Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Epidemiology and treatment of multiple sclerosis in elderly populations

Abstract

The prevalence of multiple sclerosis (MS) and the age of affected patients are increasing owing to increased longevity of the general population and the availability of effective disease-modifying therapies. However, ageing presents unique challenges in patients with MS largely as a result of their increased frequency of age-related and MS-related comorbidities as well as transition of the disease course from an inflammatory to a neurodegenerative phenotype. Immunosenescence (the weakening of the immune system associated with natural ageing) might be at least partly responsible for this transition, which further complicates disease management. Currently approved therapies for MS are effective in preventing relapse but are not as effective in preventing the accumulation of disability associated with ageing and disease progression. Thus, ageing patients with MS represent a uniquely challenging population that is currently underserved by existing therapeutic regimens. This Review focuses on the epidemiology of MS in ageing patients. Unique considerations relevant to this population are discussed, including the immunology and pathobiology of the complex relationship between ageing and MS, the safety and efficacy of disease-modifying therapies, when discontinuation of treatment might be appropriate and the important role of approaches to support wellness and cognition.

Key points

  • The prevalence of ageing individuals with multiple sclerosis (MS) is increasing worldwide.

  • Ageing people with MS present with unique challenges, including a high burden of comorbidities and an altered immune system profile.

  • Data on the safety and efficacy of current disease-modifying therapy regimens in elderly patients with MS are lacking, indicating the need for further studies in this specific population.

  • A substantial proportion of elderly patients with stable MS will need to consider whether to discontinue disease-modifying therapy; data are currently insufficient to provide evidence-based recommendations on this topic.

  • Complementary lifestyle modifications that promote wellness and cognition can help ageing patients with MS to manage their comorbidities and improve their quality of life.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Cellular processes involved in inflammageing and immunosenescence.
Fig. 2: The influence of ageing on MS pathophysiology.
Fig. 3: Cerebrovascular disease can mimic MS-specific pathology on MRI.

References

  1. 1.

    Marrie, R. A., Yu, N., Blanchard, J., Leung, S. & Elliott, L. The rising prevalence and changing age distribution of multiple sclerosis in Manitoba. Neurology 74, 465–471 (2010).

    CAS  PubMed  Google Scholar 

  2. 2.

    Finlayson, M. Concerns about the future among older adults with multiple sclerosis. Am. J. Occup. Ther. 58, 54–63 (2004).

    PubMed  Google Scholar 

  3. 3.

    Tutuncu, M. et al. Onset of progressive phase is an age-dependent clinical milestone in multiple sclerosis. Mult. Scler. 19, 188–198 (2013).

    PubMed  Google Scholar 

  4. 4.

    Scalfari, A., Neuhaus, A., Daumer, M., Muraro, P. A. & Ebers, G. C. Onset of secondary progressive phase and long-term evolution of multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 85, 67–75 (2014).

    PubMed  Google Scholar 

  5. 5.

    Koch-Henriksen, N., Laursen, B., Stenager, E. & Magyari, M. Excess mortality among patients with multiple sclerosis in Denmark has dropped significantly over the past six decades: a population based study. J. Neurol. Neurosurg. Psychiatry 88, 626–631 (2017).

    PubMed  Google Scholar 

  6. 6.

    Hirst, C., Swingler, R., Compston, D. A., Ben-Shlomo, Y. & Robertson, N. P. Survival and cause of death in multiple sclerosis: a prospective population-based study. J. Neurol. Neurosurg. Psychiatry 79, 1016–1021 (2008).

    CAS  PubMed  Google Scholar 

  7. 7.

    Hurwitz, B. J. Analysis of current multiple sclerosis registries. Neurology 76 (Suppl. 1), S7–S13 (2011).

    PubMed  Google Scholar 

  8. 8.

    Lunde, H. M. B., Assmus, J., Myhr, K. M., Bo, L. & Grytten, N. Survival and cause of death in multiple sclerosis: a 60-year longitudinal population study. J. Neurol. Neurosurg. Psychiatry 88, 621–625 (2017).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Kingwell, E. et al. Relative mortality and survival in multiple sclerosis: findings from British Columbia. J. Neurol. Neurosurg. Psychiatry 83, 61–66 (2012).

    CAS  PubMed  Google Scholar 

  10. 10.

    Minden, S. L., Frankel, D., Hadden, L. S., Srinath, K. P. & Perloff, J. N. Disability in elderly people with multiple sclerosis: an analysis of baseline data from the Sonya Slifka Longitudinal Multiple Sclerosis Study. Neurorehabilitation 19, 55–67 (2004).

    PubMed  Google Scholar 

  11. 11.

    Rotstein, D. L. et al. Temporal trends in multiple sclerosis prevalence and incidence in a large population. Neurology 90, e1435–e1441 (2018).

    PubMed  Google Scholar 

  12. 12.

    Grytten, N., Torkildsen, O. & Myhr, K. M. Time trends in the incidence and prevalence of multiple sclerosis in Norway during eight decades. Acta Neurol. Scand. 132, 29–36 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Alla, S., Pearson, J., Debernard, L., Miller, D. & Mason, D. The increasing prevalence of multiple sclerosis in New Zealand. Neuroepidemiology 42, 154–160 (2014).

    PubMed  Google Scholar 

  14. 14.

    Dilokthornsakul, P. et al. Multiple sclerosis prevalence in the United States commercially insured population. Neurology 86, 1014–1021 (2016).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Solaro, C. et al. The changing face of multiple sclerosis: prevalence and incidence in an aging population. Mult. Scler. 21, 1244–1250 (2015).

    CAS  PubMed  Google Scholar 

  16. 16.

    Barnett, M. H., Williams, D. B., Day, S., Macaskill, P. & McLeod, J. G. Progressive increase in incidence and prevalence of multiple sclerosis in Newcastle, Australia: a 35-year study. J. Neurol. Sci. 213, (1–6 (2003).

    Google Scholar 

  17. 17.

    Simpson, S. Jr. et al. Trends in the epidemiology of multiple sclerosis in Greater Hobart, Tasmania: 1951 to 2009. J. Neurol. Neurosurg. Psychiatry 82, 180–187 (2011).

    PubMed  Google Scholar 

  18. 18.

    Sarasoja, T., Wikstrom, J., Paltamaa, J., Hakama, M. & Sumelahti, M. L. Occurrence of multiple sclerosis in central Finland: a regional and temporal comparison during 30 years. Acta Neurol. Scand. 110, 331–336 (2004).

    CAS  PubMed  Google Scholar 

  19. 19.

    Mayr, W. T. et al. Incidence and prevalence of multiple sclerosis in Olmsted County, Minnesota, 1985–2000. Neurology 61, 1373–1377 (2003).

    CAS  PubMed  Google Scholar 

  20. 20.

    Daltrozzo, T., Hapfelmeier, A., Donnachie, E., Schneider, A. & Hemmer, B. A systematic assessment of prevalence, incidence and regional distribution of multiple sclerosis in Bavaria from 2006 to 2015. Front. Neurol. 9, 871 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Grassivaro, F. et al. Multiple sclerosis incidence and prevalence trends in the province of Padua, northeast Italy, 1965–2018. Neuroepidemiology 52, 41–46 (2018).

    PubMed  Google Scholar 

  22. 22.

    Ribbons, K., Lea, R., Tiedeman, C., Mackenzie, L. & Lechner-Scott, J. Ongoing increase in incidence and prevalence of multiple sclerosis in Newcastle, Australia: a 50-year study. Mult. Scler. 23, (1063–1071 (2017).

    Google Scholar 

  23. 23.

    Koch-Henriksen, N. & Sorensen, P. S. The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol. 9, 520–532 (2010).

    Google Scholar 

  24. 24.

    Bermel, R. A., Rae-Grant, A. D. & Fox, R. J. Diagnosing multiple sclerosis at a later age: more than just progressive myelopathy. Mult. Scler. 16, 1335–1340 (2010).

    PubMed  Google Scholar 

  25. 25.

    Poser, C. M. & Brinar, V. V. Diagnostic criteria for multiple sclerosis: an historical review. Clin. Neurol. Neurosurg. 106, 147–158 (2004).

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Gafson, A., Giovannoni, G. & Hawkes, C. H. The diagnostic criteria for multiple sclerosis: from Charcot to McDonald. Mult. Scler. Relat. Disord. 1, 9–14 (2012).

    PubMed  Google Scholar 

  27. 27.

    Polliack, M. L., Barak, Y. & Achiron, A. Late-onset multiple sclerosis. J. Am. Geriatr. Soc. 49, 168–171 (2001).

    CAS  PubMed  Google Scholar 

  28. 28.

    Delalande, S., De Seze, J., Ferriby, D., Stojkovic, T. & Vermersch, P. Late onset multiple sclerosis [French]. Rev. Neurol. (Paris) 158, 1082–1087 (2002).

    CAS  Google Scholar 

  29. 29.

    Tremlett, H. & Devonshire, V. Is late-onset multiple sclerosis associated with a worse outcome? Neurology 67, 954–959 (2006).

    PubMed  Google Scholar 

  30. 30.

    Hooge, J. P. & Redekop, W. K. Multiple sclerosis with very late onset. Neurology 42, 1907–1910 (1992).

    CAS  PubMed  Google Scholar 

  31. 31.

    Koch-Henriksen, N., Thygesen, L. C., Stenager, E., Laursen, B. & Magyari, M. Incidence of MS has increased markedly over six decades in Denmark particularly with late onset and in women. Neurology 90, e1954–e1963 (2018).

    PubMed  Google Scholar 

  32. 32.

    Marrie, R. A. et al. A systematic review of the incidence and prevalence of comorbidity in multiple sclerosis: overview. Mult. Scler. 21, 263–281 (2015).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Capkun, G. et al. Mortality and comorbidities in patients with multiple sclerosis compared with a population without multiple sclerosis: an observational study using the US Department of Defense administrative claims database. Mult. Scler. Relat. Disord. 4, 546–554 (2015).

    PubMed  Google Scholar 

  34. 34.

    Marrie, R. A. et al. Comorbidity delays diagnosis and increases disability at diagnosis in MS. Neurology 72, 117–124 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Manouchehrinia, A., Tanasescu, R., Tench, C. R. & Constantinescu, C. S. Mortality in multiple sclerosis: meta-analysis of standardised mortality ratios. J. Neurol. Neurosurg. Psychiatry 87, 324–331 (2016).

    PubMed  Google Scholar 

  36. 36.

    Scalfari, A. et al. Mortality in patients with multiple sclerosis. Neurology 81, 184–192 (2013).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Kaufman, D. W. et al. Survival in commercially insured multiple sclerosis patients and comparator subjects in the U.S. Mult. Scler. Relat. Disord. 3, 364–371 (2014).

    CAS  PubMed  Google Scholar 

  38. 38.

    Bronnum-Hansen, H., Koch-Henriksen, N. & Stenager, E. Trends in survival and cause of death in Danish patients with multiple sclerosis. Brain 127, 844–850 (2004).

    PubMed  Google Scholar 

  39. 39.

    Ragonese, P., Aridon, P., Salemi, G., D’Amelio, M. & Savettieri, G. Mortality in multiple sclerosis: a review. Eur. J. Neurol. 15, 123–127 (2008).

    CAS  PubMed  Google Scholar 

  40. 40.

    Warren, S. A., Janzen, W., Warren, K. G., Svenson, L. W. & Schopflocher, D. P. Multiple sclerosis mortality rates in Canada, 1975–2009. Can. J. Neurol. Sci. 43, 134–141 (2016).

    PubMed  Google Scholar 

  41. 41.

    Amezcua, L., Rivas, E., Joseph, S., Zhang, J. & Liu, L. Multiple sclerosis mortality by race/ethnicity, age, sex, and time period in the United States, 1999–2015. Neuroepidemiology 50, 35–40 (2018).

    PubMed  Google Scholar 

  42. 42.

    Hemmer, B., Kerschensteiner, M. & Korn, T. Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet Neurol. 14, 406–419 (2015).

    CAS  Google Scholar 

  43. 43.

    Weissert, R. The immune pathogenesis of multiple sclerosis. J. Neuroimmune Pharmacol. 8, 857–866 (2013).

    PubMed  Google Scholar 

  44. 44.

    Garg, N. & Smith, T. W. An update on immunopathogenesis, diagnosis, and treatment of multiple sclerosis. Brain Behav. 5, e00362 (2015).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Fletcher, J. M., Lalor, S. J., Sweeney, C. M., Tubridy, N. & Mills, K. H. G. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin. Exp. Immunol. 162, 1–11 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    ‘t Hart, B. A. et al. A B cell-driven autoimmune pathway leading to pathological hallmarks of progressive multiple sclerosis in the marmoset experimental autoimmune encephalomyelitis model. Front. Immunol. 8, 804 (2017).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Reich, D. S., Lucchinetti, C. F. & Calabresi, P. A. Multiple sclerosis. N. Engl. J. Med. 378, 169–180 (2018).

    CAS  Google Scholar 

  48. 48.

    Gandhi, R., Laroni, A. & Weiner, H. L. Role of the innate immune system in the pathogenesis of multiple sclerosis. J. Neuroimmunol. 221, 7–14 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Kasper, L. H. & Shoemaker, J. Multiple sclerosis immunology: the healthy immune system versus the MS immune system. Neurology 74 (Suppl. 1), S2–S8 (2010).

    CAS  PubMed  Google Scholar 

  50. 50.

    Frischer, J. M. et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132, 1175–1189 (2009).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Frischer, J. M. et al. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann. Neurol. 78, 710–721 (2015).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Lassmann, H., van Horssen, J. & Mahad, D. Progressive multiple sclerosis: pathology and pathogenesis. Nat. Rev. Neurol. 8, 647–656 (2012).

    CAS  PubMed  Google Scholar 

  53. 53.

    Stephenson, E., Nathoo, N., Mahjoub, Y., Dunn, J. F. & Yong, V. W. Iron in multiple sclerosis: roles in neurodegeneration and repair. Nat. Rev. Neurol. 10, 459–468 (2014).

    CAS  PubMed  Google Scholar 

  54. 54.

    Grebenciucova, E. & Berger, J. R. Immunosenescence: the role of aging in the predisposition to neuro-infectious complications arising from the treatment of multiple sclerosis. Curr. Neurol. Neurosci. Rep. 17, 61 (2017).

    PubMed  Google Scholar 

  55. 55.

    Lassmann, H. Pathology and disease mechanisms in different stages of multiple sclerosis. J. Neurol. Sci. 333, 1–4 (2013).

    CAS  PubMed  Google Scholar 

  56. 56.

    Sanai, S. A. et al. Aging and multiple sclerosis. Mult. Scler. 22, 717–725 (2016).

    PubMed  Google Scholar 

  57. 57.

    Plaza-Zabala, A., Sierra-Torre, V. & Sierra, A. Autophagy and microglia: novel partners in neurodegeneration and aging. Int. J. Mol. Sci. 18, E598 (2017).

    PubMed  Google Scholar 

  58. 58.

    Aguilera, M. O., Delgui, L. R., Romano, P. S. & Colombo, M. I. Chronic infections: a possible scenario for autophagy and senescence cross-talk. Cells 7, E162 (2018).

    PubMed  Google Scholar 

  59. 59.

    Alirezaei, M. et al. Elevated ATG5 expression in autoimmune demyelination and multiple sclerosis. Autophagy 5, 152–158 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Peterson, J. W. & Trapp, B. D. Neuropathobiology of multiple sclerosis. Neurol. Clin. 23, 107–129 (2005).

    PubMed  Google Scholar 

  61. 61.

    Dutta, R. & Trapp, B. D. Relapsing and progressive forms of multiple sclerosis: insights from pathology. Curr. Opin. Neurol. 27, 271–278 (2014).

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Cevenini, E., Monti, D. & Franceschi, C. Inflamm-ageing. Curr. Opin. Clin. Nutr. Metab. Care 16, 14–20 (2013).

    CAS  PubMed  Google Scholar 

  63. 63.

    Franceschi, C. et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. NY Acad. Sci. 908, 244–254 (2000).

    CAS  PubMed  Google Scholar 

  64. 64.

    Thewissen, M. et al. Analyses of immunosenescent markers in patients with autoimmune disease. Clin. Immunol. 123, 209–218 (2007).

    CAS  PubMed  Google Scholar 

  65. 65.

    Childs, B. G. et al. Senescent cells: an emerging target for diseases of ageing. Nat. Rev. Drug Discov. 16, 718–735 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Aw, D. & Palmer, D. B. The origin and implication of thymic involution. Aging Dis. 2, 437–443 (2011).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Haegert, D. G. Multiple sclerosis: a disorder of altered T cell homeostasis. Mult. Scler. Int. 2011, 461304 (2011).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Musella, A. et al. Interplay between age and neuroinflammation in multiple sclerosis: effects on motor and cognitive functions. Front. Aging Neurosci. 10, 238 (2018).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Budni, J., Bellettini-Santos, T., Mina, F., Garcez, M. L. & Zugno, A. I. The involvement of BDNF, NGF and GDNF in aging and Alzheimer’s disease. Aging Dis. 6, 331–341 (2015).

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Rist, J. M. & Franklin, R. J. Taking ageing into account in remyelination-based therapies for multiple sclerosis. J. Neurol. Sci. 274, 64–67 (2008).

    CAS  PubMed  Google Scholar 

  71. 71.

    Luchetti, S. et al. Progressive multiple sclerosis patients show substantial lesion activity that correlates with clinical disease severity and sex: a retrospective autopsy cohort analysis. Acta Neuropathol. 135, 511–528 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Correale, J., Gaitan, M. I., Ysrraelit, M. C. & Fiol, M. P. Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain 140, 527–546 (2017).

    PubMed  Google Scholar 

  73. 73.

    Buck, D. & Hemmer, B. Treatment of multiple sclerosis: current concepts and future perspectives. J. Neurol. 258, 1747–1762 (2011).

    CAS  PubMed  Google Scholar 

  74. 74.

    Thompson, A. J. et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 17, 162–173 (2018).

    PubMed  Google Scholar 

  75. 75.

    Hammond, K. E. et al. Quantitative in vivo magnetic resonance imaging of multiple sclerosis at 7 Tesla with sensitivity to iron. Ann. Neurol 64, 707–713 (2008).

    PubMed  Google Scholar 

  76. 76.

    Bagnato, F. et al. Tracking iron in multiple sclerosis: a combined imaging and histopathological study at 7 Tesla. Brain 134, 3602–3615 (2011).

    PubMed  Google Scholar 

  77. 77.

    Absinta, M. et al. Identification of chronic active multiple sclerosis lesions on 3 T MRI. AJNR Am. J. Neuroradiol. 39, 1233–1238 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Vellinga, M. M. et al. Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain 131, 800–807 (2008).

    PubMed  Google Scholar 

  79. 79.

    Dwyer, M. G. et al. Atrophied brain lesion volume: a new imaging biomarker in multiple sclerosis. J. Neuroimaging 28, 490–495 (2018).

    PubMed  Google Scholar 

  80. 80.

    Calabrese, M. et al. Cortical lesion load associates with progression of disability in multiple sclerosis. Brain 135, 2952–2961 (2012).

    PubMed  PubMed Central  Google Scholar 

  81. 81.

    Calabrese, M. et al. Exploring the origins of grey matter damage in multiple sclerosis. Nat. Rev. Neurosci. 16, 147–158 (2015).

    CAS  PubMed  Google Scholar 

  82. 82.

    Filippi, M. et al. Imaging cortical damage and dysfunction in multiple sclerosis. JAMA Neurol. 70, 556–564 (2013).

    PubMed  Google Scholar 

  83. 83.

    Absinta, M., Sati, P. & Reich, D. S. Advanced MRI and staging of multiple sclerosis lesions. Nat. Rev. Neurol. 12, 358–368 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Zurawski, J., Lassmann, H. & Bakshi, R. Use of magnetic resonance imaging to visualize leptomeningeal inflammation in patients with multiple sclerosis: a review. JAMA Neurol. 74, 100–109 (2016).

    Google Scholar 

  85. 85.

    Zivadinov, R. et al. Leptomeningeal contrast enhancement is associated with progression of cortical atrophy in MS: a retrospective, pilot, observational longitudinal study. Mult. Scler. 23, 1336–1345 (2016).

    PubMed  Google Scholar 

  86. 86.

    Harrison, D. M. et al. Leptomeningeal enhancement at 7 T in multiple sclerosis: frequency, morphology, and relationship to cortical volume. J. Neuroimaging 27, 461–468 (2017).

    PubMed  PubMed Central  Google Scholar 

  87. 87.

    Miller, D. H., Barkhof, F., Frank, J. A., Parker, G. J. & Thompson, A. J. Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain 125, 1676–1695 (2002).

    PubMed  Google Scholar 

  88. 88.

    Zivadinov, R. et al. Clinical relevance of brain atrophy assessment in multiple sclerosis. Implications for its use in a clinical routine. Expert Rev. Neurother. 16, 777–793 (2016).

    CAS  PubMed  Google Scholar 

  89. 89.

    De Stefano, N. et al. Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 87, 93–99 (2016).

    PubMed  Google Scholar 

  90. 90.

    Hedman, A. M., van Haren, N. E., Schnack, H. G., Kahn, R. S. & Hulshoff Pol, H. E. Human brain changes across the life span: a review of 56 longitudinal magnetic resonance imaging studies. Hum. Brain Mapp. 33, 1987–2002 (2012).

    PubMed  Google Scholar 

  91. 91.

    Fisher, E., Lee, J. C., Nakamura, K. & Rudick, R. A. Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann. Neurol. 64, 255–265 (2008).

    PubMed  Google Scholar 

  92. 92.

    Fisniku, L. K. et al. Gray matter atrophy is related to long-term disability in multiple sclerosis. Ann. Neurol. 64, 247–254 (2008).

    PubMed  Google Scholar 

  93. 93.

    Steenwijk, M. D. et al. Cortical atrophy patterns in multiple sclerosis are non-random and clinically relevant. Brain 139, 115–126 (2016).

    PubMed  Google Scholar 

  94. 94.

    Eshaghi, A. et al. Progression of regional grey matter atrophy in multiple sclerosis. Brain 141, 1665–1677 (2018).

    PubMed  PubMed Central  Google Scholar 

  95. 95.

    Stankoff, B. & Louapre, C. Can we use regional grey matter atrophy sequence to stage neurodegeneration in multiple sclerosis? Brain 141, 1580–1583 (2018).

    PubMed  Google Scholar 

  96. 96.

    Cristofanilli, M. et al. Progressive multiple sclerosis cerebrospinal fluid induces inflammatory demyelination, axonal loss, and astrogliosis in mice. Exp. Neurol. 261, 620–632 (2014).

    CAS  PubMed  Google Scholar 

  97. 97.

    Vidaurre, O. G. et al. Cerebrospinal fluid ceramides from patients with multiple sclerosis impair neuronal bioenergetics. Brain 137, 2271–2286 (2014).

    PubMed  PubMed Central  Google Scholar 

  98. 98.

    Haider, L. et al. The topograpy of demyelination and neurodegeneration in the multiple sclerosis brain. Brain 139, 807–815 (2016).

    PubMed  PubMed Central  Google Scholar 

  99. 99.

    Eshaghi, A. et al. Deep grey matter volume loss drives disability worsening in multiple sclerosis. Ann. Neurol. 83, 210–222 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Azevedo, C. J. et al. Thalamic atrophy in MS: an MRI marker of neurodegeneration throughout disease. Ann. Neurol. 83, 223–234 (2018).

    PubMed  PubMed Central  Google Scholar 

  101. 101.

    Cocozza, S. et al. Cerebellar lobule atrophy and disability in progressive MS. J. Neurol. Neurosurg. Psychiatry 88, 1065–1072 (2017).

    PubMed  Google Scholar 

  102. 102.

    Moroso, A. et al. Posterior lobules of the cerebellum and information processing speed at various stages of multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 88, 146–151 (2016).

    PubMed  Google Scholar 

  103. 103.

    Kearney, H., Miller, D. H. & Ciccarelli, O. Spinal cord MRI in multiple sclerosis — diagnostic, prognostic and clinical value. Nat. Rev. Neurol. 11, 327–338 (2015).

    PubMed  Google Scholar 

  104. 104.

    Abdel-Aziz, K. et al. Evidence for early neurodegeneration in the cervical cord of patients with primary progressive multiple sclerosis. Brain 138, 1568–1582 (2015).

    PubMed  PubMed Central  Google Scholar 

  105. 105.

    Tsagkas, C. et al. Preferential spinal cord volume loss in primary progressive multiple sclerosis. Mult. Scler. https://doi.org/10.1177/1352458518775006 (2018).

    Article  PubMed  Google Scholar 

  106. 106.

    Schlaeger, R. et al. Association between thoracic spinal cord gray matter atrophy and disability in multiple sclerosis. JAMA Neurol. 72, 897–904 (2015).

    PubMed  PubMed Central  Google Scholar 

  107. 107.

    Tsagkas, C. et al. Spinal cord volume loss: a marker of disease progression in multiple sclerosis. Neurology 91, e349–e358 (2018).

    PubMed  Google Scholar 

  108. 108.

    Zeydan, B. et al. Cervical spinal cord atrophy: an early marker of progressive MS onset. Neurol. Neuroimmunol. Neuroinflamm. 5, e435 (2018).

    PubMed  PubMed Central  Google Scholar 

  109. 109.

    Murtonen, A., Kurki, S., Hanninen, K., Soilu-Hanninen, M. & Sumelahti, M. L. Common comorbidities and survival in MS: risk for stroke, type 1 diabetes and infections. Mult. Scler. Relat. Disord. 19, 109–114 (2018).

    CAS  PubMed  Google Scholar 

  110. 110.

    Tettey, P., Simpson, S. Jr., Taylor, B. V. & van der Mei, I. A. Vascular comorbidities in the onset and progression of multiple sclerosis. J. Neurol. Sci. 347, 23–33 (2014).

    PubMed  Google Scholar 

  111. 111.

    Hussein, W. I. & Reddy, S. S. Prevalence of diabetes in patients with multiple sclerosis. Diabetes Care 29, 1984–1985 (2006).

    PubMed  Google Scholar 

  112. 112.

    Kang, J. H., Chen, Y. H. & Lin, H. C. Comorbidities amongst patients with multiple sclerosis: a population-based controlled study. Eur. J. Neurol. 17, 1215–1219 (2010).

    PubMed  Google Scholar 

  113. 113.

    Marrie, R. A. et al. Vascular comorbidity is associated with more rapid disability progression in multiple sclerosis. Neurology 74, 1041–1047 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Christiansen, C. F. et al. Risk of arterial cardiovascular diseases in patients with multiple sclerosis: a population-based cohort study. Neuroepidemiology 35, 267–274 (2010).

    PubMed  Google Scholar 

  115. 115.

    Jadidi, E., Mohammadi, M. & Moradi, T. High risk of cardiovascular diseases after diagnosis of multiple sclerosis. Mult. Scler. 19, 1336–1340 (2013).

    PubMed  Google Scholar 

  116. 116.

    Marrie, R. A. et al. Rising prevalence of vascular comorbidities in multiple sclerosis: validation of administrative definitions for diabetes, hypertension, and hyperlipidemia. Mult. Scler. 18, 1310–1319 (2012).

    PubMed  Google Scholar 

  117. 117.

    Geraldes, R. et al. The current role of MRI in differentiating multiple sclerosis from its imaging mimics. Nat. Rev. Neurol. 14, 199–213 (2018).

    PubMed  Google Scholar 

  118. 118.

    Zivadinov, R. et al. Cerebral microbleeds in multiple sclerosis evaluated on susceptibility-weighted images and quantitative susceptibility maps: a case-control study. Radiology 281, 884–895 (2016).

    PubMed  PubMed Central  Google Scholar 

  119. 119.

    Ter Telgte, A. et al. Cerebral small vessel disease: from a focal to a global perspective. Nat. Rev. Neurol. 14, 387–398 (2018).

    PubMed  Google Scholar 

  120. 120.

    Sati, P. et al. The central vein sign and its clinical evaluation for the diagnosis of multiple sclerosis: a consensus statement from the North American Imaging in Multiple Sclerosis Cooperative. Nat. Rev. Neurol. 12, 714–722 (2016).

    PubMed  PubMed Central  Google Scholar 

  121. 121.

    Moon, S. Y. et al. Prospective associations between white matter hyperintensities and lower extremity function. Neurology 90, e1291–e1297 (2018).

    PubMed  Google Scholar 

  122. 122.

    Srinivasa, R. N. et al. Cardiovascular risk factors associated with smaller brain volumes in regions identified as early predictors of cognitive decline. Radiology 278, 198–204 (2016).

    PubMed  Google Scholar 

  123. 123.

    Kappus, N. et al. Cardiovascular risk factors are associated with increased lesion burden and brain atrophy in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 87, 181–187 (2016).

    PubMed  Google Scholar 

  124. 124.

    Jakimovski, D. et al. Hypertension and heart disease are associated with development of brain atrophy in multiple sclerosis: a 5-year longitudinal study. Eur. J. Neurol. 26, 87 (2019).

    CAS  PubMed  Google Scholar 

  125. 125.

    Kneebone, I. I., Dunmore, E. C. & Evans, E. Symptoms of depression in older adults with multiple sclerosis (MS): comparison with a matched sample of younger adults. Aging Ment. Health 7, 182–185 (2003).

    CAS  PubMed  Google Scholar 

  126. 126.

    Chwastiak, L. et al. Depressive symptoms and severity of illness in multiple sclerosis: epidemiologic study of a large community sample. Am. J. Psychiatry 159, 1862–1868 (2002).

    PubMed  Google Scholar 

  127. 127.

    Patten, S. B., Metz, L. M. & Reimer, M. A. Biopsychosocial correlates of lifetime major depression in a multiple sclerosis population. Mult. Scler. 6, 115–120 (2000).

    CAS  PubMed  Google Scholar 

  128. 128.

    Beal, C. C., Stuifbergen, A. K. & Brown, A. Depression in multiple sclerosis: a longitudinal analysis. Arch. Psychiatr. Nurs. 21, 181–191 (2007).

    PubMed  PubMed Central  Google Scholar 

  129. 129.

    Roy, S. et al. Preliminary investigation of cognitive function in aged multiple sclerosis patients: challenges in detecting comorbid Alzheimer’s disease. Mult. Scler. Relat. Disord. 22, 52–56 (2018).

    PubMed  Google Scholar 

  130. 130.

    U.S. Food and Drug Administration. FDA News Release: FDA approves new oral treatment for multiple sclerosis. FDA https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm634837.htm (2019).

  131. 131.

    U.S. Food and Drug Administration. FDA News Release: FDA approves new oral drug to treat multiple sclerosis. FDA https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm634469.htm (2019).

  132. 132.

    National Multiple Sclerosis Society. Disease-modifying therapies for MS. NationalMSSociety https://www.nationalmssociety.org/NationalMSSociety/media/MSNationalFiles/Brochures/Brochure-MS-Disease-Modifying-Medications.pdf (2018).

  133. 133.

    Johnson, K. P. et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology 45, 1268–1276 (1995).

    CAS  PubMed  Google Scholar 

  134. 134.

    IFNβ Multiple Sclerosis Study Group. Interferon beta-lb is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. 1993 [classical article]. Neurology 57 (Suppl. 5), S3–S9 (2001).

    Google Scholar 

  135. 135.

    Polman, C. H. et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 354, 899–910 (2006).

    CAS  PubMed  Google Scholar 

  136. 136.

    CAMMS223 Trial Investigators et al. Alemtuzumab versus interferon beta-1a in early multiple sclerosis. N. Engl. J. Med. 359, 1786–1801 (2008).

    Google Scholar 

  137. 137.

    Cohen, J. A. et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet 380, 1819–1828 (2012).

    CAS  PubMed  Google Scholar 

  138. 138.

    Jacobs, L. D. et al. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Ann. Neurol. 39, 285–294 (1996).

    CAS  PubMed  Google Scholar 

  139. 139.

    PRISMS (Prevention of Relapses and Disability by Interferon β-1a Subcutaneously in Multiple Sclerosis) Study Group. Randomised double-blind placebo-controlled study of interferon β-1a in relapsing/remitting multiple sclerosis. Lancet 352, 1498–1504 (1998).

    Google Scholar 

  140. 140.

    Gold, R. et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N. Engl. J. Med. 367, 1098–1107 (2012).

    CAS  PubMed  Google Scholar 

  141. 141.

    Fox, R. J. et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N. Engl. J. Med. 367, 1087–1097 (2012).

    CAS  PubMed  Google Scholar 

  142. 142.

    Kappos, L. et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 362, 387–401 (2010).

    CAS  PubMed  Google Scholar 

  143. 143.

    Cohen, J. A. et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N. Engl. J. Med. 362, 402–415 (2010).

    CAS  PubMed  Google Scholar 

  144. 144.

    O’Connor, P. et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N. Engl. J. Med. 365, 1293–1303 (2011).

    PubMed  Google Scholar 

  145. 145.

    Miller, A. E. et al. Oral teriflunomide for patients with a first clinical episode suggestive of multiple sclerosis (TOPIC): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 13, 977–986 (2014).

    CAS  PubMed  Google Scholar 

  146. 146.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03523858 (2019).

  147. 147.

    Kappos, L. et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet 391, 1263–1273 (2018).

    CAS  PubMed  Google Scholar 

  148. 148.

    Zhang, T. et al. Examining the effects of comorbidities on disease-modifying therapy use in multiple sclerosis. Neurology 86, 1287–1295 (2016).

    PubMed  PubMed Central  Google Scholar 

  149. 149.

    Devonshire, V. et al. Relapse and disability outcomes in patients with multiple sclerosis treated with fingolimod: subgroup analyses of the double-blind, randomised, placebo-controlled FREEDOMS study. Lancet Neurol. 11, 420–428 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150.

    Motl, R. W. et al. Validity of the timed 25-foot walk as an ambulatory performance outcome measure for multiple sclerosis. Mult. Scler. 23, 704–710 (2017).

    PubMed  PubMed Central  Google Scholar 

  151. 151.

    Hervault, M., Balto, J. M., Hubbard, E. A. & Motl, R. W. Reliability, precision, and clinically important change of the Nine-Hole Peg Test in individuals with multiple sclerosis. Int. J. Rehabil. Res. 40, 91–93 (2017).

    PubMed  Google Scholar 

  152. 152.

    Kapoor, R. et al. Effect of natalizumab on disease progression in secondary progressive multiple sclerosis (ASCEND): a phase 3, randomised, double-blind, placebo-controlled trial with an open-label extension. Lancet Neurol. 17, 405–415 (2018).

    CAS  PubMed  Google Scholar 

  153. 153.

    Shirani, A. et al. Multiple sclerosis in older adults: the clinical profile and impact of interferon beta treatment. Biomed. Res. Int. 2015, 451912 (2015).

    PubMed  PubMed Central  Google Scholar 

  154. 154.

    Giovannoni, G. et al. Is multiple sclerosis a length-dependent central axonopathy? The case for therapeutic lag and the asynchronous progressive MS hypotheses. Mult. Scler. Relat. Disord. 12, 70–78 (2017).

    PubMed  Google Scholar 

  155. 155.

    Montalban, X. et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N. Engl. J. Med. 376, 209–220 (2017).

    CAS  PubMed  Google Scholar 

  156. 156.

    Paz Soldan, M. M. et al. Relapses and disability accumulation in progressive multiple sclerosis. Neurology 84, 81–88 (2015).

    PubMed  PubMed Central  Google Scholar 

  157. 157.

    Wolinsky, J. S. et al. Evaluation of no evidence of progression or active disease (NEPAD) in patients with primary progressive multiple sclerosis in the ORATORIO trial. Ann. Neurol. 84, 527–536 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158.

    Fox, E. J. et al. Ocrelizumab reduces progression of upper extremity impairment in patients with primary progressive multiple sclerosis: findings from the phase III randomized ORATORIO trial. Mult. Scler. 24, 1862–1870 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. 159.

    Manouchehrinia, A. et al. Age related multiple sclerosis severity score: disability ranked by age. Mult. Scler. 23, 1938–1946 (2017).

    PubMed  PubMed Central  Google Scholar 

  160. 160.

    Kister, I. Disease-modifying therapies can be safely discontinued in an individual with stable relapsing-remitting MS — YES. Mult. Scler. 23, 1188–1190 (2017).

    PubMed  Google Scholar 

  161. 161.

    Tobin, W. O. & Weinshenker, B. G. Disease-modifying therapies can be safely discontinued in an individual with stable relapsing-remitting MS — NO. Mult. Scler. 23, 1190–1192 (2017).

    PubMed  Google Scholar 

  162. 162.

    Tremlett, H., Zhao, Y., Joseph, J. & Devonshire, V. Relapses in multiple sclerosis are age- and time-dependent. J. Neurol. Neurosurg. Psychiatry 79, 1368–1374 (2008).

    CAS  PubMed  Google Scholar 

  163. 163.

    Hua, L. H., Fan, T. H., Conway, D., Thompson, N. & Kinzy, T. G. Discontinuation of disease-modifying therapy in patients with multiple sclerosis over age 60. Mult. Scler. https://doi.org/10.1177/1352458518765656 (2018).

    Article  PubMed  Google Scholar 

  164. 164.

    Kister, I. et al. Discontinuing disease-modifying therapy in MS after a prolonged relapse-free period: a propensity score-matched study. J. Neurol. Neurosurg. Psychiatry 87, 1133–1137 (2016).

    PubMed  Google Scholar 

  165. 165.

    Weideman, A. M., Tapia-Maltos, M. A., Johnson, K., Greenwood, M. & Bielekova, B. Meta-analysis of the age-dependent efficacy of multiple sclerosis treatments. Front. Neurol. 8, 577 (2017).

    PubMed  PubMed Central  Google Scholar 

  166. 166.

    Sormani, M. P. et al. Autologous hematopoietic stem cell transplantation in multiple sclerosis: a meta-analysis. Neurology 88, 2115–2122 (2017).

    PubMed  Google Scholar 

  167. 167.

    Muraro, P. A. et al. Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis. Nat. Rev. Neurol. 13, 391–405 (2017).

    CAS  PubMed  Google Scholar 

  168. 168.

    Muraro, P. A. et al. Long-term outcomes after autologous hematopoietic stem cell transplantation for multiple sclerosis. JAMA Neurol. 74, 459–469 (2017).

    PubMed  PubMed Central  Google Scholar 

  169. 169.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03073603 (2019).

  170. 170.

    Moss, B. P., Rensel, M. R. & Hersh, C. M. Wellness and the role of comorbidities in multiple sclerosis. Neurotherapeutics 14, 999–1017 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. 171.

    Ramanujam, R. et al. Effect of smoking cessation on multiple sclerosis prognosis. JAMA Neurol. 72, 1117–1123 (2015).

    PubMed  Google Scholar 

  172. 172.

    D’Hooghe, M. B., Haentjens, P., Nagels, G. & De Keyser, J. Alcohol, coffee, fish, smoking and disease progression in multiple sclerosis. Eur. J. Neurol. 19, 616–624 (2012).

    PubMed  Google Scholar 

  173. 173.

    Manouchehrinia, A. et al. Tobacco smoking and disability progression in multiple sclerosis: United Kingdom cohort study. Brain 136, 2298–2304 (2013).

    PubMed  PubMed Central  Google Scholar 

  174. 174.

    Sandroff, B. M., Motl, R. W., Scudder, M. R. & DeLuca, J. Systematic, evidence-based review of exercise, physical activity, and physical fitness effects on cognition in persons with multiple sclerosis. Neuropsychol. Rev. 26, 271–294 (2016).

    PubMed  Google Scholar 

  175. 175.

    Sandroff, B. M., Johnson, C. L. & Motl, R. W. Exercise training effects on memory and hippocampal viscoelasticity in multiple sclerosis: a novel application of magnetic resonance elastography. Neuroradiology 59, 61–67 (2017).

    PubMed  Google Scholar 

  176. 176.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02282878 (2017).

  177. 177.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03718247 (2018).

  178. 178.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03808545 (2019).

  179. 179.

    Ploughman, M. et al. Factors influencing healthy aging with multiple sclerosis: a qualitative study. Disabil. Rehabil. 34, 26–33 (2012).

    PubMed  Google Scholar 

  180. 180.

    Harrison, T., Blozis, S. & Stuifbergen, A. Longitudinal predictors of attitudes toward aging among women with multiple sclerosis. Psychol. Aging 23, 823–832 (2008).

    PubMed  PubMed Central  Google Scholar 

  181. 181.

    Julian, L. J. Cognitive functioning in multiple sclerosis. Neurol. Clin. 29, 507–525 (2011).

    PubMed  Google Scholar 

  182. 182.

    Bodling, A. M., Denney, D. R. & Lynch, S. G. Cognitive aging in patients with multiple sclerosis: a cross-sectional analysis of speeded processing. Arch. Clin. Neuropsychol. 24, 761–767 (2009).

    PubMed  Google Scholar 

  183. 183.

    Roy, S. et al. Differential effects of aging on motor and cognitive functioning in multiple sclerosis. Mult. Scler. 23, 1385–1393 (2017).

    PubMed  Google Scholar 

  184. 184.

    Sumowski, J. F., Chiaravalloti, N. & DeLuca, J. Cognitive reserve protects against cognitive dysfunction in multiple sclerosis. J. Clin. Exp. Neuropsychol. 31, 913–926 (2009).

    PubMed  Google Scholar 

  185. 185.

    Benedict, R. H., Morrow, S. A., Weinstock Guttman, B., Cookfair, D. & Schretlen, D. J. Cognitive reserve moderates decline in information processing speed in multiple sclerosis patients. J. Int. Neuropsychol. Soc. 16, 829–835 (2010).

    PubMed  Google Scholar 

  186. 186.

    Charvet, L. E., Shaw, M. T., Haider, L., Melville, P. & Krupp, L. B. Remotely-delivered cognitive remediation in multiple sclerosis (MS): protocol and results from a pilot study. Mult. Scler. J. Exp. Transl Clin. 1, 2055217315609629 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. 187.

    Perez-Martin, M. Y., Gonzalez-Platas, M., Eguia-Del Rio, P., Croissier-Elias, C. & Jimenez Sosa, A. Efficacy of a short cognitive training program in patients with multiple sclerosis. Neuropsychiatr. Dis. Treat. 13, 245–252 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. 188.

    Grasso, M. G. et al. Evaluation of the impact of cognitive training on quality of life in patients with multiple sclerosis. Eur. Neurol. 78, 111–117 (2017).

    PubMed  Google Scholar 

  189. 189.

    O’Carroll, C. B. et al. Is donepezil effective for multiple sclerosis-related cognitive dysfunction? A critically appraised topic. Neurologist 18, 51–54 (2012).

    PubMed  Google Scholar 

  190. 190.

    Villoslada, P., Arrondo, G., Sepulcre, J., Alegre, M. & Artieda, J. Memantine induces reversible neurologic impairment in patients with MS. Neurology 72, 1630–1633 (2009).

    CAS  PubMed  Google Scholar 

  191. 191.

    Peyro Saint Paul, L. et al. Efficacy and safety profile of memantine in patients with cognitive impairment in multiple sclerosis: a randomized, placebo-controlled study. J. Neurol. Sci. 363, 69–76 (2016).

    PubMed  Google Scholar 

  192. 192.

    Hartung, H. P. et al. Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet 360, 2018–2025 (2002).

    PubMed  Google Scholar 

  193. 193.

    Confavreux, C. et al. Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 13, 247–256 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. 194.

    Hauser, S. L. et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N. Engl. J. Med. 376, 221–234 (2017).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ research is supported in part by grants from the National Multiple Sclerosis Society (HC 1411–02004) and Biogen Idec (US-MSG-15-10855) to B.W.-G. and from Advancing Research in Multiple Sclerosis (ARMS) to the Jacobs Multiple Sclerosis Center for Treatment and Research.

Reviewer information

Nature Reviews Neurology thanks M. Magyari and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

C.B.V., D.J., K.S.K., R.Z. and B.W.-G. were involved in all aspects of article preparation. M.R. and R.H.B.B. contributed to discussions of the article content, writing and review or editing of the manuscript before submission.

Corresponding author

Correspondence to Bianca Weinstock-Guttman.

Ethics declarations

Competing interests

C.B.V. declares that she has received consultancy fees from Merck/EMD Serono. M.R. declares that he has received research funding from the US National Institute of Neurological Disorders and Stroke and the US National Science Foundation. R.H.B.B. declares that he has received research support from Accorda, Biogen, Genzyme, Mallinckrodt and Novartis; consultancy fees from Biogen, Genentech, Genzyme, Novartis, Roche, Sanofi and Teva; and compensation for activities relating to continuing medical education from EMD Serono. R.Z. declares that he has received speakers’ and consultancy fees from Celgene, Claret Medical, EMD Serono, Genzyme-Sanofi, IMS Health, Novartis and Roche-Genentech and financial research support from Claret Medical, IMS Health, Intekrin, Genzyme-Sanofi and Novartis. B.W.-G. declares that she has received fees for consultancy, acting as a speaker and serving on the scientific advisory boards of Biogen Idec, EMD Serono, Genzyme-Sanofi, Novartis, Questcor and Teva Neuroscience, and financial research support from Aspreva, Biogen Idec, EMD Serono, Genzyme, the Immune Tolerance Network Clinical Trials Group, the National Multiple Sclerosis Society, the NIH (not related to the present work), Novartis and Teva Neuroscience. D.J. and K.S.K. declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vaughn, C.B., Jakimovski, D., Kavak, K.S. et al. Epidemiology and treatment of multiple sclerosis in elderly populations. Nat Rev Neurol 15, 329–342 (2019). https://doi.org/10.1038/s41582-019-0183-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing