Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The immunopathogenesis of narcolepsy type 1

Abstract

Narcolepsy type 1 (NT1) is a chronic sleep disorder resulting from the loss of a small population of hypothalamic neurons that produce wake-promoting hypocretin (HCRT; also known as orexin) peptides. An immune-mediated pathology for NT1 has long been suspected given its exceptionally tight association with the MHC class II allele HLA-DQB1*06:02, as well as recent genetic evidence showing associations with polymorphisms of T cell receptor genes and other immune-relevant loci and the increased incidence of NT1 that has been observed after vaccination with the influenza vaccine Pandemrix. The search for both self-antigens and foreign antigens recognized by the pathogenic T cell response in NT1 is ongoing. Increased T cell reactivity against HCRT has been consistently reported in patients with NT1, but data demonstrating a primary role for T cells in neuronal destruction are currently lacking. Animal models are providing clues regarding the roles of autoreactive CD4+ and CD8+ T cells in the disease. Elucidation of the pathogenesis of NT1 will allow for the development of targeted immunotherapies at disease onset and could serve as a model for other immune-mediated neurological diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HLA effects and HLA-DQ allele competition in narcolepsy type 1.
Fig. 2: Hypothetical scheme for the immunopathogenesis of narcolepsy type 1.

Similar content being viewed by others

References

  1. Schenck, C. H., Bassetti, C. L., Arnulf, I. & Mignot, E. English translations of the first clinical reports on narcolepsy and cataplexy by Westphal and Gélineau in the late 19th century, with commentary. J. Clin. Sleep. Med. 3, 301–311 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Aserinsky, E. & Kleitman, N. Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118, 273–274 (1953).

    Article  CAS  PubMed  Google Scholar 

  3. Mignot, E. Genetic and familial aspects of narcolepsy. Neurology 50, S16–S22 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Roberts, M. H. & Erdei, E. Comparative United States autoimmune disease rates for 2010-2016 by sex, geographic region, and race. Autoimmun. Rev. 19, 102423 (2020).

    Article  PubMed  Google Scholar 

  5. Economo, C. & Newman, K. O. Encephalitis lethargica: its sequelae and treatment (Oxford University Press, 1931).

  6. de Lecea, L. et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl Acad. Sci. USA 95, 322–327 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Peyron, C. et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat. Med. 6, 991–997 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Thannickal, T. C. et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron 27, 469–474 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nishino, S., Ripley, B., Overeem, S., Lammers, G. J. & Mignot, E. Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355, 39–40 (2000). This study is the first to show that the cause of NT1 is a loss of hypocretin transmission.

    Article  CAS  PubMed  Google Scholar 

  10. Mignot, E. et al. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch. Neurol. 59, 1553–1562 (2002).

    Article  PubMed  Google Scholar 

  11. Honda, M. et al. Absence of ubiquitinated inclusions in hypocretin neurons of patients with narcolepsy. Neurology 73, 511–517 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sakurai, T. et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573–585 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Peyron, C. et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 18, 9996–10015 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marcus, J. N. et al. Differential expression of orexin receptors 1 and 2 in the rat brain. J. Comp. Neurol. 435, 6–25 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Willie, J. T. et al. Distinct narcolepsy syndromes in orexin receptor-2 and orexin null mice: molecular genetic dissection of non-REM and REM sleep regulatory processes. Neuron 38, 715–730 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Evans, R. et al. Orexin 2 receptor-selective agonist danavorexton improves narcolepsy phenotype in a mouse model and in human patients. Proc. Natl Acad. Sci. USA 119, e2207531119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Andlauer, O. et al. Predictors of hypocretin (orexin) deficiency in narcolepsy without cataplexy. Sleep 35, 1247–1255F (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Postiglione, E. et al. Narcolepsy with intermediate cerebrospinal level of hypocretin-1. Sleep 45, zsab285 (2022).

    Article  PubMed  Google Scholar 

  19. Dalmau, J. & Graus, F. Antibody-mediated neuropsychiatric disorders. J. Allergy Clin. Immunol. 149, 37–40 (2022).

    Article  PubMed  Google Scholar 

  20. Rose, N. R. & Bona, C. Defining criteria for autoimmune diseases (Witebsky’s postulates revisited). Immunol. Today 14, 426–430 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Juji, T., Satake, M., Honda, Y. & Doi, Y. HLA antigens in Japanese patients with narcolepsy: all the patients were DR2 positive. Tissue Antigens 24, 316–319 (1984).

