review and meta-analysis. Eur. J. Neurol. 24, 552–560 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Limousin, P. & Foltynie, T. Long-term outcomes of deep brain stimulation in Parkinson disease. Nat. Rev. Neurol. 15, 234–242 (2019).

    Article  PubMed  Google Scholar 

  5. Fontaine, D., Vandersteen, C., Magis, D. & Lanteri-Minet, M. Neuromodulation in cluster headache. Adv. Tech. Stand. Neurosurg. 42, 3–21 (2015).

    Article  PubMed  Google Scholar 

  6. Pereira, E. A. & Aziz, T. Z. Neuropathic pain and deep brain stimulation. Neurotherapeutics 11, 496–507 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee, D. J., Lozano, C. S., Dallapiazza, R. F. & Lozano, A. M. Current and future directions of deep brain stimulation for neurological and psychiatric disorders. J. Neurosurg. 131, 333–342 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Mallet, L. et al. Subthalamic nucleus stimulation in severe obsessive-compulsive disorder. N. Engl. J. Med. 359, 2121–2134 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Harmsen, I. E. et al. Clinical trials for deep brain stimulation: current state of affairs. Brain Stimul. 13, 378–385 (2020).

    Article  PubMed  Google Scholar 

  10. Deeb, W. et al. Proceedings of the Fourth Annual Deep Brain Stimulation Think Tank: a review of emerging issues and technologies. Front. Integr. Neurosci. 10, 38 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cagnan, H., Denison, T., McIntyre, C. & Brown, P. Emerging technologies for improved deep brain stimulation. Nat. Biotechnol. 37, 1024–1033 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ramirez-Zamora, A. et al. Proceedings of the Sixth Deep Brain Stimulation Think Tank modulation of brain networks and application of advanced neuroimaging, neurophysiology, and optogenetics. Front. Neurosci. 13, 936 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kellmeyer, P. et al. The Effects of closed-loop medical devices on the autonomy and accountability of persons and systems. Camb. Q. Healthc. Ethics 25, 623–633 (2016).

    Article  PubMed  Google Scholar 

  14. Pycroft, L. et al. Brainjacking: implant security issues in invasive neuromodulation. World Neurosurg. 92, 454–462 (2016).

    Article  PubMed  Google Scholar 

  15. Coffey, R. J. Deep brain stimulation devices: a brief technical history and review. Artif. Organs 33, 208–220 (2009).

    Article  PubMed  Google Scholar 

  16. Pool, J. L. Psychosurgery in older people. J. Am. Geriatr. Soc. 2, 456–466 (1954).

    Article  CAS  PubMed  Google Scholar 

  17. Delgado, J. M. et al. Intracerebral radio stimulation and recording in completely free patients. J. Nerv. Ment. Dis. 147, 329–340 (1968).

    Article  CAS  PubMed  Google Scholar 

  18. Delgado, J. M., Obrador, S. & Martin-Rodriguez, J. G. in Surgical Approaches in Psychiatry (eds Laitinen, L. & Livingston, K. E.) 215–223 (Medical and Technical Publishing, 1973).

  19. Heath, R. G. Electrical self-stimulation of the brain in man. Am. J. Psychiatry 120, 571–577 (1963).

    Article  CAS  PubMed  Google Scholar 

  20. Heath, R. G. Modulation of emotion with a brain pacemamer. Treatment for intractable psychiatric illness. J. Nerv. Ment. Dis. 165, 300–317 (1977).

    Article  CAS  PubMed  Google Scholar 

  21. Bickford, R. G., Petersen, M. C., Dodge, H. W. Jr. & Sem-Jacobsen, C. W. Observations on depth stimulation of the human brain through implanted electrographic leads. Proc. Staff. Meet. Mayo Clin. 28, 181–187 (1953).

    CAS  PubMed  Google Scholar 

  22. Sem-Jacobsen, C. W. Depth-electrographic observations related to Parkinson’s disease. Recording and electrical stimulation in the area around the third ventricle. J. Neurosurg. 24 (Suppl. 1), 388–402 (1966).

    Google Scholar 

  23. Bechtereva, N. P., Bondartchuk, A. N., Smirnov, V. M., Meliutcheva, L. A. & Shandurina, A. N. Method of electrostimulation of the deep brain structures in treatment of some chronic diseases. Confin. Neurol. 37, 136–140 (1975).

    Article  CAS  PubMed  Google Scholar 

  24. Bechtereva, N. P., Kambarova, D. K., Smirnov, V. M. & Shandurina, A. N. in Neurosurgical Treatment in Psychiatry, Pain, and Epilepsy (eds Sweet, W. H. et al.) 581–613 (Univ. Park Press, 1977).

  25. Blomstedt, P. & Hariz, M. I. Deep brain stimulation for movement disorders before DBS for movement disorders. Parkinsonism Relat. Disord. 16, 429–433 (2010).

    Article  PubMed  Google Scholar 

  26. Melzack, R. & Wall, P. D. Pain mechanisms: a new theory. Science 150, 971–979 (1965).

    Article  CAS  PubMed  Google Scholar 

  27. Mazars, G., Mérienne, L. & Cioloca, C. Use of thalamic stimulators in the treatment of various types of pain [French]. Ann. Med. Interne 126, 869–871 (1975).

    CAS  Google Scholar 

  28. Hosobuchi, Y., Adams, J. E. & Rutkin, B. Chronic thalamic stimulation for the control of facial anesthesia dolorosa. Arch. Neurol. 29, 158–161 (1973).

    Article  CAS  PubMed  Google Scholar 

  29. Hariz, M. I., Blomstedt, P. & Zrinzo, L. Deep brain stimulation between 1947 and 1987: the untold story. Neurosurg. Focus. 29, E1 (2010).

    Article  PubMed  Google Scholar 

  30. Brice, J. & McLellan, L. Suppression of intention tremor by contingent deep-brain stimulation. Lancet 1, 1221–1222 (1980).

    Article  CAS  PubMed  Google Scholar 

  31. Blomstedt, P. & Hariz, M. Closed loop stimulation for tremor was invented in 1980. Brain Stimul. 12, 1072–1073 (2019).

    Article  PubMed  Google Scholar 

  32. Benabid, A. L., Pollak, P., Louveau, A., Henry, S. & de Rougemont, J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl. Neurophysiol. 50, 344–346 (1987).

    CAS  PubMed  Google Scholar 

  33. Kiss, Z. H. T. & Hariz, M. “New and improved” DBS batteries? Brain Stimul. 12, 833–834 (2019).

    Article  PubMed  Google Scholar 

  34. Hariz, M. Battery obsolescence, industry profit and deep brain stimulation. Acta Neurochir. 161, 2047–2048 (2019).

    Article  PubMed  Google Scholar 

  35. Steigerwald, F., Muller, L., Johannes, S., Matthies, C. & Volkmann, J. Directional deep brain stimulation of the subthalamic nucleus: A pilot study using a novel neurostimulation device. Mov. Disord. 31, 1240–1243 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Angelov, S. D. et al. Electrophoretic deposition of ligand-free platinum nanoparticles on neural electrodes affects their impedance in vitro and in vivo with no negative effect on reactive gliosis. J. Nanobiotechnology 14, 3 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Koenen, S. et al. Optimizing in vitro impedance and physico-chemical properties of neural electrodes by electrophoretic deposition of Pt nanoparticles. Chemphyschem 18, 1108–1117 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Kronenbuerger, M. et al. Brain alterations with deep brain stimulation: new insight from a neuropathological case series. Mov. Disord. 30, 1125–1130 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Moss, J., Ryder, T., Aziz, T. Z., Graeber, M. B. & Bain, P. G. Electron microscopy of tissue adherent to explanted electrodes in dystonia and Parkinson’s disease. Brain 127, 2755–2763 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Fenoy, A. J., Villarreal, S. J. & Schiess, M. C. Acute and subacute presentations of cerebral edema following deep brain stimulation lead implantation. Stereotact. Funct. Neurosurg. 95, 86–92 (2017).

    Article  PubMed  Google Scholar 

  41. De Ridder, D., Vanneste, S., Plazier, M., van der Loo, E. & Menovsky, T. Burst spinal cord stimulation: toward paresthesia-free pain suppression. Neurosurgery 66, 986–990 (2010).

    Article  PubMed  Google Scholar 

  42. Kapural, L. et al. Novel 10-kHz high-frequency therapy (HF10 therapy) is superior to traditional low-frequency spinal cord stimulation for the treatment of chronic back and leg pain: the SENZA-RCT randomized controlled trial. Anesthesiology 123, 851–860 (2015).

    Article  PubMed  Google Scholar 

  43. Schultz, D. M. et al. Sensor-driven position-adaptive spinal cord stimulation for chronic pain. Pain. Physician 15, 1–12 (2012).

    PubMed  Google Scholar 

  44. Hosain, M. K., Kouzani, A. Z., Tye, S. J., Abulseoud, O. A. & Berk, M. Design and analysis of an antenna for wireless energy harvesting in a head-mountable DBS device. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2013, 3078–3081 (2013).

    PubMed  Google Scholar 

  45. Hong, B. et al. Detection of bacterial DNA on neurostimulation systems in patients without overt infection. Clin. Neurol. Neurosurg. 184, 105399 (2019).

    Article  PubMed  Google Scholar 

  46. Jitkritsadakul, O. et al. Systematic review of hardware-related complications of deep brain stimulation: do new indications pose an increased risk? Brain Stimul. 10, 967–976 (2017).

    Article  PubMed  Google Scholar 

  47. Piacentino, M., Pilleri, M. & Bartolomei, L. Hardware-related infections after deep brain stimulation surgery: review of incidence, severity and management in 212 single-center procedures in the first year after implantation. Acta Neurochir. 153, 2337–2341 (2011).

    Article  PubMed  Google Scholar 

  48. Tarakji, K. G. et al. Antibacterial envelope to prevent cardiac implantable device infection. N. Engl. J. Med. 380, 1895–1905 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Sauer, T., Wolf, M. E., Blahak, C., Capelle, H. H. & Krauss, J. K. Neuroleptic-like malignant syndrome after battery depletion in a patient with deep brain stimulation for secondary parkinsonism. Mov. Disord. Clin. Pract. 4, 629–631 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hancu, I. et al. On the (Non-)equivalency of monopolar and bipolar settings for deep brain stimulation fMRI studies of Parkinson’s disease patients. J. Magn. Reson. Imaging 49, 1736–1749 (2019).

    Article  PubMed  Google Scholar 

  51. Bronstein, J. M. et al. The rationale driving the evolution of deep brain stimulation to constant-current devices. Neuromodulation 18, 85–88 (2015).

    Article  PubMed  Google Scholar 

  52. Lettieri, C. et al. Clinical outcome of deep brain stimulation for dystonia: constant-current or constant-voltage stimulation? A non-randomized study. Eur. J. Neurol. 22, 919–926 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Preda, F. et al. Switching from constant voltage to constant current in deep brain stimulation: a multicenter experience of mixed implants for movement disorders. Eur. J. Neurol. 23, 190–195 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Lempka, S. F., Johnson, M. D., Miocinovic, S., Vitek, J. L. & McIntyre, C. C. Current-controlled deep brain stimulation reduces in vivo voltage fluctuations observed during voltage-controlled stimulation. Clin. Neurophysiol. 121, 2128–2133 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Cheung, T. et al. Longitudinal impedance variability in patients with chronically implanted DBS devices. Brain Stimul. 6, 746–751 (2013).

    Article  PubMed  Google Scholar 

  56. Grill, W. M. Model-based analysis and design of waveforms for efficient neural stimulation. Prog. Brain Res. 222, 147–162 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Akbar, U. et al. Randomized, blinded pilot testing of nonconventional stimulation patterns and shapes in Parkinson’s disease and essential tremor: evidence for further evaluating narrow and biphasic pulses. Neuromodulation 19, 343–356 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. De Jesus, S. et al. Square biphasic pulse deep brain stimulation for essential tremor: the BiP tremor study. Parkinsonism Relat. Disord. 46, 41–46 (2018).

    Article  PubMed  Google Scholar 

  59. McIntyre, C. C. & Grill, W. M. Selective microstimulation of central nervous system neurons. Ann. Biomed. Eng. 28, 219–233 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Hofmann, L., Ebert, M., Tass, P. A. & Hauptmann, C. Modified pulse shapes for effective neural stimulation. Front. Neuroeng. 4, 9 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Popovych, O. V., Lysyansky, B., Rosenblum, M., Pikovsky, A. & Tass, P. A. Pulsatile desynchronizing delayed feedback for closed-loop deep brain stimulation. PLoS One 12, e0173363 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Popovych, O. V., Lysyansky, B. & Tass, P. A. Closed-loop deep brain stimulation by pulsatile delayed feedback with increased gap between pulse phases. Sci. Rep. 7, 1033 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Popovych, O. V. & Tass, P. A. Multisite delayed feedback for electrical brain stimulation. Front. Physiol. 9, 46 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Benabid, A. L. et al. Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J. Neurosurg. 84, 203–214 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Kirsch, A. D., Hassin-Baer, S., Matthies, C., Volkmann, J. & Steigerwald, F. Anodic versus cathodic neurostimulation of the subthalamic nucleus: A randomized-controlled study of acute clinical effects. Parkinsonism Relat. Disord. 55, 61–67 (2018).

    Article  PubMed  Google Scholar 

  66. Grill, W. M. Temporal pattern of electrical stimulation is a new dimension of therapeutic innovation. Curr. Opin. Biomed. Eng. 8, 1–6 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Brocker, D. T. et al. Optimized temporal pattern of brain stimulation designed by computational evolution. Sci. Transl. Med. 9, eaah3532 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Birdno, M. J. et al. Stimulus features underlying reduced tremor suppression with temporally patterned deep brain stimulation. J. Neurophysiol. 107, 364–383 (2012).

    Article  PubMed  Google Scholar 

  69. Brocker, D. T. et al. Improved efficacy of temporally non-regular deep brain stimulation in Parkinson’s disease. Exp. Neurol. 239, 60–67 (2013).

    Article  PubMed  Google Scholar 

  70. Krauss, J. K., Yianni, J., Loher, T. J. & Aziz, T. Z. Deep brain stimulation for dystonia. J. Clin. Neurophysiol. 21, 18–30 (2004).

    Article  PubMed  Google Scholar 

  71. Cassar, I. R., Titus, N. D. & Grill, W. M. An improved genetic algorithm for designing optimal temporal patterns of neural stimulation. J. Neural Eng. 14, 066013 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lee, S., Asaad, W. F. & Jones, S. R. Computational modeling to improve treatments for essential tremor. Drug Discov. Today Dis. Model. 19, 19–25 (2016).

    Article  Google Scholar 

  73. Tass, P. A. Phase Resetting in Medicine and Biology: Stochastic Modelling and Data Analysis (Springer, 1999).

  74. Tass, P. A. A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biol. Cybern. 89, 81–88 (2003).

    Article  PubMed  Google Scholar 

  75. Popovych, O. V. & Tass, P. A. Control of abnormal synchronization in neurological disorders. Front. Neurol. 5, 268 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Markram, H., Lubke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Tass, P. A. & Majtanik, M. Long-term anti-kindling effects of desynchronizing brain stimulation: a theoretical study. Biol. Cybern. 94, 58–66 (2006).

    Article  PubMed  Google Scholar 

  78. Hauptmann, C. & Tass, P. A. Cumulative and after-effects of short and weak coordinated reset stimulation: a modeling study. J. Neural Eng. 6, 016004 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Tass, P. A. et al. Coordinated reset has sustained aftereffects in Parkinsonian monkeys. Ann. Neurol. 72, 816–820 (2012).

    Article  PubMed  Google Scholar 

  80. Adamchic, I. et al. Coordinated reset neuromodulation for Parkinson’s disease: proof-of-concept study. Mov. Disord. 29, 1679–1684 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wang, J. et al. Coordinated reset deep brain stimulation of subthalamic nucleus produces long-lasting, dose-dependent motor improvements in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine non-human primate model of parkinsonism. Brain Stimul. 9, 609–617 (2016).

    Article  PubMed  Google Scholar 

  82. Bouthour, W. et al. Biomarkers for closed-loop deep brain stimulation in Parkinson disease and beyond. Nat. Rev. Neurol. 15, 343–352 (2019).

    Article  PubMed  Google Scholar 

  83. Hoang, K. B. & Turner, D. A. The emerging role of biomarkers in adaptive modulation of clinical brain stimulation. Neurosurgery 85, E430–E439 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Shute, J. B. et al. Thalamocortical network activity enables chronic tic detection in humans with Tourette syndrome. Neuroimage Clin. 12, 165–172 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Swann, N. C. et al. Adaptive deep brain stimulation for Parkinson’s disease using motor cortex sensing. J. Neural Eng. 15, 046006 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Herron, J. A. et al. Chronic electrocorticography for sensing movement intention and closed-loop deep brain stimulation with wearable sensors in an essential tremor patient. J. Neurosurg. 127, 580–587 (2017).

    Article  PubMed  Google Scholar 

  87. Little, S. et al. Adaptive deep brain stimulation in advanced Parkinson disease. Ann. Neurol. 74, 449–457 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Arlotti, M. et al. Eight-hours adaptive deep brain stimulation in patients with Parkinson disease. Neurology 90, e971–e976 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Tinkhauser, G. et al. Directional local field potentials: a tool to optimize deep brain stimulation. Mov. Disord. 33, 159–164 (2018).

    Article  PubMed  Google Scholar 

  90. Piña-Fuentes, D. et al. Toward adaptive deep brain stimulation for dystonia. Neurosurg. Focus 45, E3 (2018).

    Article  PubMed  Google Scholar 

  91. Sinclair, N. C. et al. Subthalamic nucleus deep brain stimulation evokes resonant neural activity. Ann. Neurol. 83, 1027–1031 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Rosa, M. et al. Adaptive deep brain stimulation controls levodopa-induced side effects in Parkinsonian patients. Mov. Disord. 32, 628–629 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Deffains, M., Iskhakova, L., Katabi, S., Israel, Z. & Bergman, H. Longer β oscillatory episodes reliably identify pathological subthalamic activity in Parkinsonism. Mov. Disord. 33, 1609–1618 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Little, S. et al. Bilateral adaptive deep brain stimulation is effective in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 87, 717–721 (2016).

    Article  PubMed  Google Scholar 

  95. Little, S. et al. Adaptive deep brain stimulation for Parkinson’s disease demonstrates reduced speech side effects compared to conventional stimulation in the acute setting. J. Neurol. Neurosurg. Psychiatry 87, 1388–1389 (2016).

    Article  PubMed  Google Scholar 

  96. Shah, S. A., Tinkhauser, G., Chen, C. C., Little, S. & Brown, P. Parkinsonian tremor detection from subthalamic nucleus local field potentials for closed-loop deep brain stimulation. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2018, 2320–2324 (2018).

    PubMed  Google Scholar 

  97. Cagnan, H. et al. Stimulating at the right time: phase-specific deep brain stimulation. Brain 140, 132–145 (2017).

    Article  PubMed  Google Scholar 

  98. Basu, I. et al. Pathological tremor prediction using surface electromyogram and acceleration: potential use in ‘ON-OFF’ demand driven deep brain stimulator design. J. Neural Eng. 10, 036019 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Tan, H. et al. Decoding voluntary movements and postural tremor based on thalamic LFPs as a basis for closed-loop stimulation for essential tremor. Brain Stimul. 12, 858–867 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Velisar, A. et al. Dual threshold neural closed loop deep brain stimulation in Parkinson disease patients. Brain Stimul. 12, 868–876 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Morrell, M. J. & RNS System in Epilepsy Study Group. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology 77, 1295–1304 (2011).

    Article  PubMed  Google Scholar 

  102. Elder, C., Friedman, D., Devinsky, O., Doyle, W. & Dugan, P. Responsive neurostimulation targeting the anterior nucleus of the thalamus in 3 patients with treatment-resistant multifocal epilepsy. Epilepsia Open. 4, 187–192 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Voges, B. R. et al. Deep brain stimulation of anterior nucleus thalami disrupts sleep in epilepsy patients. Epilepsia 56, e99–e103 (2015).

    Article  PubMed  Google Scholar 

  104. Boon, P. et al. A prospective, multicenter study of cardiac-based seizure detection to activate vagus nerve stimulation. Seizure 32, 52–61 (2015).

    Article  PubMed  Google Scholar 

  105. Fisher, R. S. et al. Automatic vagus nerve stimulation triggered by ictal tachycardia: clinical outcomes and device performance — the U.S. E-37 Trial. Neuromodulation 19, 188–195 (2016).

    Article  PubMed  Google Scholar 

  106. Wolf, M. E., Blahak, C., Saryyeva, A., Schrader, C. & Krauss, J. K. Deep brain stimulation for dystonia-choreoathetosis in cerebral palsy: pallidal versus thalamic stimulation. Parkinsonism Relat. Disord. 63, 209–212 (2019).

    Article  PubMed  Google Scholar 

  107. Sani, O. G. et al. Mood variations decoded from multi-site intracranial human brain activity. Nat. Biotechnol. 36, 954–961 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Kremen, V. et al. Integrating brain implants with local and distributed computing devices: a next generation epilepsy management system. IEEE J. Transl. Eng. Health Med. 6, 2500112 (2018).

    Article  PubMed  Google Scholar 

  109. Khanna, P. et al. Enabling closed-loop neurostimulation research with downloadable firmware upgrades. IEEE Biomed. Circuits Syst. Conf. https://doi.org/10.1109/BioCAS.2015.7348348 (2015).

    Article  Google Scholar 

  110. Liu, T. et al. Improved subthalamic nucleus depiction with quantitative susceptibility mapping. Radiology 269, 216–223 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Wang, Y. & Liu, T. Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker. Magn. Reson. Med. 73, 82–101 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Sudhyadhom, A., Haq, I. U., Foote, K. D., Okun, M. S. & Bova, F. J. A high resolution and high contrast MRI for differentiation of subcortical structures for DBS targeting: the Fast Gray Matter Acquisition T1 Inversion Recovery (FGATIR). Neuroimage 47 (Suppl. 2), T44–T52 (2009).

    Article  PubMed  Google Scholar 

  113. Horn, A. et al. Lead-DBS v2: towards a comprehensive pipeline for deep brain stimulation imaging. Neuroimage 184, 293–316 (2019).

    Article  PubMed  Google Scholar 

  114. Coenen, V. A., Madler, B., Schiffbauer, H., Urbach, H. & Allert, N. Individual fiber anatomy of the subthalamic region revealed with diffusion tensor imaging: a concept to identify the deep brain stimulation target for tremor suppression. Neurosurgery 68, 1069–1075 (2011).

    Article  PubMed  Google Scholar 

  115. Tourdias, T., Saranathan, M., Levesque, I. R., Su, J. & Rutt, B. K. Visualization of intra-thalamic nuclei with optimized white-matter-nulled MPRAGE at 7T. Neuroimage 84, 534–545 (2014).

    Article  PubMed  Google Scholar 

  116. Kanowski, M. et al. Direct visualization of anatomic subfields within the superior aspect of the human lateral thalamus by MRI at 7T. AJNR Am. J. Neuroradiol. 35, 1721–1727 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Duchin, Y. et al. Patient-specific anatomical model for deep brain stimulation based on 7 Tesla MRI. PLoS One 13, e0201469 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Plantinga, B. R. et al. Individualized parcellation of the subthalamic nucleus in patients with Parkinson’s disease with 7T MRI. Neuroimage 168, 403–411 (2018).

    Article  PubMed  Google Scholar 

  119. Dembek, T. A. et al. Directional DBS leads show large deviations from their intended implantation orientation. Parkinsonism Relat. Disord. 67, 117–121 (2019).

    Article  CAS  PubMed  Google Scholar 

  120. Bonmassar, G., Angelone, L. M. & Makris, N. A virtual patient simulator based on human connectome and 7 T MRI for deep brain stimulation. Int. J. Adv. Life Sci. 6, 364–372 (2014).

    PubMed  PubMed Central  Google Scholar 

  121. Husch, A., Petersen, M. V., Gemmar, P., Goncalves, J. & Hertel, F. PaCER — a fully automated method for electrode trajectory and contact reconstruction in deep brain stimulation. Neuroimage Clin. 17, 80–89 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Lauro, P. M. et al. DBSproc: an open source process for DBS electrode localization and tractographic analysis. Hum. Brain Mapp. 37, 422–433 (2016).

    Article  PubMed  Google Scholar 

  123. Miocinovic, S., Noecker, A. M., Maks, C. B., Butson, C. R. & McIntyre, C. C. Cicerone: stereotactic neurophysiological recording and deep brain stimulation electrode placement software system. Acta Neurochir. Suppl. 97, 561–567 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Horn, A. & Kuhn, A. A. Lead-DBS: a toolbox for deep brain stimulation electrode localizations and visualizations. Neuroimage 107, 127–135 (2015).

    Article  PubMed  Google Scholar 

  125. Milchenko, M. et al. ESM-CT: a precise method for localization of DBS electrodes in CT images. J. Neurosci. Methods 308, 366–376 (2018).

    Article  PubMed  Google Scholar 

  126. Chakravorti, S. et al. Validation of an automatic algorithm to identify NeuroPace depth leads in CT images. Proc. SPIE https://doi.org/10.1117/12.2512580 (2019).

    Article  Google Scholar 

  127. Sitz, A. et al. Determining the orientation angle of directional leads for deep brain stimulation using computed tomography and digital x-ray imaging: a phantom study. Med. Phys. 44, 4463–4473 (2017).

    Article  PubMed  Google Scholar 

  128. Boutet, A. et al. Neuroimaging technological advancements for targeting in functional neurosurgery. Curr. Neurol. Neurosci. Rep. 19, 42 (2019).

    Article  PubMed  Google Scholar 

  129. Ewert, S. et al. Optimization and comparative evaluation of nonlinear deformation algorithms for atlas-based segmentation of DBS target nuclei. Neuroimage 184, 586–598 (2019).

    Article  PubMed  Google Scholar 

  130. Chaturvedi, A., Lujan, J. L. & McIntyre, C. C. Artificial neural network based characterization of the volume of tissue activated during deep brain stimulation. J. Neural Eng. 10, 056023 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Schmidt, C., Grant, P., Lowery, M. & van Rienen, U. Influence of uncertainties in the material properties of brain tissue on the probabilistic volume of tissue activated. IEEE Trans. Biomed. Eng. 60, 1378–1387 (2013).

    Article  PubMed  Google Scholar 

  132. Butson, C. R., Cooper, S. E., Henderson, J. M. & McIntyre, C. C. Patient-specific analysis of the volume of tissue activated during deep brain stimulation. Neuroimage 34, 661–670 (2007).

    Article  PubMed  Google Scholar 

  133. Horn, A. et al. Deep brain stimulation induced normalization of the human functional connectome in Parkinson’s disease. Brain 142, 3129–3143 (2019).

    Article  PubMed  Google Scholar 

  134. Akram, H. et al. Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson’s disease. Neuroimage 158, 332–345 (2017).

    Article  PubMed  Google Scholar 

  135. Bot, M. et al. Deep brain stimulation for Parkinson’s disease: defining the optimal location within the subthalamic nucleus. J. Neurol. Neurosurg. Psychiatry 89, 493–498 (2018).

    Article  PubMed  Google Scholar 

  136. Dembek, T. A. et al. Probabilistic sweet spots predict motor outcome for deep brain stimulation in Parkinson disease. Ann. Neurol. 86, 527–538 (2019).

    Article  PubMed  Google Scholar 

  137. Horn, A. et al. Connectivity predicts deep brain stimulation outcome in Parkinson disease. Ann. Neurol. 82, 67–78 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Neumann, W. J. et al. A localized pallidal physiomarker in cervical dystonia. Ann. Neurol. 82, 912–924 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Reich, M. M. et al. Probabilistic mapping of the antidystonic effect of pallidal neurostimulation: a multicentre imaging study. Brain 142, 1386–1398 (2019).

    Article  PubMed  Google Scholar 

  140. Schonecker, T. et al. Postoperative MRI localisation of electrodes and clinical efficacy of pallidal deep brain stimulation in cervical dystonia. J. Neurol. Neurosurg. Psychiatry 86, 833–839 (2015).

    Article  PubMed  Google Scholar 

  141. Al-Fatly, B. et al. Connectivity profile of thalamic deep brain stimulation to effectively treat essential tremor. Brain 142, 3086–3098 (2019).

    Article  PubMed  Google Scholar 

  142. Dembek, T. A. et al. Probabilistic mapping of deep brain stimulation effects in essential tremor. Neuroimage Clin. 13, 164–173 (2017).

    Article  PubMed  Google Scholar 

  143. Baldermann, J. C. et al. Connectivity profile predictive of effective deep brain stimulation in obsessive–compulsive disorder. Biol. Psychiatry 85, 735–743 (2019).

    Article  PubMed  Google Scholar 

  144. Horn, A. The impact of modern-day neuroimaging on the field of deep brain stimulation. Curr. Opin. Neurol. 32, 511–520 (2019).

    Article  PubMed  Google Scholar 

  145. Horn, A. et al. Probabilistic conversion of neurosurgical DBS electrode coordinates into MNI space. Neuroimage 150, 395–404 (2017).

    Article  PubMed  Google Scholar 

  146. Lozano, A. M. & Lipsman, N. Probing and regulating dysfunctional circuits using deep brain stimulation. Neuron 77, 406–424 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Choi, K. S., Riva-Posse, P., Gross, R. E. & Mayberg, H. S. Mapping the “depression switch” during intraoperative testing of subcallosal cingulate deep brain stimulation. JAMA Neurol. 72, 1252–1260 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Riva-Posse, P. et al. A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression. Mol. Psychiatry 23, 843–849 (2018).

    Article  CAS  PubMed  Google Scholar 

  149. Li, N. et al. A unified connectomic target for deep brain stimulation in obsessive-compulsive disorder. Nat. Commun. 11, 3364 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Rezai, A. R. et al. Is magnetic resonance imaging safe for patients with neurostimulation systems used for deep brain stimulation? Neurosurgery 57, 1056–1062 (2005).

    Article  PubMed  Google Scholar 

  151. Boutet, A. et al. 3-Tesla MRI of deep brain stimulation patients: safety assessment of coils and pulse sequences. J. Neurosurg. 132, 586–594 (2019).

    Article  PubMed  Google Scholar 

  152. Boutet, A. et al. Functional MRI safety and artifacts during deep brain stimulation: experience in 102 patients. Radiology 293, 174–183 (2019).

    Article  PubMed  Google Scholar 

  153. Denning, T., Matsuoka, Y. & Kohno, T. Neurosecurity: security and privacy for neural devices. Neurosurg. Focus. 27, E7 (2009).

    Article  PubMed  Google Scholar 

  154. Zizek, S. Like a Thief in Broad Daylight — Power in the Era of Post-human Capitalism (Seven Stories Press, 2018).

  155. Hittinger, E. & Jaramillo, P. Internet of Things: energy boon or bane? Science 364, 326–328 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. [No authors listed] A connected world will be a playground for hackers. The Economist https://www.economist.com/technology-quarterly/2019/09/12/a-connected-world-will-be-a-playground-for-hackers (2019).

  157. Pugh, J., Pycroft, L., Sandberg, A., Aziz, T. & Savulescu, J. Brainjacking in deep brain stimulation and autonomy. Ethics Inf. Technol. 20, 219–232 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Spiegel, E. A., Wycis, H. T., Marks, M. & Lee, A. J. Stereotaxic apparatus for operations on the human brain. Science 106, 349–350 (1947).

    Article  CAS  PubMed  Google Scholar 

  159. Delgado, J. M. R. Physical Control of the Mind: Toward a Psychocivilized Society (Harper and Row, 1969).

Download references

Acknowledgements

The work on this manuscript was supported by an unconditional grant of the World Society for Stereotactic and Functional Neurosurgery (WSSFN). The working process was coordinated with the Research and Education committees of the WSSFN.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of manuscript preparation.

Corresponding author

Correspondence to Andres M. Lozano.

Ethics declarations

Competing interests

J. K. K. is a consultant for Medtronic and Boston Scientific. P. B. is a consultant for Medtronic. W. M. G. is the Director, Chief Scientific Officer and share owner of Deep Brain Innovations, LLC. He also receives royalty payments for licensed patents on temporal patterns of deep brain stimulation. M. I. H. has received travel expenses and honoraria from Boston Scientific for speaking at meetings. A. H. was supported by the German Research Council (DFG grant 410169619) and reports lecture fees from Medtronic and Boston Scientific unrelated to the present work. P. A. T. works as a consultant for Boston Scientific Neuromodulation. J. V. works as a consultant to Boston Scientific, Medtronic, and Newronika and has received honoraria for lectures from Boston Scientific and Medtronic as well as research grants from Boston Scientific and Medtronic. A. M. L. has served as a consultant for Boston Scientific, Medtronic, Aleva, and Abbott and is a co-founder of Functional Neuromodulation. All other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neurology thanks V. Visser-Vandewalle and Y. Temel for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Brainjacking

The unauthorized control of an implanted brain device, theoretically through Bluetooth or wireless internet technology.

Gate theory

Theory describing the ‘gating’ of pain signals, whereby the transmission of non-painful stimuli can block or override painful signals at the level of the spinal cord.

Quadripolar electrodes

Deep brain stimulation (DBS) electrodes configured with four equally spaced contacts — the most commonly used DBS electrode configuration.

Radiofrequency coupled coils

Early deep brain stimulation systems powered the delivery of stimulation using an implanted radiofrequency receiving coil. These systems evolved and were replaced by the modern-day battery-coupled pulse generators.

Implantable pulse generator

(IPG). A battery, typically implanted below the clavicle and connected via subcutaneous extension cables to intracranial electrodes. The IPG generates and transmits electrical impulses at a specified frequency, amplitude and pulse width.

Parameter space

The available combinations of voltage, current, pulse width, contact selection, current shape and stimulation pattern when programming a deep brain stimulation device.

Segmented leads

Deep brain stimulation electrodes with multiple different contacts through which current can be transmitted.

Electrode contacts

Non-insulated regions near the distal tip of an electrode from which electrical impulses are transmitted.

Waveforms

The shapes of the electrical impulses transmitted from a deep brain stimulation contact, most often represented in 2D as a function of voltage or current over time.

Volume of tissue activated

(VTA). The estimated spatial extent of the electric field surrounding an activated deep brain stimulation contact at a given stimulation parameter setting.

Energy-harvesting

Having the capability to capture energy from the surrounding environment, including from thermal, vibratory, electromagnetic and acoustic sources.

Biphasic pulses

Electrical impulses consisting of both a positively and a negatively charged component. During each stimulus, a reversal between cathodic and anodic stimulation occurs.

Cathodic and anodic

During stimulation, an electrode contact can function as a cathode (or current sink) or as an anode (source of current) relative to the implantable pulse generator or to other electrode contacts.

Spike timing-dependent plasticity

Concept by which the timing of presynaptic and postsynaptic excitatory potentials affects the overall synaptic strength.

Neuronal coincidence rates

The incidence of temporally overlapping presynaptic and postsynaptic excitatory potentials.

Power spectra

In the context of local field potentials, it refers to the strength or intensity of the electric field based on frequency, commonly categorized as delta (1–3 Hz), theta (4–8 Hz), alpha (4–9 Hz), beta (15–30 Hz) and gamma (>30 Hz).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krauss, J.K., Lipsman, N., Aziz, T. et al. Technology of deep brain stimulation: current status and future directions. Nat Rev Neurol 17, 75–87 (2021). https://doi.org/10.1038/s41582-020-00426-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-020-00426-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing