Abstract
Narcolepsy is a rare brain disorder that reflects a selective loss or dysfunction of orexin (also known as hypocretin) neurons of the lateral hypothalamus. Narcolepsy type 1 (NT1) is characterized by excessive daytime sleepiness and cataplexy, accompanied by sleep–wake symptoms, such as hallucinations, sleep paralysis and disturbed sleep. Diagnosis is based on these clinical features and supported by biomarkers: evidence of rapid eye movement sleep periods soon after sleep onset; cerebrospinal fluid orexin deficiency; and positivity for HLA-DQB1*06:02. Symptomatic treatment with stimulant and anticataplectic drugs is usually efficacious. This Review focuses on our current understanding of how genetic, environmental and immune-related factors contribute to a prominent (but not isolated) orexin signalling deficiency in patients with NT1. Data supporting the view of NT1 as a hypothalamic disorder affecting not only sleep–wake but also motor, psychiatric, emotional, cognitive, metabolic and autonomic functions are presented, along with uncertainties concerning the ‘narcoleptic borderland’, including narcolepsy type 2 (NT2). The limitations of current diagnostic criteria for narcolepsy are discussed, and a possible new classification system incorporating the borderland conditions is presented. Finally, advances and obstacles in the symptomatic and causal treatment of narcolepsy are reviewed.
Key points
-
Narcolepsy is a rare and often disabling hypothalamic disorder that presents with sleep–wake dysregulation (excessive daytime sleepiness (EDS), cataplexy, hallucinations, sleep paralysis and disturbed sleep) and motor, cognitive, psychiatric, metabolic and autonomic disturbances.
-
Narcolepsy arises from the interaction of genetic and environmental factors, which lead to an immune-mediated selective loss or dysfunction of orexin neurons in the lateral hypothalamus.
-
Patients with narcolepsy type 1 have cataplexy and little or no orexin in cerebrospinal fluid; narcolepsy type 2 is a diagnosis of exclusion requiring ancillary tests ruling out other causes of EDS.
-
Several drugs (including modafinil, sodium oxybate, pitolisant, solriamfetol and methylphenidate) improve narcoleptic symptoms in most patients.
-
More research is needed to understand the clinical spectrum of narcolepsy, the exact mechanisms leading to orexin neuronal loss and the value of new treatments, including orexin agonists and immunomodulation.
-
Awareness of narcolepsy, assessments of treatment efficacy, treatment of children or during pregnancy and management of comorbidities are still suboptimal in narcolepsy and require improvement.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Large-scale genome sequencing redefines the genetic footprints of high-altitude adaptation in Tibetans
Genome Biology Open Access 13 April 2023
-
A comparative blind study between skin biopsy and seed amplification assay to disclose pathological α-synuclein in RBD
npj Parkinson's Disease Open Access 04 March 2023
-
Examining the impact of excessive daytime sleepiness on utility scores in patients with obstructive sleep apnoea and/or narcolepsy in five European countries
BMC Neurology Open Access 25 August 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Bassetti, C. & Aldrich, M. Narcolepsy. Neurol. Clin. 14, 545–571 (1996).
Westphal, C. Eigentümliche mit Einschlafen verbundene Anfälle. Arch. Psychiatr. Nervenkr. 7, 631–635 (1877).
Gélineau, J. B. E. De la narcolepsie [French]. Gaz. Hop. 53–54, 626–637 (1880).
Fischer, F. Epileptoide Schlafzustände [German]. Arch. Psychiatr. Nervenkr. 8, 200–203 (1878).
Henneberg, R. Über genuine Narkolepsie [German]. Neurol. Zbl. 30, 282–290 (1916).
Löwenfeld, L. Über Narkolepsie [German]. Münch. Med. Wochenschr. 49, 1041–1045 (1902).
Redlich, E. Zur Narkolepsiefrage [German]. Monatsschr. Psychiatr. Neurol. 37, 85 (1915).
Redlich, E. Über Narkolepsie [German]. Z. Gesamte Neurol. Psychiatr. 95, 256–270 (1924).
Daniels, L. E. Narcolepsy. Medicine 13, 1–122 (1934).
Yoss, R. E. & Daly, D. D. Criteria for the diagnosis of the narcoleptic syndrome. Mayo Clin. Proc. 32, 320–328 (1957).
Wilder, J. in Handbuch der Neurologie Vol. 17 (eds Braun, E., Bumke, O. & Förster, O.) 87–141 (Springer, 1935).
Adie, W. J. Idiopathic narcolepsy: a disease sui generis; with remarks on the mechanism of sleep. Brain 49, 257–306 (1926).
Wilson, S. A. The narcolepsies. Brain 51, 63–109 (1928).
Vogel, G. Studies in psychophysiology of dreams III. The dreams of narcolepsy. Arch. Gen. Psychiatry 3, 421–428 (1960).
Honda, Y., Asaka, A., Tanaka, Y. & Juji, T. Discrimination of narcolepsy by using genetic markers and HLA. Sleep Res. 12, 254 (1983).
Juji, T., Satake, M., Honda, Y. & Doi, Y. HLA antigens in Japanese patients with narcolepsy. All the patients were DR2 positive. Tissue Antigens 24, 316–319 (1984).
Nishino, N., Ripley, B., Overeem, S., Lammers, G. J. & Mignot, E. Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355, 39–40 (2000).
American Academy of Sleep Medicine. International Classification of Sleep Disorders (ICSD-3) 3rd edn (AASM, 2014).
Juji, T., Matsuki, L., Tokunaga, K., Naohara, K. & Honda, Y. Narcolepsy and HLA in the Japanese. Ann. NY Acad. Sci. 540, 106–114 (1988).
Hublin, S. et al. The prevalence of narcolepsy: an epidemiological study of the Finnish twin cohort. Ann. Neurol. 35, 709–716 (1994).
Silber, M. H., Krahn, L. E., Olson, E. J. & Pankratz, V. S. The epidemiology of narcolepsy in Olmsted County, Minnesota: a population-based study. Sleep 25, (197–202 (2002).
Ohayon, M., Priest, R. G., Zulley, J., Smirne, S. & Paiva, T. Prevalence of narcolepsy symptomatology and diagnosis in the European general population. Neurology 58, 1826–1833 (2002).
Wilner, A. et al. Narcolepsy-cataplexy in Israeli Jews is associated exclusively with the HLA DR2 haplotype. Hum. Immunol. 21, 15–22 (1988).
al Rajeh, S. et al. A community survey of neurological disorders in Saudi Arabia: the Thugbah study. Neuroepidemiology 12, 164–178 (1993).
Jennum, J., Ibsen, R., Petersen, E. R., Knudsen, S. & Kjellberg, J. Health, social and economic consequences of narcolepsy: a controlled national study evaluating the societal effect on patients and their partners. Sleep Med. 13, 1086–1093 (2012).
Jennum, P., Thorstensen, E. W., Pickering, L., Ibsen, R. & Kjellberg, J. Morbidity and mortality of middle-aged and elderly narcoleptics. Sleep Med. 36, 23–28 (2017).
Dauvilliers, Y. et al. Age at onset of narcolepsy in two large populations of patients in France and Quebec. Neurology 57, 2029–2033 (2001).
Rocca, F. L., Pizza, F., Ricci, E. & Plazzi, G. Narcolepsy during childhood: an update. Neuropediatrics 46, 181–198 (2015).
Yoss, R. & Daly, D. Narcolepsy in children. Pediatrics 25, 1025–1033 (1960).
Challamel, M. J. et al. Narcolepsy in children. Sleep 17, 17–20 (1994).
Guilleminault, C. & Pelayo, R. Narcolepsy in prepubertal children. Ann. Neurol. 43, 135–142 (1998).
Pizza, F. et al. Primary progressive narcolepsy type 1: the other side of the coin. Neurology 83, 2189–2190 (2014).
Luca, G. et al. Clinical, polysomnographic and genome-wide association analyses of narcolepsy with cataplexy: a European Narcolepsy Network study. J. Sleep Res. 22, 482–495 (2013).
Sturzenegger, C. & Bassetti, C. L. The clinical spectrum of narcolepsy with cataplexy: a reappraisal. J. Sleep Res. 13, 395–406 (2004).
van Dijk, J. G., Lammers, G. J. & Blansjaar, B. A. Isolated cataplexy of more than 40 years’ duration. Br. J. Psychiatry 159, 719–721 (1991).
Andlauer, O. et al. Predictors of hypocretin (orexin) deficiency in narcolepsy without cataplexy. Sleep 35, 1247–1255 (2012).
Trotti, L. M., Staab, B. A. & Rye, D. B. Test-retest reliability of the multiple sleep latency test in narcolepsy without cataplexy and idiopathic hypersomnia. J. Clin. Sleep Med. 9, 789–785 (2013).
Lopez, R. et al. Test-retest reliability of the multiple sleep latency test in central disorders of hypersomnolence. Sleep 40, 164–168 (2017).
Dauvilliers, Y., Abril, B., Mas, E., Michel, F. & Tafti, M. Normalization of hypocretin-1 in narcolepsy after intravenous immunoglobulin treatment. Neurology 73, 1333–1334 (2009).
Symonds, C. P. Narcolepsy as a symptom of encephalitis lethargica. Lancet 173, 1214–1125 (1922).
Mankowski, B. Zur Pathogenese kataplegisches Anfälle bei Narkolepsie (auf Grund eines Falls von Encephalitis epidemica) [German]. Monatschr. Psychiatr. Neurol. 61, 340–349 (1926).
Langdon, N., Welsh, K. I., van Dam, M., Vaughan, R. W. & Parkes, D. Genetic markers in narcolepsy. Lancet 2, 1178–1180 (1984).
Peyron, C. et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat. Med. 6, 991–997 (2000).
Thannickal, T. C. et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron 27, 469–474 (2000).
Crocker, A. et al. Concomitant loss of dynorphin, NARP, and orexin in narcolepsy. Neurology 65, 1184–1188 (2005).
de Lecea, L. et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl Acad. Sci. USA 95, 322–327 (1998).
Sakurai, T. et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573–585 (1998).
Krahn, L. E. Reevaluating spells initially identified as cataplexy. Sleep Med. 6, 537–542 (2005).
Desseilles, M. et al. Neuroimaging insights into the pathophysiology of sleep disorders. Sleep 31, 777–794 (2008).
Burgess, C. R. & Scammell, T. E. Narcolepsy: neural mechanisms of sleepiness and cataplexy. J. Neurosci. 32, 12305–12311 (2012).
Broughton, R. et al. Excessive daytime sleepiness and the pathophysiology of narcolepsy-cataplexy: a laboratory perspective. Sleep 9, 205–215 (1986).
Nishino, S. & Kanbayashi, T. Symptomatic narcolepsy, cataplexy, and hypersomnia, and their implications in the hypothalamic hypocretin/orexin system. Sleep Med. Rev. 9, 269–310 (2005).
Baumann, C. R. et al. Hypocretin-1 (orexin A) deficiency in acute traumatic brain injury. Neurology 65, 147–149 (2005).
Baumann, C. R. et al. Loss of hypocretin (orexin) neurons with trumatic brain injury. Ann. Neurol. 66, 555–559 (2009).
Baumann, C. R., Bassetti, C. L., Hersberger, M. & Jung, H. H. Excessive daytime sleepiness in Behçet’s disease with diencephalic lesions and hypocretin dysfunction. Eur. Neurol. 63, 190 (2010).
Mignot, E. et al. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch. Neurol. 59, 1553–1562 (2002).
Bassetti, C. L. Selective hypocretin (orexin) neuronal loss and multiple signaling deficiencies. Neurology 65, 1152–1153 (2005).
Latorre, D. et al. T cells in patients with narcolepsy target self-antigens of hypocretin neurons. Nature 562, 63–68 (2018).
Lippert, J. et al. Specific T cell activation in peripheral blood and cerebrospinal fluid in central disorders of hypersomnolence. Sleep 42, zsy223 (2019).
Luo, F. et al. Autoimmunity to hypocretin and molecular mimicry to flu in type 1 narcolepsy. Proc. Natl Acad. Sci. USA 115, E12323–E12332 (2018).
Pedersen, N. W. et al. CD8+ T cells from patients with narcolepsy and healthy controls recognize hypocretin neuron-specific antigens. Nat. Commun. 10, 837 (2019).
Thannickal, T. C., Nienhuis, R. & Siegel, J. M. Localized loss of hypocretin (orexin) cells in narcolepsy without cataplexy. Sleep 32, 993–998 (2009).
Valko, P. O. et al. Increase of histaminergic tuberomammillary neurons in narcolepsy. Ann. Neurol. 74, 794–804 (2013).
Honda, M. et al. Absence of ubiquitinated inclusions in hypocretin neurons of patients with narcolepsy. Neurology 18, 511–517 (2009).
Gerashchenko, D. et al. Relationship between CSF hypocretin levels and hypocretin neuronal loss. Exp. Neurol. 184, 1010–1016 (2003).
John, J. et al. Greatly increased numbers of histamine cells in human narcolepsy with cataplexy. Ann. Neurol. 74, 786–793 (2013).
Khatami, R. et al. Monozygotic twins concordant for narcolepsy-cataplexy without any detectable abnormality in the hypocretin (orexin) pathway. Lancet 363, 1199–1200 (2004).
Dauvilliers, Y. et al. A monozygotic twin pair discordant for narcolepsy and CSF hypocretin-1. Neurology 62, 2137–2138 (2004).
Hor, H. et al. A missense mutation in myelin oligdendrocyte glycoprotein as a cause of familial narcolepsy with cataplexy. Am. J. Hum. Genet. 89, 474–479 (2011).
Degn, M. et al. Rare missense mutations in P2RY11 in narcolepsy with cataplexy. Brain 140, 1657–1668 (2017).
Mignot, E. Genetic and familial aspects of narcolepsy. Neurology 50, S16–S22 (1998).
Dauvilliers, Y. et al. A narcolepsy susceptibility locus maps to a 5 Mb region of chromosome 21q. Ann. Neurol. 56, 382–388 (2004).
Mignot, E. et al. Complex HLA-DR and -DQ interactions confer risk of narcolepsy-cataplexy in three ethnic groups. Am. J. Hum. Genet. 68, 686–699 (2001).
Tafti, M. et al. DQB1 locus alone explains most of the risk and protection in narcolepsy with cataplexy in Europe. Sleep 37, 19–25 (2014).
Mignot, E., Young, T., Lin, L., Finn, L. & Palta, M. Reduction of REM sleep latency associated with HLA-DQB1*0602 in normal adults. Lancet 351, 727 (1998).
Ollila, H. M. et al. HLA-DPB1 and HLA class I confer risk of and protection from narcolepsy. Am. J. Hum. Genet. 96, 136–146 (2015).
Han, F. et al. Genome wide analysis of narcolepsy in China implicates novel immune loci and reveals changes in association prior to versus after the 2009 H1N1 influenza pandemic. PLOS Genet. 9, e1003880 (2013).
Tafti, M. et al. Narcolepsy-associated HLA class I alleles implicate cell-mediated cytotoxicity. Sleep 39, 581–587 (2016).
Hor, H. et al. Genome-wide association study identifies new HLA class II haplotypes strongly protective against narcolepsy. Nat. Genet. 42, 786–789 (2010).
Hallmayer, J. et al. Narcolepsy is strongly associated with the T cell receptor alpha locus. Nat. Genet. 41, 708–711 (2009).
Faraco, J. et al. Immunochip study implicates antigen presentation to T cells in narcolepsy. PLOS Genet. 9, e1003270 (2013).
Kornum, B. R. et al. Common variants in P2RY11 are associated with narcolepsy. Nat. Genet. 43, 66–71 (2011).
Singh, A. K., Mahlios, J. & Mignot, E. Genetic association, seasonal infections and autoimmune basis of narcolepsy. J. Autoimmun. 43, 26–31 (2013).
Shimada, M., Miyagawa, T., Toyoda, H., Tokunaga, K. & Honda, M. Epigenome-wide association study of DNA methylation in narcolepsy: an integrated genetic and epigenetic approach. Sleep 41, zsy019 (2018).
Imlah, N. W. Narcolepsy in identical twins. J. Neurol. Neurosurg. Psychiatry 24, 158–160 (1961).
Pollmächer, T. et al. DR2-positive monozygotic twins discordant for narcolepsy. Sleep 13, 336–343 (1990).
Partinen, M., Hublin, C., Kaprio, J., Koskenvuo, M. & Guilleminault, C. Twin studies in narcolepsy. Sleep 17, S13–S16 (1994).
Dahmen, N. & Tonn, P. Season of birth effect in narcolepsy. Neurology 61, 1016–1017 (2003).
Dauvilliers, Y. et al. Month of birth as a risk factor for narcolepsy. Sleep 26, 663–665 (2003).
Picchioni, D., Mignot, E. & Harsh, J. R. The month-of-birth pattern in narcolepsy is moderated by cataplexy severity and may be independent of HLA-DQB1*0602. Sleep 27, 1471–1475 (2004).
Donjacour, C. E., Fronczek, R., Le Cessie, Lammers, S., G. J. & Van Dijk, J. G. Month of birth is not a risk factor for narcolepsy with cataplexy in the Netherlands. J. Sleep Res. 20, 522–525 (2011).
von Economo, C. Sleep as a problem of localization. J. Nerv. Ment. Dis. 71, 249–259 (1930).
Aran, A. et al. Elevated anti-streptococcal antibodies in patients with recent narcolepsy onset. Sleep 32, 979–993 (2009).
Partinen, M. et al. Narcolepsy as an autoimmune disease: the role of H1N1 infection and vaccination. Lancet Neurol. 13, 600–613 (2014).
Dauvilliers, Y. et al. Increased risk of narcolepsy in children and adults after pandemic H1N1 vaccination in France. Brain 136, 2486–2496 (2013).
Ahmed, S. S. et al. Antibodies to influenza nucleoprotein cross-react with human hypocretin receptor 2. Sci. Transl Med. 7, 294ra105 (2015).
Saariaho, A. H. et al. Autoantibodies against ganglioside GM3 are associated with narcolepsy-cataplexy developing after Pandemrix vaccination against 2009 pandemic H1N1 type influenza virus. J. Autoimmun. 63, 68–75 (2015).
Han, F., Lin, L., Li, J., Dong, X. S. & Mignot, E. Decreased incidence of childhood narcolepsy 2 years after the 2009 H1N1 winter flu pandemic. Ann. Neurol. 73, 560 (2013).
Sarkanen, T., Alakuijala, A., Julkunen, I. & Partinen, M. Narcolepsy associated with Pandemrix vaccine. Curr. Neurol. Neurosci. Rep. 18, 43 (2018).
Heyck, H. & Hess, R. Some results of clinical studies on narcolepsy. Schweiz. Arch. Neurol. Psychiatr. 75, 401–402 (1955).
Hidalgo, H., Kallweit, U., Mathis, J. & Bassetti, C. L. Post Tick-borne encephalitis virus vaccination narcolepsy with cataplexy. Sleep 39, 1811–1814 (2016).
Lankford, D. A., Wellmann, J. J. & O’Hara, C. Posttraumatic narcolepsy in mild to moderate closed head injury. Sleep 17, S25–S28 (1994).
Silber, M. H. Narcolepsy, head injury, and the problem of causality. J. Clin. Sleep Med. 1, 157–158 (2005).
Cvetikovic-Lopes, V. et al. Elevated Tribbles homolog-2-specific antibody levels in narcolepsy patients. J. Clin. Invest. 120, 713–719 (2010).
Bergman, H. et al. Narcolepsy patients have antibodies that stain distinct cell populations in rat brain and influence sleep patterns. Proc. Natl Acad. Sci. USA 111, E3735–E3744 (2014).
Kallweit, U. et al. Co-existing narcolepsy (with and without cataplexy) and multiple sclerosis: six new cases and a literature review. J. Neurol. 265, 2071–2078 (2018).
Ekbom, K. Familial multiple sclerosis associated with narcolepsy. Arch. Neurol. 15, 337–344 (1966).
Tsutsui, K. et al. Anti-NMDA-receptor antibody detected in encephalitis, schizophrenia, and narcolepsy with psychotic features. BMC Psychiatry 12, 37 (2012).
Overeem, S. et al. Hypocretin-1 CSF levels in anti-Ma2 associated encephalitis. Neurology 62, 138–140 (2004).
Dauvilliers, Y. et al. Hypothalamic immunopathology in anti-Ma–associated diencephalitis with narcolepsy-cataplexy. JAMA Neurol. 70, 1305–1310 (2013).
Peraita-Adrados, R. et al. A patient with narcolepsy with cataplexy and multiple sclerosis: two different diseases that may share pathophysiologic mechanisms? Sleep Med. 14, 695–696 (2013).
Valko, P. O., Khatami, R., Baumann, C. R. & Bassetti, C. L. No effect of intravenous immunoglobulins in patents with narcolepsy with cataplexy. J. Neurol. 255, 1900–1903 (2008).
Chen, W., Black, J., Call, P. & Mignot, E. Late-onset narcolepsy presenting as rapidly progressing muscle weakness: response to plasmapheresis. Ann. Neurol. 58, 489–490 (2005).
Lecendreux, M., Maret, S., Bassetti, C., Mouren, M. C. & Tafti, M. Clinical efficacy of high-dose intravenous immunoglobulins near the onset of narcolepsy in a 10-year-old boy. J. Sleep Res. 12, 347–348 (2003).
Black, J. L. 3rd et al. Analysis of hypocretin (orexin) antibodies in patients with narcolepsy. Sleep 28, 427–431 (2005).
Tanaka, S., Honda, Y., Inoue, Y. & Honda, M. Detection of autoantibodies against hypocretin, HCRTR1, and HCRTR2 in narcolepsy: anti-Hcrt system antibody in narcolepsy. Sleep 29, 633–638 (2006).
Giannoccaro, M. P. et al. Antibodies against hypocretin receptor 2 are rare in narcolepsy. Sleep 40, zsw056 (2017).
Langdon, N. et al. Immune factors in narcolepsy. Sleep 9, 143–148 (1986).
Fredrikson, S., Carlander, B., Billiard, M. & Link, H. CSF immune variables in patients with narcolepsy. Acta Neurol. Scand. 81, 253–254 (1990).
Hartmann, F. J. et al. High-dimensional single-cell analysis reveals the immune signature of narcolepsy. J. Exp. Med. 213, 2621–2633 (2016).
Ramberger, M. et al. CD4+ T cell reactivity to orexin/hypocretin in patients with narcolepsy type 1. Sleep 40, zsw070 (2017).
Lecendreux, M. et al. Impact of cytokine in type 1 narcolepsy: role of pandemic H1N1 vaccination? J. Autoimmun. 60, 20–31 (2015).
Lecendreux, M. et al. Narcolepsy type 1 is associated with a systemic increase and activation of regulatory T cells and with a systemic activation of global T cells. PLOS ONE 12, e0169836 (2017).
Khatami, R. et al. The European Narcolepsy Network (EU-NN) database. J. Sleep Res. 25, 356–364 (2016).
Kornum, B. R. et al. Narcolepsy. Nat. Rev. Dis. Primers 3, 16100 (2017).
Guilleminault, C., Philips, R. & Dement, W. C. A syndrome of hypersomnia with automatic behaviour. Electroencephalogr. Clin. Neurophysiol. 38, 403–413 (1975).
Valko, P. O., Bassetti, C. L., Bloch, K. E., Held, U. & Baumann, C. R. Validation of the fatigue severity scale in a Swiss cohort. Sleep 31, 1601–1607 (2008).
Droogleever Fortuyn, H. A. et al. Severe fatigue in narcolepsy with cataplexy. J. Sleep Res. 21, 163–169 (2012).
Overeem, S. et al. The clinical features of cataplexy: a questionnaire study in narcolepsy patients with and without hypocretin-1 deficiency. Sleep Med. 12, 12–18 (2011).
Pizza, F. et al. The distinguishing motor features of cataplexy: a study from video-recorded attacks. Sleep 41, zsy026 (2018).
Serra, L., Montagna, P., Mignot, E., Lugaresi, E. & Plazzi, G. Cataplexy features in childhood narcolepsy. Mov. Disord. 23, 858–865 (2008).
Barateau, L. et al. Persistence of deep-tendon reflexes during partial cataplexy. Sleep Med. 45, 80–82 (2018).
Antelmi, E., Vandi, S., Pizza, Liguori, F., R. & Plazzi, G. Parkinsonian tremor persisting during cataplexy. Sleep Med. 17, 174–176 (2016).
Poryazova, R., Siccoli, M., Werth, E. & Bassetti, C. L. Unusually prolonged rebound cataplexy after withdrawal of fluoxetine. Neurology 65, 967–968 (2005).
Gelb, M. et al. Stability of cataplexy over several months — information for the design of therapeutic trials. Sleep 17, 265–273 (1994).
Rubboli, G. et al. A video-polygraphic analysis of the cataplectic attack. Clin. Neurophysiol. 111, S120–S128 (2000).
Plazzi, G. et al. Complex movement disorders at disease onset in childhood narcolepsy with cataplexy. Brain 134, 3477–3489 (2011).
Redlich, E. Epilegomena zur Narkolepsie-Frage [German]. Z. Ges. Neurol. Psychiatr. 136, 129–173 (1931).
Roth, B. Narcolepsy and Hypersomnia (Karger, 1980).
Rüther, E., Meier-Ewert, K. & Gallitz, A. Zur Symptomatologie des narkoleptischen syndroms [German]. Nervenarzt 43, 640–643 (1972).
Attarian, H. P., Schenck, C. H. & Mahowald, M. W. Presumed REM sleep behavior disorder arising from cataplexy and wakeful dreaming. Sleep Med. 1, 131–133 (2000).
Poryazova, R., Khatami, R., Werth, E. & Bassetti, C. L. Weak with sex: sexual intercourse as a trigger for cataplexy. J. Sex. Med. 6, 2271–2277 (2009).
Parkes, J. D., Chen, S. Y., Clift, S. J., Dahlitz, M. J. & Dunn, G. The clinical diagnosis of the narcoleptic syndrome. J. Sleep Res. 7, 41–52 (1997).
Vgontzas, A. N., Sollenberger, S. E., Kales, A., Bixler, E. O. & Vela-Bueno, A. Narcolepsy-cataplexy and loss of sphincter control. Postgrad. Med. J. 72, 493–494 (1996).
Fortuyn, H. A. et al. Psychotic symptoms in narcolepsy: phenomenology and a comparison with schizophrenia. Gen. Hosp. Psychiatry 31, 146–154 (2009).
Wamsley, E., Donjacour, C. E., Scammell, T. E., Lammers, G. J. & Stickgold, R. Delusional confusion of dreaming and reality in narcolepsy. Sleep 37, 419–422 (2014).
Roth, T. et al. Disrupted nighttime sleep in narcolepsy. J. Clin. Sleep Med. 9, 955–965 (2013).
Gudden, H. Die physiologische und pathologische Schlaftrunkenheit [German]. Arch. Psychiat. 40, 989–1015 (1905).
Mullington, J. & Broughton, R. Daytime sleep inertia in narcolepsy-cataplexy. Sleep 17, 69–76 (1994).
Broughton, R., Dunham, W., Weisskopf, M. & Rivers, M. Night sleep does not predict day sleep in narcolepsy. Electroencephalogr. Clin. Neurophysiol. 91, 67–70 (1994).
Harsh, J., Peszka, J., Hartwig, G. & Mitler, M. Night-time sleep and daytime sleepiness in narcolepsy. J. Sleep Res. 9, 309–316 (2000).
Mayer, G. & Meier-Ewert, K. Motor dyscontrol in sleep of narcoleptic patients (a lifelong development?). J. Sleep Res. 2, 143–148 (1993).
Nevsimalova, S., Prihodova, I., Kemlink, D., Lin, L. & Mignot, E. REM behavior disorder (RBD) can be one of the first symptoms of childhood narcolepsy. Sleep Med. 8, 784–786 (2007).
Pizza, F., Tartarotti, S., Poryazova, R., Baumann, C. R. & Bassetti, C. L. Sleep-disordered breathing and periodic limb movements in narcolepsy with cataplexy: a systematic analysis of 35 consecutive patients. Eur. Neurol. 70, 22–26 (2013).
Knudsen, S., Gammeltoft, S. & Jennum, P. J. Rapid eye movement sleep behaviour disorder in patients with narcolepsy is associated with hypocretin-1 deficiency. Brain 133, 568–579 (2010).
Dauvilliers, Y. et al. Periodic leg movements during sleep and wakefulness in narcolepsy. J. Sleep Res. 16, 333–339 (2007).
Plazzi, G. et al. Restless legs syndrome is frequent in narcolepsy with cataplexy patients. Sleep 33, 689–694 (2010).
Franceschini, C. et al. Motor events during REM sleep in patients with narcolepsy-cataplexy: a video-polysomnographic pilot study. Sleep Med. 12, S59–S63 (2011).
Nightingale, S. et al. The association between narcolepsy and REM behavior disorder (RBD). Sleep Med. 6, 253–258 (2005).
Chokroverty, S. Sleep apnea in narcolepsy. Sleep 9, 250–253 (1986).
Sansa, G., Iranzo, A. & Santamaria, J. Obstructive sleep apnea in narcolepsy. Sleep Med. 11, 93–95 (2010).
Dodet, P., Chavez, M., Leu-Semenescu, S., Golmard, J. L. & Arnulf, I. Lucid dreaming in narcolepsy. Sleep 38, 487–497 (2015).
Rak, M. et al. Increased lucid dreaming frequency in narcolepsy. Sleep 38, 787–792 (2015).
Bladin, P. F. Narcolepsy-cataplexy and psychoanalytic theory of sleep and dreams. J. Hist. Neurosci. 9, 203–217 (2000).
Willey, M. M. Sleep as an escape mechanism. Psychoanal. Rev. 11, 181–183 (1924).
Missriegler, A. On the psychogenesis of narcolepsy. J. Nerv. Ment. Dis. 93, 141–162 (1941).
Pai, M. N. Hypersomnia syndromes. Br. Med. J. 1, 522–524 (1950).
Orellana, C. et al. Life events in the year preceding the onset of narcolepsy. Sleep 17, S50–S53 (1994).
Broughton, R. et al. Life effects of narcolepsy in 180 patients from North America, Asia and Europe compared to matched controls. Can. J. Neurol. Sci. 8, 299–304 (1981).
Roth, B. & Nevsimalova, S. Depression in narcolepsy and hypersomnia. Schweiz. Arch. Neurol. Neurochir. Psychiatr. 116, 291–300 (1975).
Vourdas, A. et al. Narcolepsy and psychopathology: is there an association? Sleep Med. 3, 353–360 (2002).
Ohayon, M. M. Narcolepsy is complicated by high medical and psychiatric comorbidities: a comparison with the general population. Sleep Med. 14, 488–492 (2013).
Ruoff, C. M. et al. High rates of psychiatric comorbidity in narcolepsy: findings from the Burden of Narcolepsy Disease (BOND) study of 9,312 patients in the United States. J. Clin. Psychiatry 78, 171–176 (2017).
Cohen, A., Mandrekar, J., St Louis, E. K., Silber, M. H. & Kotagal, S. Comorbidities in a community sample of narcolepsy. Sleep Med. 43, 14–18 (2018).
Fortuyn, H. A., Mulders, P. C., Renier, Buitelaar, W. O., J. K. & Overeem, S. Narcolepsy and psychiatry: an evolving association of increasing interest. Sleep Med. 12, 714–719 (2011).
Rosenthal, C. Über das Auftreten von halluzinatorisch-kataplektischen Angstsyndrom, Wachanfällen und ähnlichen Störungen bei Schizophrenen [German]. Monatschr. Psychiatr. Neurol. 102, 11–38 (1939).
Nissen, C. et al. Transient narcolepsy-cataplexy syndrome after discontinuation of the antidepressant venlafaxine. J. Sleep Res. 14, 207–208 (2005).
Plazzi, G., Khatami, R., Serra, Pizza, L., F. & Bassetti, C. L. Pseudocataplexy in narcolepsy-cataplexy. Sleep Med. 11, 591–594 (2010).
Krahn, L. E., Hansen, M. R. & Shepard, J. W. Pseudocataplexy. Psychosomatics 42, 356–358 (2001).
Ponz, A. et al. Abnormal activitiy in reward brain circuits in human narcolepsy with cataplexy. Ann. Neurol. 67, 190–200 (2010).
Ponz, A. et al. Reduced amygdala activity during aversive conditioning in human narcolepsy. Ann. Neurol. 67, 394–398 (2010).
Georgescu, D. et al. Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. J. Neurosci. 23, 3106–3111 (2003).
Broughton, R. J., Guberman, A. & Roberts, J. Comparison of the psychosocial effects of epilepsy and narcolepsy/cataplexy: a controlled study. Epilepsia 25, 423–433 (1984).
Ohayon, M. M. et al. Increased mortality in narcolepsy. Sleep 37, 439–444 (2014).
Pizza, F. et al. Car crashes and central disorders of hypersomnolence: a French study. PLOS ONE 10, e0129386 (2015).
Blackwell, J. E., Alammar, H. A., Weighall, A. R., Kellar, I. & Nash, H. M. A systematic review of cognitive function and psychosocial well-being in school-age children with narcolepsy. Sleep Med. Rev. 34, 82–93 (2017).
Szakacs, Z., Hallbook, T., Tideman, P., Darin, N. & Wentz, E. Psychiatric comorbidity and cognitive profile in children with narcolepsy with or without association to the H1N1 influenza vaccnination. Sleep 38, 615–621 (2015).
Douglas, N. J. The psychosocial aspects of narcolepsy. Neurology 50, S27–S30 (1998).
Goswami, M. The influence of clinical symptoms on quality of life in patients with narcolepsy. Neurology 50, S31–S36 (1998).
Oosterloo, M., Lammers, G. J., Overeem, S., de Noord, I. & Kooij, J. J. Possible confusion between primary hypersomnia and adult attention-deficit/hyperactivity disorder. Psychiatry Res. 143, 293–297 (2006).
Filardi, M. et al. Attention impairments and ADHD symptoms in adult narcoleptic patients with and without hypocretin deficiency. PLOS ONE 12, e0182085 (2017).
Naumann, A., Bellebaum, C. & Daum, I. Cognitive deficits in narcolepsy. J. Sleep Res. 15, 329–338 (2006).
Zamarian, L. et al. Subjective deficits of attention, cognition and depression in patients with narcolepsy. Sleep Med. 16, 45–51 (2015).
Bayard, S. et al. Executive control of attention in narcolepsy. PLOS ONE 7, e33525 (2012).
Jennum, J. et al. Cerebrospinal fluid biomarkers of neurodegeneration are decreased or normal in narcolepsy. Sleep 40, zsw006 (2017).
Economou, N. T., Manconi, M., Ghika, J., Raimondi, M. & Bassetti, C. L. Development of Parkinson and Alzheimer diseases in two cases of narcolepsy-cataplexy. Eur. Neurol. 67, 48–50 (2012).
Roberts, H. J. Obesity due to the syndrome of narcolepsy and diabetogenic hyperinsulinism: clinical and therapeutic observations on 252 patients. J. Am. Geriatr. Soc. 15, 721–743 (1967).
Schuld, A., Hebebrand, J., Geller, F. & Pöllmächer, T. Increased body mass index in patients with narcolepsy. Lancet 355, 1274–1275 (2000).
Kok, S. W. et al. Reduction of plasma leptin levels and loss of its circadian rhythmicity in hypocretin (orexin)-deficient narcoleptic humans. J. Clin. Endocrinol. Metab. 87, 805–809 (2002).
Donjacour, C. E. et al. Glucose and fat metabolism in narcolepsy and the effect of sodium oxybate: a hyperinsulinemic-euglycemic clamp study. Sleep 37, 795–801 (2014).
Poli, F. et al. High prevalence of precocious puberty and obesity in childhood narcolepsy with cataplexy. Sleep 36, 175–181 (2013).
van Holst, R. J. et al. Aberrant food choices after satiation in human orexin-deficient narcolepsy type 1. Sleep 39, 1951–1959 (2016).
Nishino, S. et al. Low cerebrospinal fluid hypocretin (orexin) and altered energy homeostasis in human narcolepsy. Ann. Neurol. 50, 381–388 (2001).
Kok, S. W. et al. Altered setting of the pituitary-thyroid ensemble in hypocretin-deficient narcoleptic men. Am. J. Physiol. Endocrinol. Metab. 288, E892–E899 (2005).
Plazzi, G. et al. Autonomic disturbances in narcolepsy. Sleep Med. Rev. 15, 187–196 (2011).
Stiasny-Kolster, K. et al. Combination of ‘idiopathic’ REM sleep behaviour disorder and olfactory dysfunction as possible indicator for alpha-synucleinopathy demonstrated by dopamine transporter FP-CIT-SPECT. Brain 128, 126–137 (2005).
Bayard, S. et al. Olfactory dysfunction in narcolepsy with cataplexy. Sleep Med. 11, 876–881 (2010).
Black, J. et al. Medical comorbidity in narcolepsy: findings from the Burden of Narcolepsy Disease (BOND) study. Sleep Med. 33, 13–18 (2017).
Lecendreux, M. Pediatric narcolepsy: clinical and therapeutical approach. Handb. Clin. Neurol. 112, 839–845 (2013).
Vandi, S. et al. A standardized test to document cataplexy. Sleep Med. 53, 197–204 (2017).
Baumann, C. R., Khatami, R., Werth, E. & Bassetti, C. L. Hypocretin (orexin) deficiency predicts severe objective excessive daytime sleepiness in narcolepsy with cataplexy. J. Neurol. Neurosurg. Psychiatry 77, 402–404 (2006).
Gerashchenko, D. et al. Hypocretin-2-saporin lesions of the lateral hypothalamus produce narcoleptic-like sleep behavior in the rat. J. Neurosci. 21, 7273–7283 (2001).
Baumann, C. R. & Bassetti, C. L. Hypocretins (orexins) and sleep-wake disorders. Lancet Neurol. 10, 673–682 (2005).
Baumann, C. R., Dauvilliers, Y., Mignot, E. & Bassetti, C. L. Normal CSF hypocretin-1 (orexin-A) levels in dementia with Lewy bodies. Eur. Neurol. 52, 73–76 (2004).
Mayer, G. & Lammers, G. J. The MSLT: more objections than benefits as a diagnostic gold standard? Sleep 37, 1027–1028 (2014).
Sakai, N., Matsumura, M., Lin, L., Mignot, E. & Nishino, S. HLPC analysis of CSF hypocretin-1 in type 1 and 2 narcolepsy. Sci. Rep. 9, 477 (2019).
Mignot, E. et al. Correlates of sleep-onset REM periods during the Multiple Sleep Latency Test in community adults. Brain 129, 1609–1623 (2006).
Goldbart, A. et al. Narcolepsy and predictors of positive MSLTs in the Wisconsin sleep cohort. Sleep 37, 1043–1051 (2014).
Zhang, Z. et al. Exploring the clinical features of narcolepsy type 1 versus narcolepsy type 2 from European Narcolepsy Network database with machine learning. Sci. Rep. 8, 10628 (2018).
Bassetti, C. & Aldrich, M. S. Idiopathic hypersomnia. A series of 42 patients. Brain 120, 1423–1435 (1997).
Berti Ceroni, G., Coccagna, G., Gambi, D. & Lugaresi, E. Considerazioni clinico-poligrafiche sulla narcolessia essenziale “a sonno lento” [Italian]. Sist. Nerv. 2, 81–89 (1967).
Hishikawa, Y. et al. The nature of sleep attack and other symptoms of narcolepsy. Electroencephalogr. Clin. Neurophysiol. 24, 1–10 (1968).
Melberg, A. et al. Autosomal dominant cerebellar ataxia deafness and narcolepsy. J. Neurol. Sci. 134, 119–129 (1995).
Moghadam, K. K. et al. Narcolepsy is a common phenotype in HSAN IE and ADCA-DN. Brain 137, 1643–1655 (2014).
D’Cruz, O. F., Vaughn, B. V., Gold, S. H. & Greenwood, R. S. Symptomatic cataplexy in pontomedullary lesions. Neurology 44, 2189–2191 (1994).
Kanbayashi, T. Symptomatic narcolepsy in patients with neuromyelitis optica and multiple sclerosis: new neurochemical and immunological implications. Arch. Neurol. 66, 1563–1566 (2009).
Mathis, J., Hess, C. W. & Bassetti, C. Isolated mediotegmental lesion causing narcolepsy and rapid eye movement sleep behaviour disorder: a case evidencing a common pathway in narcolepsy and rapid eye movement sleep behaviour disorder. J. Neurol. Neurosurg. Psychiatry 78, 427–429 (2007).
Schwartz, W. J., Stakes, J. W. & Hobson, J. A. Transient cataplexy after removal of a craniopharyngioma. Neurology 34, 1372–1375 (1984).
Bonduelle, M. & Degos, C. in Narcolepsy: Proceedings of the First International Symposium on Narcolepsy (eds Guilleminault, C. et al.) 313–332 (Spectrum, 1976).
Stahl, S. M., Layzer, R. B., Aminoff, M. J., Townsend, J. J. & Feldon, S. Continuous cataplexy in a patient with a midbrain tumor: the limp man syndrome. Neurology 30, 1115–1118 (1980).
Fernandez, J. M., Sadaba, F., Villaverde, F. J., Alvaro, L. C. & Cortina, C. Cataplexy associated with midbrain lesion. Neurology 45, 393–394 (1995).
Roehrs, T., Zorick, F., Sicklesteel, J., Wittig, R. & Roth, T. Excessive daytime sleepiness associated with insufficient sleep. Sleep 6, 319–325 (1983).
Baumann, C., Ferini-Strambi, L., Waldvogel, D., Werth, E. & Bassetti, C. L. Parkinsonism with excessive daytime sleepiness — a narcolepsy-like disorder? J. Neurol. 252, 139–145 (2005).
Kaplan, K. A. & Harvey, A. G. Hypersomnia across mood disorders: a review and synthesis. Sleep Med. Rev. 13, 275–285 (2009).
McLeod, S., Ferrie, C. & Zuberi, S. M. Symptoms of narcolepsy in children misinterpreted as epilepsy. Epileptic Disord. 7, 13–17 (2005).
Paskind, H. A. Effect of laughter on muscle tone. Arch. Neurol. Psychiatry 28, 623–628 (1932).
Partinen, M. Sleeping habits and sleep disorders of Finnish men before, during and after military service. Ann. Med. Milit. Fenn. 57 (Suppl. 1), 1–96 (1982).
Overeem, S., Lammers, G. J. & van Dijk, J. G. Weak with laughter. Lancet 354, 838 (1999).
Kim, L. J. et al. Frequencies and associations of narcolepsy-related symptoms: a cross-sectional study. J. Clin. Sleep Med. 11, 1377–1384 (2015).
Parkes, J. D. Genetic factors in human sleep disorders with special reference to Norrie disease, Prader–Willi syndrome and Moebius syndrome. J. Sleep Res. 8 (Suppl. 1), 14–22 (1999).
Iranzo, A. & Santamaria, J. Hyperkalemic periodic paralysis associated with multiple sleep onset REM periods. Sleep 22, 1123–1124 (1999).
Hartse, K. M., Zorick, F., Sicklesteel, J. & Roth, T. Isolated cataplexy: a familial study. Henry Ford Hosp. Med. J. 36, 24–27 (1988).
Kishi, Y. et al. Schizophrenia and narcolepsy: a review with a case report. Psychiatry Clin. Neurosci. 58, 117–124 (2004).
Bassetti, C. L. in Handbook of Clinical Neurology 169–190 (Elsevier, 2014).
Antelmi, E., Pizza, F., Vandi, S. & Plazzi, G. Stereotyped episodes of aphasia and immobility: how cataplexy mimics stroke in an elderly patient. Sleep Med. 36, 122–124 (2017).
Leu-Semenscu, S. et al. Hallucinations in narcolepsy with and without cataplexy: contrasts with Parkinson’s disease. Sleep Med. 12, 497–504 (2011).
Cheyne, J. A., Newby-Clark, I. R. & Rueffer, S. D. Relations among hypnagogic and hypnopompic experiences associated with sleep paralysis. J. Sleep Res. 8, 313–318 (1999).
Dahmen, N., Kasten, M., Müller, M. J. & Mittag, K. Frequency and dependence on body posture of hallucinations and sleep paralysis in a community sample. J. Sleep Res. 11, 179–180 (2002).
Ohayon, M. M. & Smirne, S. Prevalence and consequences of insomnia disorders in the general population of Italy. Sleep Med. 3, 115–120 (2002).
Kallweit, U., Schmidt, M. & Bassetti, C. L. Patient-reported measures of narcolepsy: the need for better assessment. J. Clin. Sleep Med. 13, 737–744 (2017).
Sturzenegger, C. et al. Swiss Narcolepsy Scale: a simple screening tool for hypocretin-deficient narcolepsy with cataplexy. Clin. Transl Neurosci. 2, 1–5 (2018).
Aldrich, M. S., Chervin, R. D. & Malow, B. A. Value of the multiple sleep latency test (MSLT) for the diagnosis of narcolepsy. Sleep 20, 620–629 (1997).
Dauvilliers, Y. et al. Effect of age on MSLT results in patients with narcolepsy-cataplexy. Neurology 62, 46–50 (2004).
Singh, M., Drake, C. L. & Roth, T. The prevalence of multiple sleep-onset REM periods in a population-based sample. Sleep 29, 890–895 (2016).
Huang, Y. S. et al. Multiple sleep latency test in narcolepsy type 1 and narcolepsy type 2: a 5-year follow-up study. J. Sleep Res. 27, e12700 (2018).
Marti, I., Valko, P. O., Khatami, R., Bassetti, C. L. & Baumann, C. R. Multiple sleep latency measures in narcolepsy and behaviourally insufficient sleep syndrome. Sleep Med. 10, 1146–1150 (2009).
Drakatos, P. et al. First rapid eye movement sleep periods and sleep-onset rapid eye movement periods in sleep-stage sequencing of hypersomnias. Sleep Med. 14, 897–901 (2013).
Cairns, A. & Bogan, R. Prevalence and clinical correlates of a short onset REM period (SOREMP) during routine PSG. Sleep 38, 1575–1581 (2015).
Pizza, F. et al. Spectral electroencephalography profile of rapid eye movement sleep at sleep onset in narcolepsy type 1. Eur. J. Neurol. 24, 334–340 (2017).
Pizza, F. et al. Nocturnal sleep dynamics identify narcolepsy type 1. Sleep 38, 1277–1284 (2015).
Sakai, N., Mastsumura, M., Lin, L., Mignot, E. & Nishino, S. HPLC analysis of CSF hypocretin-1 in type 1 and 2 narcolepsy. Sci. Rep. 9, 477 (2019).
Bassetti, C., Aldrich, M. S. & Quint, D. J. MRI findings in narcolepsy. Sleep 20, 630–631 (1997).
Plazzi, G. et al. Pontine lesions in idiopathic narcolepsy. Neurology 46, 1250–1254 (1996).
Kaufmann, C., Schuld, A., Pöllmächer, T. & Auer, D. P. Reduced cortical gray matter in narcolepsy: preliminary findings with voxel-based morphometry. Neurology 58, 1852–1855 (2002).
Overeem, S. et al. Voxel-based morphometry in hypocretin-deficient narcolepsy. Sleep 26, 44–46 (2003).
Poryazova, R. et al. Magnetic resonance spectroscopy in narcolepsy [abstract]. Sleep 29, A222 (2006).
Schaer, M., Poryazova, R., Schwartz, S., Bassetti, C. L. & Baumann, C. R. Cortical morphometry in narcolepsy with cataplexy. J. Sleep Res. 21, 487–494 (2012).
Wada, M. et al. Neuroimaging correlates of narcolepsy with cataplexy: a systematic review. Neurosci. Res. https://doi.org/10.1016/j.neures.2018.03.005 (2018).
Meletti, S. et al. The brain correlates of laugh and cataplexy in childhood narcolepsy. J. Neurosci. 35, 11583–11594 (2015).
Schwartz, S. et al. Abnormal activity in hypothalamus and amygdala during humour processing in human narcolepsy with cataplexy. Brain 131, 514–522 (2008).
Reiss, A. L. et al. Anomalous hypothalamic response to humor in cataplexy. PLOS ONE 3, e2225 (2008).
Siegel, J. M. et al. Neuronal-activity in narcolepsy: Identification of cataplexy-related cells in the medial medulla. Science 252, 1315–1318 (1991).
Aldrich, M. Narcolepsy. N. Engl. J. Med. 323, 389–394 (1990).
Apergis-Schoute, J. et al. Optogenetic evidence for inhibitory signaling from orexin to MCH neurons via local microcircuits. J. Neurosci. 35, 5435–5441 (2015).
Schöne, C., Apergis-Schoute, J., Sakurai, T., Adamantidis, A. & Burdakov, D. Coreleased orexin and glutamate evoke nonredundant spike outputs and computations in histamine neurons. Cell Rep. 7, 697–704 (2014).
van den Top, M., Lee, K., Whyment, A. D., Blanks, A. M. & Spanswick, D. Orexigen-sensitive NPY/AgRP pacemaker neurons in the hypothalamic arcuate nucleus. Nat. Neurosci. 7, 493–494 (2004).
Belle, M. D. et al. Acute suppressive and long-term phase modulation actions of orexin on the mammalian circadian clock. J. Neurosci. 34, 3607–3621 (2014).
Lee, M. G., Hassani, O. K. & Jones, B. E. Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J. Neurosci. 25, 6716–6720 (2005).
Chemelli, R. M. et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98, 437–451 (1999).
Lin, L. et al. The sleep disorder of canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98, 365–376 (1999).
Hasegawa, E., Yanagisawa, M., Sakurai, T. & Mieda, M. Orexin neurons suppress narcolepsy via 2 distinct efferent pathways. J. Clin. Invest. 124, 604–616 (2014).
Irukayama-Tomobe, Y. et al. Nonpeptide orexin type-2 receptor agonist ameliorates narcolepsy-cataplexy symptoms in mouse models. Proc. Natl Acad. Sci. USA 114, 5731–5736 (2017).
Kaushik, M. K. et al. Continuous intrathecal orexin delivery inhibits cataplexy in a murine model of narcolepsy. Proc. Natl Acad. Sci. USA 115, 6046–6051 (2018).
Black, S. W. et al. Partial ablation of the orexin field induces a sub-narcoleptic phenotype in a conditional mouse model of orexin neurodegeneration. Sleep 41, zsy116 (2018).
Lin, J. S. Brain structures and mechanisms involved in the control of cortical activation and wakefulness, with emphasis on posterior hypothalamus and histaminergic neurons. Sleep Med. Rev. 4, 471–503 (2000).
Kanbayashi, T. et al. CSF histamine contents in narcolepsy, idiopathic hypersomnia and obstructive sleep apnea syndrome. Sleep 32, 181–187 (2009).
Nishino, S. et al. Decreased CSF histamine in narcolepsy with and without low CSF hypocretin-1 in comparison to healthy controls. Sleep 32, 175–180 (2009).
Bassetti, C. L. et al. Cerebrospinal fluid histamine levels are decreased in patients with narcolepsy and excessive daytime sleepiness of other origin. J. Sleep Res. 19, 620–623 (2010).
Dauvilliers, Y. et al. Normal cerebrospinal fluid histamine and tele-methylhistamine levels in hypersomnia conditions. Sleep 35, 1359–1366 (2012).
Lin, J. S. et al. An inverse agonist of the histamine H3 receptor improves wakefulnesss in narcolepsy: studies in orexin−/− mice and patients. Neurobiol. Dis. 30, 74–83 (2008).
Jordan, W. et al. Prostaglandin D synthase (beta-trace) in healthy human sleep. Sleep 27, 867–874 (2004).
Jordan, W. et al. Narcolepsy increased L-PGDS (beta-trace) levels correlate with excessive daytime sleepiness but not with cataplexy. J. Neurol. 252, 1372–1378 (2005).
Bassetti, C. L., Hersberger, M. & Baumann, C. R. CSF prostaglandin D synthase is reduced in excessive daytime sleepiness. J. Neurol. 253, 1030–1033 (2006).
Peyron, C. et al. Neurons containing hypocretin (orexin) project to multiple neuronal system. J. Neurosci. 18, 9996–10015 (1998).
Boissard, R. et al. The rat ponto-medullary network responsible for paradoxical sleep onset and maintenance: a combined microinjection and functional neuroanatomical study. Eur. J. Neurosci. 16, 1959–1973 (2002).
Lu, J., Sherman, D., Devor, M. & Saper, C. B. A putative flip-flop switch for control of REM sleep. Nature 441, 589–594 (2006).
Okura, M., Riehl, J., Mignot, E. & Nishino, S. Sulpiride, a D2/D3 blocker reduces cataplexy but not REM sleep in canine narcolepsy. Neuropsychopharmacology 23, 528–538 (2000).
Vu, M. H., Hurni, C., Mathis, J., Roth, C. & Bassetti, C. L. Selective REM sleep deprivation in narcolepsy. J. Sleep Res. 20, 50–56 (2011).
Overeem, S., Lammers, G. J. & van Dijk, J. G. Cataplexy: ‘tonic immobility’ rather than ‘REM-sleep atonia’? Sleep Med. 3, 471–477 (2002).
Hishikawa, Y. et al. Characteristics of REM sleep accompanied by sleep paralysis and hypnagogic hallucinations in narcoleptic patients. Waking Sleeping 2, 113–123 (1978).
Terzaghi, M., Ratti, P. L., Manni, F. & Manni, R. Sleep paralysis in narcolepsy: more than just a motor dissociative phenomenon? Neurol. Sci. 33, 169–172 (2012).
Snow, M. B. et al. GABA cells in the central nucleus of the amygdala promote cataplexy. J. Neurosci. 37, 4007–4022 (2017).
Mahoney, C. E., Agostinelli, L. J., Brooks, J. N., Lowell, B. B. & Scammell, T. E. GABAergic neurons of the central amygdala promote cataplexy. J. Neurosci. 37, 3995–4006 (2017).
Gulyani, S., Wu, M. F., Nienhuis, R., John, J. & Siegel, J. M. Cataplexy-related neurons in the amygdala of the narcoleptic dog. Neuroscience 112, 355–365 (2002).
Burgess, C. R., Oishi, Y., Mochizuki, T., Peever, J. H. & Scammell, T. E. Amygdala lesions reduce cataplexy in orexin knock-out mice. J. Neurosci. 33, 9734–9742 (2013).
Hong, S. B., Tae, W. S. & Joo, E. Y. Cerebral perfusion changes during cataplexy in narcolepsy patients. Neurology 66, 1747–1749 (2006).
Tucci, V. et al. Emotional information processing in patients with narcolepsy: a psychophysiologic investigation. Sleep 26, 558–564 (2003).
Khatami, R., Birkmann, S. & Bassetti, C. L. Amygdala dysfunction in narcolepsy-cataplexy. J. Sleep Res. 16, 226–229 (2007).
Oishi, Y. et al. Role of the medial prefrontal cortex in cataplexy. J. Neurosci. 33, 9743–9751 (2013).
Vassalli, A. et al. Electroencephalogram paroxysmal θ characterizes cataplexy in mice and children. Brain 136, 1592–1608 (2013).
van der Heide, A. et al. Comparing treatment effect measurements in narcolepsy: the sustained attention to response task, Epworth sleepiness scale and maintenance of wakefulness test. Sleep 38, 1051–1058 (2015).
Bogan, R. et al. Evaluation of quality of life in patients with narcolepsy treated with sodium oxybate: use of the 36-item short-form health survey in a clinical trial. Neurol. Ther. 5, 203–213 (2016).
Filardi, M. et al. Physical activity and sleep/wake behavior, anthropometric, and metabolic profile in pediatric narcolepsy type 1. Front. Neurol. 9, 707 (2018).
Yoss, R. E. & Daly, D. Treatment of narcolepsy with ritalin. Neurology 9, 171–173 (1959).
Hishikawa, Y., Ida, H., Nakai, K. & Kaneko, Z. Treatment of narcolepsy with imipramine (tofranil) and desmethylimipramine (pertofran). J. Neurol. Sci. 3, 453–461 (1966).
Frey, J. & Darbonne, C. Fluoxetine suppresses human cataplexy: a pilot study. Neurology 44, 707–709 (1994).
Kallweit, U. & Bassetti, C. L. Pharmacological management of narcolepsy with and without cataplexy. Expert Opin. Pharmacother. 18, 809–817 (2017).
Broughton, R. et al. Randomized, double blind, placebo-controlled cross-over trial of modafinil in the treatment of excessive daytime sleepiness in narcolepsy. Neurology 49, 444–451 (1997).
US Modafinil in Narcolepsy Multicenter Study Group. Randomized trial of modafinil for the treatment of pathological somnolence in narcolepsy. Ann. Neurol. 43, 88–97 (1998).
US Xyrem Multicenter Study Group. Sodium oxybate demonstrates long-term efficacy for the treatment of cataplexy in patients with narcolepsy. Sleep Med. 5, 119–123 (2004).
US Xyrem Multicenter Study Group. A 12-month, open-label, multicenter extension trial of orally administered sodium oxybate for the treatment of narcolepsy. Sleep 26, 31–35 (2003).
Dauvilliers, Y. et al. Pitolisant versus placebo or modafinil in patients with narcolepsy: a double-blind, randomised trial. Lancet Neurol. 12, 1068–1075 (2013).
Szakacs, Z. et al. Safety and efficacy of pitolisant on cataplexy in patients with narcolepsy: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 16, 200–207 (2017).
Thannickal, T. C. et al. Opiates increase the number of hypocretin-producing cells in human and mouse brain and reverse cataplexy in a mouse model of narcolepsy. Sci. Transl Med. 10, eaao4953 (2018).
Harper, J. M. Gelineau’s narcolepsy relieved by opiates. Lancet 10, 92 (1981).
Fry, J. M., Pressman, M. R., DiPhilippo, M. A. & Forst-Paulus, M. Treatment of narcolepsy with codeine. Sleep 9, 269–274 (1986).
Billiard, M. et al. EFNS guidelines on management of narcolepsy. Eur. J. Neurol. 13, 1035–1048 (2006).
Mignot, E. J. A practical guide to the therapy of narcolepsy and hypersomnia syndromes. Neurotherapeutics 9, 739–752 (2012).
Bogan, R. K., Roth, T., Schwartz, J. & Miloslavsky, M. Time to response with sodium oxybate for the treatment if excessive daytime sleepiness and cataplexy in patients with narcolepsy. J. Clin. Sleep Med. 11, 427–432 (2015).
Thorpy, M. J. et al. A randomized study of solriamfetol for excessive sleepiness in narcolepsy. Ann. Neurol. 85, 359–370 (2019).
Ruoff, C. et al. Effect of oral JZP-110 (ADX-N05) on wakefulness and sleepiness in adults with narcolepsy: a phase 2b study. Sleep 39, 1379–1387 (2016).
Mitler, M. M., Hajdukovic, R. & Erman, M. K. Treatment of narcolepsy with methamphetamine. Sleep 16, 306–317 (1993).
Jin, L. et al. Antidepressants for the treatment of narcolepsy: a prospective study of 148 patients in northern China. J. Clin. Neurosci. https://doi.org/10.1016/j.jocn.2019.02.014 (2019).
Lehert, P. & Falissard, B. Multiple treatment comparison in narcolepsy: a network meta-analysis. Sleep 41, zsy185 (2018).
Roth, T. et al. Effect of sodium oxybate on disrupted nighttime sleep in patients with narcolepsy. J. Sleep Res. 26, 407–414 (2016).
Plazzi, G. et al. Treatment of paediatric narcolepsy with sodium oxybate: a double-blind, placebo-controlled, randomised-withdrawal multicentre study and open-label investigation. Lancet Child Adolesc. Health 2, 483–494 (2018).
Calvo-Ferrandiz, E. & Peraita-Adrados, R. Narcolepsy with cataplexy and pregnancy: a case–control study. J. Sleep Res. 27, 268–272 (2017).
Maurovich-Horvat, E. et al. Narcolepsy and pregnancy: a retrospective European evaluation of 249 pregnancies. J. Sleep Res. 22, 496–512 (2013).
Dauvilliers, Y., Carlander, B., Rivier, F., Touchon, J. & Tafti, M. Successful management of cataplexy with intravenous immunoglobulins at narcolepsy onset. Ann. Neurol. 56, 905–908 (2004).
Miyata, R., Hayashi, M., Kohyama, J. & Honda, M. Steroid therapy ameliorated cataplexy in three children with recent-onset of narcolepsy. Sleep Med. 29, 86–87 (2017).
Donjacur, C. E. & Lammers, G. J. A remarkable effect of alemtuzumab in a patient suffering from narcolepsy with cataplexy. J. Sleep Res. 21, 479–480 (2012).
Liblau, R. S., Vassalli, A., Seifinejad, A. & Tafti, M. Hypocretin (orexin) biology and the pathophysiology of narcolepsy with cataplexy. Lancet Neurol. 14, 318–328 (2015).
Bernard-Valnet, R. et al. CD8 T cell-mediated killing of orexinergic neurons induces a narcolepsy-like phenotype in mice. Proc. Natl Acad. Sci. USA 113, 10956–10961 (2016).
Krahn, L. E., Boeve, B. F., Olson, E. J., Herold, D. L. & Silber, M. H. A standardized test for cataplexy. Sleep Med. 1, 125–130 (2000).
Olsen, A. V. et al. Diagnostic value of sleep stage dissociation as visualized on a 2-dimensional sleep state space in human narcolepsy. J. Neurosci. Methods 282, 9–19 (2017).
Hirtz, C. et al. From radioimmunoassay to mass spectrometry: a new method to quantify orexin-A (hypocretin-1) in cerebrospinal fluid. Sci. Rep. 6, 25162 (2016).
Stephansen, J. B. et al. Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy. Nat. Commun. 9, 5229 (2018).
Rosenberg, R. & Kim, A. Y. The AWAKEN survey: knowledge of narcolepsy among physicians and the general population. Postgrad. Med. 126, 78–86 (2014).
Maski, K. et al. Listening to the patient voice in narcolepsy: diagnostic delay, disease burden, and treatment efficacy. J. Clin. Sleep Med. 13, 419–425 (2017).
Chaplin, J. E., Szakács, A. & Hallböök, Darin, T. N. The development of a health-related quality-of-life instrument for young people with narcolepsy: NARQoL-21. Health Qual. Life Outcomes 15, 135 (2017).
Dauvilliers, Y. et al. Measurement of narcolepsy symptoms: the Narcolepsy Severity Scale. Neurology 88, 1358–1365 (2017).
Acknowledgements
The authors thank the Klaus-Grawe Foundation and the European Sleep Foundation (formerly the Alpine Sleep Summer School) for enabling the Think Tank, which formed the basis of this article. They also thank A. Blank of Inselspital Bern for preparation of the original figures accompanying this article.
Reviewer information
Nature Reviews Neurology thanks M. Honda, G. Plazzi, M. Partinen and other anonymous reviewer(s) for their contribution to the peer review of this work.
Author information
Authors and Affiliations
Contributions
All authors contributed to researching data for the article and discussions of its content. C.L.A.B. and Y.D. prepared the first draft of the manuscript. All authors participated in review and revision of the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
C.L.A.B. declares that he is a member of the advisory boards of Idorsia, Jazz, Takeda and UCB. R.K. and M.T. declare that they are members of the advisory board of UCB. G.J.L. and G.M. declare that they are members of the advisory boards of Bioproject and UCB. T.S. declares that he is a member of the advisory board of Jazz. Y.D. declares that he is a member of the advisory boards of Bioproject, Harmony Biosciences, Idorsia, Jazz, Takeda and UCB. R.L. has received a research grant from GSK. UK declares that he is a member of the advisory boards of AOP Orphan Pharmaceuticals, Bioprojet, Harmony Biosciences, Jazz, and UCB. T.E.S. has received research grant support from Takeda and Merck. T.E.S. declares that he is a member of the advisory board of Avadel, Harmony Biosciences, Idorsia, Jazz and Takeda. The other authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bassetti, C.L.A., Adamantidis, A., Burdakov, D. et al. Narcolepsy — clinical spectrum, aetiopathophysiology, diagnosis and treatment. Nat Rev Neurol 15, 519–539 (2019). https://doi.org/10.1038/s41582-019-0226-9
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41582-019-0226-9
This article is cited by
-
Large-scale genome sequencing redefines the genetic footprints of high-altitude adaptation in Tibetans
Genome Biology (2023)
-
A comparative blind study between skin biopsy and seed amplification assay to disclose pathological α-synuclein in RBD
npj Parkinson's Disease (2023)
-
Early- and late-onset narcolepsy: possibly two distinct clinical phenotypes
Sleep and Breathing (2023)
-
Autonomic Dysfunction in Hypersomnia
Current Sleep Medicine Reports (2023)
-
Comparison of Solriamfetol and Modafinil on Arousal and Anxiety-Related Behaviors in Narcoleptic Mice
Neurotherapeutics (2023)