    Article  CAS  PubMed  Google Scholar 

  22. Mignot, E. et al. Complex HLA-DR and -DQ interactions confer risk of narcolepsy-cataplexy in three ethnic groups. Am. J. Hum. Genet. 68, 686–699 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Han, F. et al. HLA-DQ association and allele competition in Chinese narcolepsy. Tissue Antigens 80, 328–335 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Han, F. et al. HLA DQB1*06:02 negative narcolepsy with hypocretin/orexin deficiency. Sleep 37, 1601–1608 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ollila, H. M. et al. HLA-DPB1 and HLA class I confer risk of and protection from narcolepsy. Am. J. Hum. Genet. 96, 136–146 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pelin, Z., Guilleminault, C., Risch, N., Grumet, F. C. & Mignot, E. HLA-DQB1*0602 homozygosity increases relative risk for narcolepsy but not disease severity in two ethnic groups. US Modafinil in Narcolepsy Multicenter Study Group. Tissue Antigens 51, 96–100 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Donner, H. et al. MHC diversity in Caucasians, investigated using highly heterogeneous noncoding sequence motifs at the DQB1 locus including a retroviral long terminal repeat element, and its comparison to nonhuman primate homologues. Immunogenetics 51, 898–904 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Otting, N. et al. The orthologs of HLA-DQ and -DP genes display abundant levels of variability in macaque species. Immunogenetics 69, 87–99 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Petersdorf, E. W. et al. HLA-DQ heterodimers in hematopoietic cell transplantation. Blood 139, 3009–3017 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hohjoh, H., Terada, N., Honda, Y., Juji, T. & Tokunaga, K. Negative association of the HLA-DRB1*1502-DQB1*0601 haplotype with human narcolepsy. Immunogenetics 52, 299–301 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Hor, H. et al. Genome-wide association study identifies new HLA class II haplotypes strongly protective against narcolepsy. Nat. Genet. 42, 786–789 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Sharon, E. et al. Genetic variation in MHC proteins is associated with T cell receptor expression biases. Nat. Genet. 48, 995–1002 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ishigaki, K. et al. HLA autoimmune risk alleles restrict the hypervariable region of T cell receptors. Nat. Genet. 54, 393–402 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Roh, E. Y. et al. Association of HLA-DR and -DQ genes with narcolepsy in Koreans: comparison with two control groups, randomly selected subjects and DRB1*1501-DQB1*0602–positive subjects. Hum. Immunol. 67, 749–755 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Han, F. et al. Genome wide analysis of narcolepsy in China implicates novel immune loci and reveals changes in association prior to versus after the 2009 H1N1 influenza pandemic. PLoS Genet. 9, e1003880 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Miyagawa, T. et al. New susceptibility variants to narcolepsy identified in HLA class II region. Hum. Mol. Genet. 24, 891–898 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Tafti, M. et al. Narcolepsy-associated HLA class I alleles implicate cell-mediated cytotoxicity. Sleep 39, 581–587 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu, W.-X., Jiang, Y., Hu, Q.-X. & You, X.-B. HLA-DRB1 shared epitope allele polymorphisms and rheumatoid arthritis: a systemic review and meta-analysis. Clin. Invest. Med. 39, E182–E203 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Hollenbach, J. A. & Oksenberg, J. R. The immunogenetics of multiple sclerosis: a comprehensive review. J. Autoimmun. 64, 13–25 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Beecham, A. H. et al. Ancestral risk modification for multiple sclerosis susceptibility detected across the major histocompatibility complex in a multi-ethnic population. PLoS ONE 17, e0279132 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Erlichster, M. et al. Improved HLA-based prediction of coeliac disease identifies two novel genetic interactions. Eur. J. Hum. Genet. 28, 1743–1752 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Karell, K. et al. HLA types in celiac disease patients not carrying the DQA1*05-DQB1*02 (DQ2) heterodimer: results from the European Genetics Cluster on Celiac Disease. Hum. Immunol. 64, 469–477 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Shi, T. et al. HLA-DQ genotype distribution and risk evaluation of celiac disease in Northwest China. Scand. J. Gastroenterol. 58, 471–476 (2022).

    Article  PubMed  Google Scholar 

  44. Hallmayer, J. et al. Narcolepsy is strongly associated with the T-cell receptor alpha locus. Nat. Genet. 41, 708–711 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tafti, M. et al. DQB1 locus alone explains most of the risk and protection in narcolepsy with cataplexy in Europe. Sleep 37, 19–25 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Faraco, J. et al. ImmunoChip study implicates antigen presentation to T cells in narcolepsy. PLoS Genet. 9, e1003270 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ollila, H. M. et al. Narcolepsy risk loci outline role of T cell autoimmunity and infectious triggers in narcolepsy. Nat. Commun. 14, 2709 (2023). This large genetic study identifies seven new loci associated with risk of NT1 and pinpoints the involvement of genetic risk loci for NT1 in T cell and dendritic cell biology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Simmons, K. M. et al. Failed genetic protection: type 1 diabetes in the presence of HLA-DQB1*06:02. Diabetes 69, 1763–1769 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dauvilliers, Y. et al. Increased risk of narcolepsy in children and adults after pandemic H1N1 vaccination in France. Brain 136, 2486–2496 (2013).

    Article  PubMed  Google Scholar 

  50. Sarkanen, T. O., Alakuijala, A. P. E., Dauvilliers, Y. A. & Partinen, M. M. Incidence of narcolepsy after H1N1 influenza and vaccinations: systematic review and meta-analysis. Sleep. Med. Rev. 38, 177–186 (2018). This comprehensive meta-analysis concludes that within the first year following Pandemrix vaccination, the relative risk of NT1 was increased 5–14-fold in children and adolescents and 2–7-fold in adults.

    Article  PubMed  Google Scholar 

  51. Jacob, L. et al. Comparison of Pandemrix and Arepanrix, two pH1N1 AS03-adjuvanted vaccines differentially associated with narcolepsy development. Brain Behav. Immun. 47, 44–57 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Ambati, A. et al. Mass spectrometric characterization of narcolepsy-associated pandemic 2009 influenza vaccines. Vaccines 8, 630 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wimmers, F. et al. The single-cell epigenomic and transcriptional landscape of immunity to influenza vaccination. Cell 184, 3915–3935.e21 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Buonocore, S. M. & van der Most, R. G. Narcolepsy and H1N1 influenza immunology a decade later: what have we learned? Front. Immunol. 13, 902840 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Canelle, Q., Dewé, W., Innis, B. L. & van der Most, R. Evaluation of potential immunogenicity differences between PandemrixTM and ArepanrixTM. Hum. Vaccin. Immunother. 12, 2289–2298 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Montplaisir, J. et al. Risk of narcolepsy associated with inactivated adjuvanted (AS03) A/H1N1 (2009) pandemic influenza vaccine in Quebec. PLoS ONE 9, e108489 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wu, H. et al. Symptoms and occurrences of narcolepsy: a retrospective study of 162 patients during a 10-year period in eastern China. Sleep. Med. 15, 607–613 (2014).

    Article  PubMed  Google Scholar 

  58. Han, F. et al. Narcolepsy onset is seasonal and increased following the 2009 H1N1 pandemic in China. Ann. Neurol. 70, 410–417 (2011).

    Article  PubMed  Google Scholar 

  59. Huang, W.-T. et al. Narcolepsy and 2009 H1N1 pandemic vaccination in Taiwan. Sleep. Med. 66, 276–281 (2020).

    Article  PubMed  Google Scholar 

  60. Simakajornboon, N. et al. Increased incidence of pediatric narcolepsy following the 2009 H1N1 pandemic: a report from the pediatric working group of the sleep research network. Sleep 45, zsac137 (2022).

    Article  PubMed  Google Scholar 

  61. Zhang, Z. et al. New 2013 incidence peak in childhood narcolepsy: more than vaccination? Sleep 44, zsaa172 (2021).

    Article  PubMed  Google Scholar 

  62. Edwards, K. et al. Meeting report narcolepsy and pandemic influenza vaccination: What we know and what we need to know before the next pandemic? A report from the 2nd IABS meeting. Biologicals 60, 1–7 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sturkenboom, M. C. J. M. The narcolepsy-pandemic influenza story: can the truth ever be unraveled? Vaccine 33, B6–B13 (2015).

    Article  PubMed  Google Scholar 

  64. Shubin, M., Lebedev, A., Lyytikäinen, O. & Auranen, K. Revealing the true incidence of pandemic A(H1N1)pdm09 influenza in Finland during the first two seasons — an analysis based on a dynamic transmission model. PLoS Comput. Biol. 12, e1004803 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Conway, J. M. et al. Vaccination against 2009 pandemic H1N1 in a population dynamical model of Vancouver, Canada: timing is everything. BMC Public Health 11, 932 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Graham, M. et al. Nationwide molecular surveillance of pandemic H1N1 influenza A virus genomes: Canada, 2009. PLoS ONE 6, e16087 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Picchioni, D., Hope, C. R. & Harsh, J. R. A case-control study of the environmental risk factors for narcolepsy. Neuroepidemiology 29, 185–192 (2007).

    Article  PubMed  Google Scholar 

  68. Aran, A. et al. Elevated anti-streptococcal antibodies in patients with recent narcolepsy onset. Sleep 32, 979–983 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ding, Q. et al. Anti-streptococcal antibodies in Chinese patients with type -1 narcolepsy. Sleep. Med. 72, 37–40 (2020).

    Article  PubMed  Google Scholar 

  70. Longstreth, W. T., Ton, T. G. N. & Koepsell, T. D. Narcolepsy and streptococcal infections. Sleep 32, 1548 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Natori, Y. et al. Risk of immunotherapy-related narcolepsy in genetically predisposed patients: a case report of narcolepsy after administration of pembrolizumab. J. Immunother. Cancer 8, e001164 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Vogrig, A. et al. Increased frequency of anti-Ma2 encephalitis associated with immune checkpoint inhibitors. Neurol. Neuroimmunol. Neuroinflamm. 6, e604 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Dalmau, J. et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain 127, 1831–1844 (2004).

    Article  PubMed  Google Scholar 

  74. Yshii, L. M., Hohlfeld, R. & Liblau, R. S. Inflammatory CNS disease caused by immune checkpoint inhibitors: status and perspectives. Nat. Rev. Neurol. 13, 755–763 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Chemelli, R. M. et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98, 437–451 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Hara, J. et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30, 345–354 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Tabuchi, S. et al. Conditional ablation of orexin/hypocretin neurons: a new mouse model for the study of narcolepsy and orexin system function. J. Neurosci. 34, 6495–6509 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gerashchenko, D. et al. Relationship between CSF hypocretin levels and hypocretin neuronal loss. Exp. Neurol. 184, 1010–1016 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Zhang, S. et al. The development of hypocretin (orexin) deficiency in hypocretin/ataxin-3 transgenic rats. Neuroscience 148, 34–43 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Tesoriero, C. et al. H1N1 influenza virus induces narcolepsy-like sleep disruption and targets sleep-wake regulatory neurons in mice. Proc. Natl Acad. Sci. USA 113, E368–E377 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Bernard-Valnet, R. et al. CD8 T cell-mediated killing of orexinergic neurons induces a narcolepsy-like phenotype in mice. Proc. Natl Acad. Sci. USA 113, 10956–10961 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bernard-Valnet, R. et al. Influenza vaccination induces autoimmunity against orexinergic neurons in a mouse model for narcolepsy. Brain 145, 2018–2030 (2022). Using a transgenic mouse model, this work reveals synergy between autoreactive CD4+ and CD8+ T cells in an immunopathological process mimicking narcolepsy elicited by a vaccine antigen.

    Article  PubMed  Google Scholar 

  83. Frieser, D. et al. Tissue-resident CD8+ T cells drive compartmentalized and chronic autoimmune damage against CNS neurons. Sci. Transl. Med. 14, eabl6157 (2022).

    Article  CAS  PubMed  Google Scholar 

  84. Attfield, K. E., Jensen, L. T., Kaufmann, M., Friese, M. A. & Fugger, L. The immunology of multiple sclerosis. Nat. Rev. Immunol. 22, 734–750 (2022).

    Article  CAS  PubMed  Google Scholar 

  85. Kornum, B. R. in Handbook of Clinical Neurology vol. 181 (eds Swaab, D. F. et al.) 161–172 (Elsevier, 2021).

  86. Latorre, D., Sallusto, F., Bassetti, C. L. A. & Kallweit, U. Narcolepsy: a model interaction between immune system, nervous system, and sleep-wake regulation. Semin. Immunopathol. 44, 611–623 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hartmann, F. J. et al. High-dimensional single-cell analysis reveals the immune signature of narcolepsy. J. Exp. Med. 213, 2621–2633 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lecendreux, M. et al. Narcolepsy type 1 is associated with a systemic increase and activation of regulatory T cells and with a systemic activation of global T cells. PLoS ONE 12, e0169836 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Nguyen, X.-H. et al. Circulating follicular helper T cells exhibit reduced ICOS expression and impaired function in narcolepsy type 1 patients. J. Autoimmun. 94, 134–142 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Moresco, M. et al. Flow cytometry analysis of T-cell subsets in cerebrospinal fluid of narcolepsy type 1 patients with long-lasting disease. Sleep. Med. 44, 53–60 (2018).

    Article  PubMed  Google Scholar 

  91. Kornum, B. R. et al. Cerebrospinal fluid cytokine levels in type 1 narcolepsy patients very close to onset. Brain Behav. Immun. 49, 54–58 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ramberger, M. et al. CD4+ T-cell reactivity to orexin/hypocretin in patients with narcolepsy type 1. Sleep 40, zsw070 (2017).

    Article  PubMed  Google Scholar 

  93. Kornum, B. R. et al. Absence of autoreactive CD4+ T-cells targeting HLA-DQA1*01:02/DQB1*06:02 restricted hypocretin/orexin epitopes in narcolepsy type 1 when detected by EliSpot. J. Neuroimmunol. 309, 7–11 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Latorre, D. et al. T cells in patients with narcolepsy target self-antigens of hypocretin neurons. Nature 562, 63–68 (2018). This work uses a sensitive experimental approach to quantify and characterize rare autoreactive T cells targeting neuronal antigens in the blood and CSF of patients with NT1, providing the first solid evidence of an autoimmune process.

    Article  CAS  PubMed  Google Scholar 

  95. Liblau, R. S. Put to sleep by immune cells. Nature 562, 46–48 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Luo, G. et al. Autoimmunity to hypocretin and molecular mimicry to flu in type 1 narcolepsy. Proc. Natl Acad. Sci. USA 115, E12323–E12332 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jiang, W. et al. In vivo clonal expansion and phenotypes of hypocretin-specific CD4+ T cells in narcolepsy patients and controls. Nat. Commun. 10, 5247 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vuorela, A. et al. Enhanced influenza A H1N1 T cell epitope recognition and cross-reactivity to protein-O-mannosyltransferase 1 in Pandemrix-associated narcolepsy type 1. Nat. Commun. 12, 2283 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Luo, G., Yogeshwar, S., Lin, L. & Mignot, E. J.-M. T cell reactivity to regulatory factor X4 in type 1 narcolepsy. Sci. Rep. 11, 7841 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pedersen, N. W. et al. CD8+ T cells from patients with narcolepsy and healthy controls recognize hypocretin neuron-specific antigens. Nat. Commun. 10, 837 (2019). Using barcoded HLA–peptide multimers, this study estimates the frequency of CD8+ T cells specific for seven candidate neuronal autoantigens and reveals enhanced CD8+ T cell autoreactivity in patients with NT1 compared with HLA-DQB1*06:02-positive healthy control participants.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Cao, Y. et al. Functional inflammatory profiles distinguish myelin-reactive T cells from patients with multiple sclerosis. Sci. Transl. Med. 7, 287ra74 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Yu, W. et al. Clonal deletion prunes but does not eliminate self-specific αβ CD8+ T lymphocytes. Immunity 42, 929–941 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cogswell, A. C. et al. Children with narcolepsy type 1 have increased T‐cell responses to orexins. Ann. Clin. Transl. Neurol. 6, 2566–2572 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Schinkelshoek, M. S. et al. H1N1 hemagglutinin-specific HLA-DQ6-restricted CD4+ T cells can be readily detected in narcolepsy type 1 patients and healthy controls. J. Neuroimmunol. 332, 167–175 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Beltrán, E. et al. Shared T cell receptor chains in blood memory CD4+ T cells of narcolepsy type 1 patients. J. Autoimmun. 100, 1–6 (2019).

    Article  PubMed  Google Scholar 

  106. Viste, R. et al. Narcolepsy type 1 patients have lower levels of effector memory CD4+ T cells compared to their siblings when controlling for H1N1-(PandemrixTM)-vaccination and HLA DQB106:02 status. Sleep. Med. 85, 271–279 (2021).

    Article  PubMed  Google Scholar 

  107. Luo, G., Zhang, J., Lin, L. & Mignot, E. J.-M. Characterization of T cell receptors reactive to HCRT NH2, pHA 273-287, and NP 17-31 in control and narcolepsy patients. Proc. Natl Acad. Sci. USA 119, e2205797119 (2022). This study confirms the greater number of T cells reactive to haemagglutinin and HCRT in persons with NT1, without evidence for cross-reactivity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Dudek, M. et al. Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. Nature 592, 444–449 (2021). This work demonstrates that tissue-resident CD8+ T cells can mediate immune pathology in an antigen-independent manner involving extracellular metabolic stimuli.

    Article  CAS  PubMed  Google Scholar 

  109. Dayan, C. M. et al. Preventing type 1 diabetes in childhood. Science 373, 506–510 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Léger, J., Delcour, C. & Carel, J.-C. Fetal and neonatal thyroid dysfunction. J. Clin. Endocrinol. Metab. 107, 836–846 (2022).

    Article  PubMed  Google Scholar 

  111. Merz, W. M., Fischer-Betz, R., Hellwig, K., Lamprecht, G. & Gembruch, U. Pregnancy and autoimmune disease. Dtsch. Arztebl Int. 119, 145–156 (2022).

    PubMed  Google Scholar 

  112. Black, J. L. et al. Analysis of hypocretin (orexin) antibodies in patients with narcolepsy. Sleep 28, 427–431 (2005).

    Article  PubMed  Google Scholar 

  113. Overeem, S. et al. Immunohistochemical screening for autoantibodies against lateral hypothalamic neurons in human narcolepsy. J. Neuroimmunol. 174, 187–191 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Tanaka, S., Honda, Y., Inoue, Y. & Honda, M. Detection of autoantibodies against hypocretin, hcrtr1, and hcrtr2 in narcolepsy: anti-Hcrt system antibody in narcolepsy. Sleep 29, 633–638 (2006).

    Article  PubMed  Google Scholar 

  115. Knudsen, S., Mikkelsen, J. D. & Jennum, P. Antibodies in narcolepsy-cataplexy patient serum bind to rat hypocretin neurons. Neuroreport 18, 77–79 (2007).

    Article  PubMed  Google Scholar 

  116. Martínez-Rodríguez, J. E., Sabater, L., Graus, F., Iranzo, A. & Santamaria, J. Evaluation of hypothalamic-specific autoimmunity in patients with narcolepsy. Sleep 30, 27–28 (2007).

    Article  PubMed  Google Scholar 

  117. Deloumeau, A. et al. Increased immune complexes of hypocretin autoantibodies in narcolepsy. PLoS ONE 5, e13320 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Lin, L. et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98, 365–376 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. Ahmed, S. S. et al. Antibodies to influenza nucleoprotein cross-react with human hypocretin receptor 2. Sci. Transl. Med. 7, 294ra105 (2015).

    Article  PubMed  Google Scholar 

  120. Luo, G. et al. Absence of anti-hypocretin receptor 2 autoantibodies in post Pandemrix narcolepsy cases. PLoS ONE 12, 1–25 (2017).

    Article  Google Scholar 

  121. Melén, K. et al. No evidence of autoimmunity to human OX1 or OX2 orexin receptors in Pandemrix-vaccinated narcoleptic children. J. Transl. Autoimmun. 3, 100055 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Lind, A. et al. Screening for autoantibody targets in post-vaccination narcolepsy using proteome arrays. Scand. J. Immunol. 91, e12864 (2020).

    Article  PubMed  Google Scholar 

  123. Cvetkovic-Lopes, V. et al. Elevated Tribbles homolog 2-specific antibody levels in narcolepsy patients. J. Clin. Invest. 120, 713–719 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Toyoda, H. et al. Anti-Tribbles homolog 2 autoantibodies in Japanese patients with narcolepsy. Sleep 33, 875–878 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Kawashima, M. et al. Anti-Tribbles homolog 2 (TRIB2) autoantibodies in narcolepsy are associated with recent onset of cataplexy. Sleep 33, 869–874 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Wallenius, M. et al. Autoantibodies in Pandemrix®-induced narcolepsy: nine candidate autoantigens fail the conformational autoantibody test. Autoimmunity 52, 185–191 (2019). This study illustrates how findings of autoantibodies in patients with NT1 have been difficult to replicate.

    Article  CAS  PubMed  Google Scholar 

  127. Lind, A. et al. A/H1N1 antibodies and TRIB2 autoantibodies in narcolepsy patients diagnosed in conjunction with the Pandemrix vaccination campaign in Sweden 2009–2010. J. Autoimmun. 50, 99–106 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Bergman, P. et al. Narcolepsy patients have antibodies that stain distinct cell populations in rat brain and influence sleep patterns. Proc. Natl Acad. Sci. USA 111, E3735–E3744 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sadam, H. et al. Prostaglandin D2 receptor DP1 antibodies predict vaccine-induced and spontaneous narcolepsy type 1: large-scale study of antibody profiling. EBioMedicine 29, 47–59 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Saariaho, A.-H. et al. Autoantibodies against ganglioside GM3 are associated with narcolepsy-cataplexy developing after Pandemrix vaccination against 2009 pandemic H1N1 type influenza virus. J. Autoimmun. 63, 68–75 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Zandian, A. et al. Whole-proteome peptide microarrays for profiling autoantibody repertoires within multiple sclerosis and narcolepsy. J. Proteome Res. 16, 1300–1314 (2017).

    Article  CAS  PubMed  Google Scholar 

  132. Wei, S.-C. C. et al. Tribbles 2 (Trib2) is a novel regulator of Toll-like receptor 5 signaling. Inflamm. Bowel Dis. 18, 877–888 (2012).

    Article  PubMed  Google Scholar 

  133. Eder, K. et al. Tribbles-2 is a novel regulator of inflammatory activation of monocytes. Int. Immunol. 20, 1543–1550 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Smith, A. J. F., Jackson, M. W., Neufing, P., McEvoy, R. D. & Gordon, T. P. A functional autoantibody in narcolepsy. Lancet 364, 2122–2124 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Orjatsalo, M., Partinen, E., Wallukat, G., Alakuijala, A. & Partinen, M. Activating autoantibodies against G protein-coupled receptors in narcolepsy type 1. Sleep. Med. 77, 82–87 (2021).

    Article  PubMed  Google Scholar 

  136. Katzav, A. et al. Passive transfer of narcolepsy: anti-TRIB2 autoantibody positive patient IgG causes hypothalamic orexin neuron loss and sleep attacks in mice. J. Autoimmun. 45, 24–30 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Tanaka, S. et al. Anti-Tribbles pseudokinase 2 (TRIB2)-immunization modulates hypocretin/orexin neuronal functions. Sleep 40, 1–10 (2017).

    Google Scholar 

  138. Seifinejad, A. et al. Epigenetic silencing of selected hypothalamic neuropeptides in narcolepsy with cataplexy. Proc. Natl Acad. Sci. USA 120, e2220911120 (2023). This study provides indirect evidence to suggest that the hypocretin-producing neurons could be preserved but silenced in narcolepsy, an intriguing and new concept.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bien, C. G. Limbic encephalitis. Handb. Clin. Neurol. 187, 467–487 (2022).

    Article  PubMed  Google Scholar 

  140. Jia, Y. et al. LGI1 antibody-associated encephalitis without evidence of inflammation in CSF and brain MRI. Acta Neurol. Belg. https://doi.org/10.1007/s13760-022-01955-8 (2023).

    Article  PubMed  Google Scholar 

  141. Ostkamp, P. et al. A single-cell analysis framework allows for characterization of CSF leukocytes and their tissue of origin in multiple sclerosis. Sci. Transl. Med. 14, eadc9778 (2022).

    Article  CAS  PubMed  Google Scholar 

  142. Huang, J. et al. Assessing the preanalytical variability of plasma and cerebrospinal fluid processing and its effects on inflammation-related protein biomarkers. Mol. Cell Proteom. 20, 100157 (2021).

    Article  CAS  Google Scholar 

  143. Devine, M. F. & St Louis, E. K. Sleep disturbances associated with neurological autoimmunity. Neurotherapeutics 18, 181–201 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bassetti, C. L. A. et al. European guideline and expert statements on the management of narcolepsy in adults and children. J. Sleep. Res. 30, e13387 (2021).

    Article  PubMed  Google Scholar 

  145. Maski, K. et al. Treatment of central disorders of hypersomnolence: an American Academy of Sleep Medicine systematic review, meta-analysis, and GRADE assessment. J. Clin. Sleep. Med. 17, 1895–1945 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Lecendreux, M., Maret, S., Bassetti, C., Mouren, M.-C. & Tafti, M. Clinical efficacy of high-dose intravenous immunoglobulins near the onset of narcolepsy in a 10-year-old boy. J. Sleep. Res. 12, 347–348 (2003).

    Article  PubMed  Google Scholar 

  147. Dauvilliers, Y., Carlander, B., Rivier, F., Touchon, J. & Tafti, M. Successful management of cataplexy with intravenous immunoglobulins at narcolepsy onset. Ann. Neurol. 56, 905–908 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Valko, P. O., Khatami, R., Baumann, C. R. & Bassetti, C. L. No persistent effect of intravenous immunoglobulins in patients with narcolepsy with cataplexy. J. Neurol. 255, 1900–1903 (2008).

    Article  PubMed  Google Scholar 

  149. Dauvilliers, Y., Abril, B., Mas, E., Michel, F. & Tafti, M. Normalization of hypocretin-1 in narcolepsy after intravenous immunoglobulin treatment. Neurology 73, 1333–1334 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Chen, W., Black, J., Call, P. & Mignot, E. Late-onset narcolepsy presenting as rapidly progressing muscle weakness: response to plasmapheresis. Ann. Neurol. 58, 489–490 (2005).

    Article  PubMed  Google Scholar 

  151. Hecht, M. et al. Report of a case of immunosuppression with prednisone in an 8-year-old boy with an acute onset of hypocretin-deficiency narcolepsy. Sleep 26, 809–810 (2003).

    Article  PubMed  Google Scholar 

  152. Katsavos, S. & Coles, A. Alemtuzumab as treatment for multiple sclerosis. Cold Spring Harb. Perspect. Med. 8, a032029 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Donjacour, C. E. H. M. & Lammers, G. J. A remarkable effect of alemtuzumab in a patient suffering from narcolepsy with cataplexy. J. Sleep. Res. 21, 479–480 (2012).

    Article  PubMed  Google Scholar 

  154. Ding, Q., Xiao, F., Dong, X., Zhang, J. & Han, F. Treatment with immune modulators in a child with recent-onset type 1 narcolepsy. Sleep. Breath. 25, 387–389 (2021).

    Article  PubMed  Google Scholar 

  155. Wasling, P., Malmeström, C. & Blennow, K. CSF orexin-A levels after rituximab treatment in recent onset narcolepsy type 1. Neurol. Neuroimmunol. Neuroinflamm. 6, e613 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Scammell, T. E. et al. Treatment of narcolepsy with natalizumab. Sleep 43, zsaa050 (2020).

    Article  PubMed  Google Scholar 

  157. Barateau, L., Liblau, R., Peyron, C. & Dauvilliers, Y. Narcolepsy type 1 as an autoimmune disorder: evidence, and implications for pharmacological treatment. CNS Drugs 31, 821–834 (2017).

    Article  CAS  PubMed  Google Scholar 

  158. Lopez, R. et al. Temporal changes in the cerebrospinal fluid level of hypocretin-1 and histamine in narcolepsy. Sleep 40, zsw010 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Jackson, M. W., Spencer, N. J., Reed, J. H., Smith, A. J. F. & Gordon, T. P. Potentiation of a functional autoantibody in narcolepsy by a cholinesterase inhibitor. Lab. Invest. 89, 1332–1339 (2009).

    Article  CAS  PubMed  Google Scholar 

  160. Jackson, M. W., Reed, J. H., Smith, A. J. F. & Gordon, T. P. An autoantibody in narcolepsy disrupts colonic migrating motor complexes. J. Neurosci. 28, 13303–13309 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. van der Heide, A. et al. Immunohistochemical screening for antibodies in recent onset type 1 narcolepsy and after H1N1 vaccination. J. Neuroimmunol. 283, 58–62 (2015).

    Article  PubMed  Google Scholar 

  162. Giannoccaro, M. P. et al. Antibodies against hypocretin receptor 2 are rare in narcolepsy. Sleep https://doi.org/10.1093/sleep/zsw056 (2017).

    Article  PubMed  Google Scholar 

  163. Häggmark-Månberg, A. et al. Autoantibody targets in vaccine-associated narcolepsy. Autoimmunity 49, 421–433 (2016).

    Article  PubMed  Google Scholar 

  164. Lampeter, E. F. et al. Transfer of insulin-dependent diabetes between HLA-identical siblings by bone marrow transplantation. Lancet 341, 1243–1244 (1993).

    Article  CAS  PubMed  Google Scholar 

  165. Anderson, M. S. & Bluestone, J. A. The NOD mouse: a model of immune dysregulation. Annu. Rev. Immunol. 23, 447–485 (2005).

    Article  CAS  PubMed  Google Scholar 

  166. Ben-Nun, A. et al. From classic to spontaneous and humanized models of multiple sclerosis: impact on understanding pathogenesis and drug development. J. Autoimmun. 54, 33–50 (2014).

    Article  CAS  PubMed  Google Scholar 

  167. Griffin, A. C., Zhao, W., Wegmann, K. W. & Hickley, W. F. Experimental autoimmune insulitis. Induction by T lymphocytes specific for a peptide of proinsulin. Am. J. Pathol. 147, 845–857 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Houeiss, P., Boitard, C. & Luce, S. Preclinical models to evaluate the human response to autoantigen and antigen-specific immunotherapy in human type 1 diabetes. Front. Endocrinol. 13, 883000 (2022).

    Article  Google Scholar 

  169. Steinman, L., Patarca, R. & Haseltine, W. Experimental encephalomyelitis at age 90, still relevant and elucidating how viruses trigger disease. J. Exp. Med. 220, e20221322 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Coppieters, K. T. et al. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J. Exp. Med. 209, 51–60 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Bender, C., Rodriguez-Calvo, T., Amirian, N., Coppieters, K. T. & von Herrath, M. G. The healthy exocrine pancreas contains preproinsulin-specific CD8 T cells that attack islets in type 1 diabetes. Sci. Adv. 6, eabc5586 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Jelcic, I. et al. Memory B cells activate brain-homing, autoreactive CD4+ T cells in multiple sclerosis. Cell 175, 85–100.e23 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Lanz, T. V. et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature 603, 321–327 (2022). This elegant study demonstrates that intrathecal B cells from persons with multiple sclerosis can react to both an Epstein–Barr virus protein and a CNS autoantigen, providing evidence for molecular mimicry.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Culina, S. et al. Islet-reactive CD8+ T cell frequencies in the pancreas, but not in blood, distinguish type 1 diabetic patients from healthy donors. Sci. Immunol. 3, eaao4013 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Hohlfeld, R. & Liblau, R. S. Toward identification of personalized immunological profiles in multiple sclerosis. Sci. Adv. 8, eabq4849 (2022).

    Article  PubMed  Google Scholar 

  176. Popoviciu, M. S. et al. Type 1 diabetes mellitus and autoimmune diseases: a critical review of the association and the application of personalized medicine. J. Pers. Med. 13, 422 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Ramagopalan, S. V. et al. Autoimmune disease in families with multiple sclerosis: a population-based study. Lancet Neurol. 6, 604–610 (2007).

    Article  PubMed  Google Scholar 

  178. Barateau, L. et al. Comorbidity between central disorders of hypersomnolence and immune-based disorders. Neurology 88, 93–100 (2017).

    Article  PubMed  Google Scholar 

  179. Noble, J. A. Immunogenetics of type 1 diabetes: a comprehensive review. J. Autoimmun. 64, 101–112 (2015).

    Article  CAS  PubMed  Google Scholar 

  180. International Multiple Sclerosis Genetics Consortium. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 365, eaav7188 (2019).

    Article  PubMed Central  Google Scholar 

  181. Kundu, K. et al. Genetic associations at regulatory phenotypes improve fine-mapping of causal variants for 12 immune-mediated diseases. Nat. Genet. 54, 251–262 (2022).

    Article  CAS  PubMed  Google Scholar 

  182. Herold, K. C. et al. An anti-CD3 antibody, teplizumab, in relatives at risk for type 1 diabetes. N. Engl. J. Med. 381, 603–613 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Montalban, X. et al. ECTRIMS/EAN guideline on the pharmacological treatment of people with multiple sclerosis. Mult. Scler. 24, 96–120 (2018).

    Article  PubMed  Google Scholar 

  184. Ollila, H. M., Fernandez-Vina, M. & Mignot, E. HLA-DQ allele competition in narcolepsy: a comment on Tafti et al. DQB1 locus alone explains most of the risk and protection in narcolepsy with cataplexy in Europe. Sleep 38, 147–151 (2015). This publication proposes a new genetic model to explain the risk of narcolepsy associated with HLA-DQ, known as allele competition.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Dendrou, C. A., Petersen, J., Rossjohn, J. & Fugger, L. HLA variation and disease. Nat. Rev. Immunol. 18, 325–339 (2018).

    Article  CAS  PubMed  Google Scholar 

  186. Siebold, C. et al. Crystal structure of HLA-DQ0602 that protects against type 1 diabetes and confers strong susceptibility to narcolepsy. Proc. Natl Acad. Sci. USA 101, 1999–2004 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Iversen, R. & Sollid, L. M. The immunobiology and pathogenesis of celiac disease. Annu. Rev. Pathol. 18, 47–70 (2023).

    Article  CAS  PubMed  Google Scholar 

  188. Curran, A. M., Naik, P., Giles, J. T. & Darrah, E. PAD enzymes in rheumatoid arthritis: pathogenic effectors and autoimmune targets. Nat. Rev. Rheumatol. 16, 301–315 (2020).

    Article  CAS  PubMed  Google Scholar 

  189. Zhai, Y. et al. Cysteine carboxyethylation generates neoantigens to induce HLA-restricted autoimmunity. Science 379, eabg2482 (2023).

    Article  CAS  PubMed  Google Scholar 

  190. Raposo, B. et al. T cells specific for post-translational modifications escape intrathymic tolerance induction. Nat. Commun. 9, 353 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Mentzer, A. J. et al. Human leukocyte antigen alleles associate with COVID-19 vaccine immunogenicity and risk of breakthrough infection. Nat. Med. 29, 147–157 (2023).

    Article  CAS  PubMed  Google Scholar 

  192. Sundqvist, E. et al. JC polyomavirus infection is strongly controlled by human leucocyte antigen class II variants. PLoS Pathog. 10, e1004084 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Ooi, J. D. et al. Dominant protection from HLA-linked autoimmunity by antigen-specific regulatory T cells. Nature 545, 243–247 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Hsiao, C.-C. et al. Osteopontin associates with brain TRM-cell transcriptome and compartmentalization in donors with and without multiple sclerosis. iScience 26, 105785 (2023).

    Article  CAS  PubMed  Google Scholar 

  195. Lake, B. B. et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 36, 70–80 (2018).

    Article  CAS  PubMed  Google Scholar 

  196. Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Med. 14, 68 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Ayoglu, B. et al. Anoctamin 2 identified as an autoimmune target in multiple sclerosis. Proc. Natl Acad. Sci. USA 113, 2188–2193 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Talucci, I. & Maric, H. M. Peptide microarrays for studying autoantibodies in neurological disease. Methods Mol. Biol. 2578, 17–25 (2023).

    Article  CAS  PubMed  Google Scholar 

  199. Baker, R. L. et al. Hybrid insulin peptides are autoantigens in type 1 diabetes. Diabetes 68, 1830–1840 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Tran, M. T. et al. T cell receptor recognition of hybrid insulin peptides bound to HLA-DQ8. Nat. Commun. 12, 5110 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Axisa, P.-P. et al. A multiple sclerosis-protective coding variant reveals an essential role for HDAC7 in regulatory T cells. Sci. Transl. Med. 14, eabl3651 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank L. Chatenoud, R. Mallone and D. Dunia for their feedback on the manuscript, and T. Sarkanen and D. Frieser for their help with Supplementary Fig. 1 and Supplementary Fig. 2, respectively. R.S.L. is supported by Institut Universitaire de France and grants from Fondation pour la Recherche Médicale, the Agence Nationale de la Recherche (BETPSY RHU consortium, NARCOMICS consortium and ANR-18-CE17-0014-03). Y.D. is supported by grants from Agence Nationale de la Recherche (NARCOMICS consortium and ANR-18-CE17-0014-03). D.L. is supported by a PRIMA grant from the Swiss National Science Foundation (PR00P3_185742). B.R.K. is supported by the Lundbeck Foundation (grant R344-2020-749), and a Carlsberg Foundation Young Researcher Fellowship. E.J.M.’s research on narcolepsy is supported by National Institutes of Health grant R01 AI144798.

Author information

Authors and Affiliations

Authors

Contributions

R.S.L. and E.J.M. conceived the idea and the structure of the manuscript. All authors contributed to the content. R.S.L., B.R.K., Y.D and E.J.M. designed the tables and figures. All authors reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Roland S. Liblau or Emmanuel J. Mignot.

Ethics declarations

Competing interests

R.S.L. has received grant support from GlaxoSmithKline and Roche and has consulted for Merck, Novartis, Biogen and Sanofi-Genzyme. B.R.K. has consulted for UCB Pharma, Lundbeck, Gubra and Orexia Therapeutics, has submitted patent applications within the field of narcolepsy and is a founder of the University of Copenhagen spin-out company Ceremedy ApS. Y.D. is a consultant for and has participated in advisory boards for Jazz Pharmaceuticals, UCB Pharma, Avadel, Idorsia, Orexia, Takeda and Bioprojet. In the last 3 years, E.J.M. received grant support from, is a consultant for or has participated in advisory boards for Apple, Avadel, Axsome, Huami, Harmony, Idorsia, Jazz Pharmaceuticals, Orexia/Centessa, Sunovion and Takeda. D.L. declares no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks P. Marrack, who co-reviewed with A. Brown, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Anti-Ma2 antibody-associated paraneoplastic neurological syndrome

One of the paraneoplastic neurological syndromes, a rare set of autoimmune neurological disorders that occur in association with specific cancers (such as seminomas in this case) when a productive adaptive immune response against tumour (neo)antigens (such as autoantibodies against the Ma2 protein in this case) cross-reacts with normal neurons or glial cells, leading to neural tissue damage.

AS03

A proprietary adjuvant comprising the polyunsaturated fatty acid squalene, α-tocopherol (vitamin E) and the surfactant and emulsifier polysorbate 80.

Bystander activation

Activation of T cells or B cells occurring without specific antigen recognition. During an inflammatory response, such bystander activation of self-reactive lymphocytes by inflammatory mediators or metabolic stimuli may trigger autoimmunity as a side effect of a broader activation of the immune system.

Cataplexy

The most specific symptom of narcolepsy type 1, characterized by a transient loss of muscle tone triggered by laughing, joking or other emotions.

Expression quantitative trait locus

(eQTL). Genetic polymorphism that explains variation in expression of an mRNA or protein.

Idiopathic hypersomnia

A frequent sleep disorder associated with daytime sleepiness but no cataplexy or REM (rapid eye movement) sleep abnormalities, which is differentiated from type 1 narcolepsy.

Immune checkpoint inhibitors

Antineoplastic drugs, mostly monoclonal antibodies, that interfere with inhibitory immune pathways, such as CTLA4–CD80/CD86 or PD1–PDL1, thereby enhancing the antitumour immune response.

Molecular mimicry

A mechanism by which infectious or other foreign antigens inappropriately activate autoreactive T cells or B cells owing to structural similarities between foreign antigens and self-antigens, thereby initiating autoimmunity.

Neuromyelitis optica spectrum disorder

A relapsing autoimmune neurological disorder characterized by inflammation of the optic nerve and the spinal cord, which is usually associated with autoantibodies to aquaporin 4.

Pleocytosis

An abnormally increased number of leukocytes in the cerebrospinal fluid.

REM (rapid eye movement) sleep

A stage of sleep associated with dreaming, muscle paralysis and rapid eye movements, occurring normally 1–2 h after sleep onset and reoccurring every 90 min with increasing duration throughout the night.

Witebsky’s postulates

A set of criteria proposed by Ernst Witebsky in 1957, and later revised by Noel Rose and Constantin Bona in 1993, to help establish whether a disease entity can be regarded as autoimmune.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liblau, R.S., Latorre, D., Kornum, B.R. et al. The immunopathogenesis of narcolepsy type 1. Nat Rev Immunol 24, 33–48 (2024). https://doi.org/10.1038/s41577-023-00902-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-023-00902-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing