Exosomes — beyond stem cells for restorative therapy in stroke and neurological injury

Abstract

Stroke is a leading cause of disability worldwide, and brain injuries devastate patients and their families, but currently no drugs on the market promote neurological recovery. Limited spontaneous recovery of function as a result of brain remodelling after stroke or injury does occur, and cell-based therapies have been used to promote these endogenous processes. Increasing evidence is demonstrating that the positive effects of such cell-based therapy are mediated by exosomes released from the administered cells and that the microRNA cargo in these exosomes is largely responsible for the therapeutic effects. This evidence raises the possibility that isolated exosomes could be used alone as a neurorestorative therapy and that these exosomes could be tailored to maximize clinical benefit. The potential of exosomes as a therapy for brain disorders is therefore being actively investigated. In this Review, we discuss the current knowledge of exosomes and advances in our knowledge of their effects on endogenous neurovascular remodelling events. We also consider the opportunities for exosome-based approaches to therapeutic amplification of brain repair and improvement of recovery after stroke, traumatic brain injury and other diseases in which neurorestoration could be a viable treatment strategy.

Key points

  • Exosomes are involved in many aspects of normal brain physiology and facilitate communication between brain cells and between the brain and the periphery.

  • Increasing evidence suggests that exosomes from mesenchymal stromal cells (MSCs) mediate the beneficial effects of cell therapy for stroke and traumatic brain injury (TBI).

  • The effects of MSC-derived exosomes alone have the potential to improve neurological outcomes in animal models of stroke, TBI and other neurological diseases.

  • Of the cargo in exosomes, microRNA (miRNA) is of prime importance in mediating the therapeutic effects.

  • Compared with naive MSC-derived exosomes, engineered MSC-derived exosomes that contain selected miRNA have more potent therapeutic effects in stroke and TBIs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Roles of exosomes in the brain in physiology, after an insult and in exosome therapy.

References

  1. 1.

    Lackland, D. T. et al. Factors influencing the decline in stroke mortality: a statement from the American Heart Association/American Stroke Association. Stroke 45, 315–353 (2014).

    PubMed  Google Scholar 

  2. 2.

    Duncan, P. W., Goldstein, L. B., Matchar, D., Divine, G. W. & Feussner, J. Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke 23, 1084–1089 (1992).

    CAS  PubMed  Google Scholar 

  3. 3.

    Ueno, Y. et al. Axonal outgrowth and dendritic plasticity in the cortical peri-infarct area after experimental stroke. Stroke 43, 2221–2228 (2012).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Zhang, Z. G. & Chopp, M. Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. Lancet Neurol. 8, 491–500 (2009).

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Li, Y., Liu, Z., Xin, H. & Chopp, M. The role of astrocytes in mediating exogenous cell-based restorative therapy for stroke. Glia 62, 1–16 (2014).

    PubMed  Google Scholar 

  6. 6.

    Chen, J. et al. Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J. Neurol. Sci. 189, 49–57 (2001).

    CAS  PubMed  Google Scholar 

  7. 7.

    Chen, J. et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32, 1005–1011 (2001).

    CAS  PubMed  Google Scholar 

  8. 8.

    Chopp, M. & Li, Y. Treatment of neural injury with marrow stromal cells. Lancet Neurol. 1, 92–100 (2002).

    PubMed  Google Scholar 

  9. 9.

    Zhang, Y. et al. Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J. Neurosurgery 122, 856–867 (2015).

    CAS  Google Scholar 

  10. 10.

    Moskowitz, M. A., Lo, E. H. & Iadecola, C. The science of stroke: mechanisms in search of treatments. Neuron 67, 181–198 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Xin, H. et al. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells 31, 2737–2746 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Xin, H. et al. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J. Cereb. Blood Flow Metab. 33, 1711–1715 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Rak, J. Extracellular vesicles — biomarkers and effectors of the cellular interactome in cancer. Front. Pharmacol. 4, 21 (2013).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Lener, T. et al. Applying extracellular vesicles based therapeutics in clinical trials — an ISEV position paper. J. Extracell. Vesicles 4, 30087 (2015).

    Google Scholar 

  15. 15.

    Lai, C. P. & Breakefield, X. O. Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front. Physiol. 3, 228 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Maas, S. L., Breakefield, X. O. & Weaver, A. M. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol. 27, 172–188 (2017).

    CAS  PubMed  Google Scholar 

  17. 17.

    Mateescu, B. et al. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA — an ISEV position paper. J. Extracell. Vesicles 6, 1286095 (2017).

    Google Scholar 

  18. 18.

    Rufino-Ramos, D. et al. Extracellular vesicles: novel promising delivery systems for therapy of brain diseases. J. Control. Release 262, 247–258 (2017).

    CAS  PubMed  Google Scholar 

  19. 19.

    Park, J. E. et al. Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol. Cell. Proteomics 9, 1085–1099 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Kowal, J. et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl Acad. Sci. USA 113, E968–E977 (2016).

    CAS  PubMed  Google Scholar 

  21. 21.

    Mantel, P. Y. et al. Infected erythrocyte-derived extracellular vesicles alter vascular function via regulatory Ago2-miRNA complexes in malaria. Nat. Commun. 7, 12727 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Eacker, S. M., Dawson, T. M. & Dawson, V. L. Understanding microRNAs in neurodegeneration. Nat. Rev. Neurosci. 10, 837–841 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Macfarlane, L. A. & Murphy, P. R. MicroRNA: biogenesis, function and role in cancer. Curr. Genomics 11, 537–561 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Meister, G. Argonaute proteins: functional insights and emerging roles. Nat. Rev. Genet. 14, 447–459 (2013).

    CAS  PubMed  Google Scholar 

  25. 25.

    Sempere, L. F., Cole, C. N., McPeek, M. A. & Peterson, K. J. The phylogenetic distribution of metazoan microRNAs: insights into evolutionary complexity and constraint. J. Exp. Zool. B 306, 575–588 (2006).

    Google Scholar 

  26. 26.

    Heimberg, A. M., Sempere, L. F., Moy, V. N., Donoghue, P. C. & Peterson, K. J. MicroRNAs and the advent of vertebrate morphological complexity. Proc. Natl Acad. Sci. USA 105, 2946–2950 (2008).

    CAS  PubMed  Google Scholar 

  27. 27.

    Borroto-Escuela, D. O. et al. The role of transmitter diffusion and flow versus extracellular vesicles in volume transmission in the brain neural-glial networks. Phil. Trans. R. Soc. B 370, 20140183 (2015).

    PubMed  Google Scholar 

  28. 28.

    Banigan, M. G. et al. Differential expression of exosomal microRNAs in prefrontal cortices of schizophrenia and bipolar disorder patients. PLOS ONE 8, e48814 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Basso, M. & Bonetto, V. Extracellular vesicles and a novel form of communication in the brain. Front. Neurosci. 10, 127 (2016).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Holm, M. M., Kaiser, J. & Schwab, M. E. Extracellular vesicles: multimodal envoys in neural maintenance and repair. Trends Neurosci. 41, 360–372 (2018).

    CAS  PubMed  Google Scholar 

  31. 31.

    Faure, J. et al. Exosomes are released by cultured cortical neurones. Mol. Cell. Neurosci. 31, 642–648 (2006).

    CAS  PubMed  Google Scholar 

  32. 32.

    Lachenal, G. et al. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol. Cell. Neurosci. 46, 409–418 (2011).

    CAS  PubMed  Google Scholar 

  33. 33.

    Goldie, B. J. et al. Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons. Nucleic Acids Res. 42, 9195–9208 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Xu, B. et al. Neurons secrete miR-132-containing exosomes to regulate brain vascular integrity. Cell Res. 27, 882–897 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Wang, S. et al. Synapsin I is an oligomannose-carrying glycoprotein, acts as an oligomannose-binding lectin, and promotes neurite outgrowth and neuronal survival when released via glia-derived exosomes. J. Neurosci. 31, 7275–7290 (2011).

    CAS  PubMed  Google Scholar 

  36. 36.

    Kramer-Albers, E. M. et al. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: trophic support for axons? Proteomics Clin. Appl. 1, 1446–1461 (2007).

    PubMed  Google Scholar 

  37. 37.

    Fruhbeis, C. et al. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLOS Biol. 11, e1001604 (2013).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Fruhbeis, C., Frohlich, D., Kuo, W. P. & Kramer-Albers, E. M. Extracellular vesicles as mediators of neuron-glia communication. Front. Cell. Neurosci. 7, 182 (2013).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Lafourcade, C., Ramirez, J. P., Luarte, A., Fernandez, A. & Wyneken, U. MiRNAs in astrocyte-derived exosomes as possible mediators of neuronal plasticity. J. Exp. Neurosci. 10, 1–9 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Liu, Y. et al. Targeted exosome-mediated delivery of opioid receptor Mu siRNA for the treatment of morphine relapse. Sci. Rep. 5, 17543 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Guitart, K. et al. Improvement of neuronal cell survival by astrocyte-derived exosomes under hypoxic and ischemic conditions depends on prion protein. Glia 64, 896–910 (2016).

    PubMed  Google Scholar 

  42. 42.

    Luarte, A. et al. Astrocytes at the hub of the stress response: potential modulation of neurogenesis by miRNAs in astrocyte-derived exosomes. Stem Cells Int. 2017, 1719050 (2017).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Jovicic, A. & Gitler, A. D. Distinct repertoires of microRNAs present in mouse astrocytes compared to astrocyte-secreted exosomes. PLOS ONE 12, e0171418 (2017).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Zhang, Z. G. & Chopp, M. Exosomes in stroke pathogenesis and therapy. J. Clin. Invest. 126, 1190–1197 (2016).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Ophelders, D. R. et al. Mesenchymal stromal cell-derived extracellular vesicles protect the fetal brain after hypoxia-ischemia. Stem Cells Transl Med. 5, 754–763 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Doeppner, T. R. et al. Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression. Stem Cells Transl Med. 4, 1131–1143 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Otero-Ortega, L. et al. White matter repair after extracellular vesicles administration in an experimental animal model of subcortical stroke. Sci. Rep. 7, 44433 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Kim, D. K. et al. Chromatographically isolated CD63+CD81+ extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI. Proc. Natl Acad. Sci. USA 113, 170–175 (2015).

    PubMed  Google Scholar 

  49. 49.

    Han, Y. et al. Multipotent mesenchymal stromal cell-derived exosomes improve functional recovery after experimental intracerebral hemorrhage in the rat. J. Neurosurg. https://doi.org/10.3171/2018.2.JNS171475 (2018).

    Article  PubMed  Google Scholar 

  50. 50.

    Otero-Ortega, L. et al. Exosomes promote restoration after an experimental animal model of intracerebral hemorrhage. J. Cereb. Blood Flow Metab. 38, 767–779 (2018).

    CAS  PubMed  Google Scholar 

  51. 51.

    Williams, A. M. et al. Mesenchymal stem cell-derived exosomes provide neuroprotection and improve long-term neurologic outcomes in a swine model of traumatic brain injury and hemorrhagic shock. J. Neurotrauma https://doi.org/10.1089/neu.2018.5711 (2018).

    Article  PubMed  Google Scholar 

  52. 52.

    Buller, B. M. et al. Exosomes from rhesus monkey MSCs promote neuronal growth and myelination. Stroke 47 (Suppl. 1), A68 (2016).

    Google Scholar 

  53. 53.

    Orczykowski, M. E. et al. Cell based therapy enhances activation of ventral premotor cortex to improve recovery following primary motor cortex injury. Exp. Neurol. 305, 13–25 (2018).

    CAS  PubMed  Google Scholar 

  54. 54.

    Moore, T. L. et al. Recovery from ischemia in the middle-aged brain: a nonhuman primate model. Neurobiol. Aging 33, 619.e9–619.e24 (2012).

    Google Scholar 

  55. 55.

    Bruhn, H. et al. Non-invasive differentiation of tumors with use of localized 1-H spectroscopy in vivo: initial experience in patients with cerebral tumors. Invest. Radiol. 25, 1047–1050 (1990).

    Google Scholar 

  56. 56.

    Marcus, M. E. & Leonard, J. N. FedExosomes: engineering therapeutic biological nanoparticles that truly deliver. Pharmaceuticals 6, 659–680 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Zhang, Y. et al. Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochem. Int. 111, 69–81 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Kordelas, L. et al. MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 28, 970–973 (2014).

    CAS  PubMed  Google Scholar 

  59. 59.

    Webb, R. L. et al. Human neural stem cell extracellular vesicles improve tissue and functional recovery in the murine thromboembolic stroke model. Transl Stroke Res. 9, 530–539 (2017).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Webb, R. L. et al. Human neural stem cell extracellular vesicles improve recovery in a porcine model of ischemic stroke. Stroke 49, 1248–1256 (2018).

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Xiao, B. et al. Endothelial cell-derived exosomes protect SH-SY5Y nerve cells against ischemia/reperfusion injury. Int. J. Mol. Med. 40, 1201–1209 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Catanese, L., Tarsia, J. & Fisher, M. Acute ischemic stroke therapy overview. Circ. Res. 120, 541–558 (2017).

    CAS  PubMed  Google Scholar 

  63. 63.

    Goyal, M., Hill, M. D., Saver, J. L. & Fisher, M. Challenges and opportunities of endovascular stroke therapy. Ann. Neurol. 79, 11–17 (2016).

    PubMed  Google Scholar 

  64. 64.

    Fisher, M. & Saver, J. L. Future directions of acute ischaemic stroke therapy. Lancet Neurol. 14, 758–767 (2015).

    PubMed  Google Scholar 

  65. 65.

    Neuhaus, A. A., Couch, Y., Hadley, G. & Buchan, A. M. Neuroprotection in stroke: the importance of collaboration and reproducibility. Brain 140, 2079–2092 (2017).

    PubMed  Google Scholar 

  66. 66.

    Saver, J. L. et al. Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: a meta-analysis. JAMA 316, 1279–1288 (2016).

    PubMed  Google Scholar 

  67. 67.

    Jadhav, A. P. et al. Eligibility for endovascular trial enrollment in the 6- to 24-hour time window: analysis of a single comprehensive stroke center. Stroke 49, 1015–1017 (2018).

    PubMed  Google Scholar 

  68. 68.

    Ganesh, A. & Goyal, M. Thrombectomy for acute ischemic stroke: recent insights and future directions. Curr. Neurol. Neurosci. Rep. 18, 59 (2018).

    PubMed  Google Scholar 

  69. 69.

    Lapchak, P. A., Boitano, P. D., de Couto, G. & Marban, E. Intravenous xenogeneic human cardiosphere-derived cell extracellular vesicles (exosomes) improves behavioral function in small-clot embolized rabbits. Exp. Neurol. 307, 109–117 (2018).

    CAS  PubMed  Google Scholar 

  70. 70.

    Billing, A. M. et al. Comprehensive transcriptomic and proteomic characterization of human mesenchymal stem cells reveals source specific cellular markers. Sci. Rep. 6, 21507 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Walczak, P. et al. Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke 39, 1569–1574 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Herberts, C. A., Kwa, M. S. & Hermsen, H. P. Risk factors in the development of stem cell therapy. J. Transl Med. 9, 29 (2011).

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Wong, R. S. Mesenchymal stem cells: angels or demons? J. Biomed. Biotechnol. 2011, 459510 (2011).

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Krupinski, J., Kaluza, J., Kumar, P., Kumar, S. & Wang, J. M. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke 25, 1794–1798 (1994).

    CAS  PubMed  Google Scholar 

  75. 75.

    Jin, K. et al. Evidence for stroke-induced neurogenesis in the human brain. Proc. Natl Acad. Sci. USA 103, 13198–13202 (2006).

    CAS  PubMed  Google Scholar 

  76. 76.

    Macas, J., Nern, C., Plate, K. H. & Momma, S. Increased generation of neuronal progenitors after ischemic injury in the aged adult human forebrain. J. Neurosci. 26, 13114–13119 (2006).

    CAS  PubMed  Google Scholar 

  77. 77.

    Minger, S. L. et al. Endogenous neurogenesis in the human brain following cerebral infarction. Regen. Med. 2, 69–74 (2007).

    PubMed  Google Scholar 

  78. 78.

    Xin, H., Li, Y. & Chopp, M. Exosomes/miRNAs as mediating cell-based therapy of stroke. Front. Cell. Neurosci. 8, 377 (2014).

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Xiong, Y., Mahmood, A. & Chopp, M. Emerging potential of exosomes for treatment of traumatic brain injury. Neural Regen. Res. 12, 19–22 (2017).

    PubMed  PubMed Central  Google Scholar 

  80. 80.

    Andras, I. E. & Toborek, M. Extracellular vesicles of the blood-brain barrier. Tissue Barriers 4, e1131804 (2016).

    PubMed  Google Scholar 

  81. 81.

    Grange, C. et al. Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a model of acute kidney injury monitored by optical imaging. Int. J. Mol. Med. 33, 1055–1063 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Di Rocco, G., Baldari, S. & Toietta, G. Towards therapeutic delivery of extracellular vesicles: strategies for in vivo tracking and biodistribution analysis. Stem Cells Int. 2016, 5029619 (2016).

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    Betzer, O. et al. In vivo neuroimaging of exosomes using gold nanoparticles. ACS Nano 11, 10883–10893 (2017).

    CAS  PubMed  Google Scholar 

  84. 84.

    Hwang, D. W. et al. Noninvasive imaging of radiolabeled exosome-mimetic nanovesicle using (99m)Tc-HMPAO. Sci. Rep. 5, 15636 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Yuan, D. et al. Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials 142, 1–12 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Zhang, Y. et al. Exosomes derived from mesenchymal stromal cells promote axonal growth of cortical neurons. Mol. Neurobiol. 54, 2659–2673 (2017).

    CAS  PubMed  Google Scholar 

  87. 87.

    Tassew, N. G. et al. Exosomes mediate mobilization of autocrine Wnt10b to promote axonal regeneration in the injured CNS. Cell Rep. 20, 99–111 (2017).

    CAS  PubMed  Google Scholar 

  88. 88.

    Haqqani, A. S. et al. Method for isolation and molecular characterization of extracellular microvesicles released from brain endothelial cells. Fluids Barriers CNS 10, 4 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Pan, W. et al. Exosomes derived from ischemic cerebral endothelial cells and neural progenitor cells enhance neurogenesis and angiogenesis. Stroke 47 (Suppl. 1), AWMP39 (2016).

    Google Scholar 

  90. 90.

    Zhang, Y. et al. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature 548, 52–57 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Andras, I. E. et al. Extracellular vesicles of the blood-brain barrier: role in the HIV-1 associated amyloid beta pathology. Mol. Cell. Neurosci. 79, 12–22 (2017).

    CAS  PubMed  Google Scholar 

  92. 92.

    Xin, H. et al. Secondary release of exosomes from astrocytes contributes to the increase in neural plasticity and improvement of functional recovery after stroke in rats treated with exosomes harvested from microRNA 133b-overexpressing multipotent mesenchymal stromal cells. Cell Transplant. 26, 243–257 (2017).

    PubMed  PubMed Central  Google Scholar 

  93. 93.

    Couch, Y. et al. Inflammatory stroke extracellular vesicles induce macrophage activation. Stroke 48, 2292–2296 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Esenwa, C. C. & Elkind, M. S. Inflammatory risk factors, biomarkers and associated therapy in ischaemic stroke. Nat. Rev. Neurol. 12, 594–604 (2016).

    CAS  PubMed  Google Scholar 

  95. 95.

    Drommelschmidt, K. et al. Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammation-induced preterm brain injury. Brain Behav. Immun. 60, 220–232 (2017).

    CAS  PubMed  Google Scholar 

  96. 96.

    Cui, G. H. et al. Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice. FASEB J. 32, 654–668 (2017).

    Google Scholar 

  97. 97.

    Chen, J. et al. MiR-126 affects brain-heart interaction after cerebral ischemic stroke. Transl Stroke Res. 8, 374–385 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Balusu, S. et al. Identification of a novel mechanism of blood-brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles. EMBO Mol. Med. 8, 1162–1183 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Chopp, M. & Zhang, Z. G. Emerging potential of exosomes and noncoding microRNAs for the treatment of neurological injury/diseases. Expert Opin. Emerg. Drugs 20, 523–526 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).

    PubMed  Google Scholar 

  101. 101.

    Guduric-Fuchs, J. et al. Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics 13, 357 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Melo, S. A. et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 26, 707–721 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Collino, F. et al. AKI recovery induced by mesenchymal stromal cell-derived extracellular vesicles carrying microRNAs. J. Am. Soc. Nephrol. 26, 2349–2360 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Zhang, R. L. et al. Cerebral endothelial derived exosomes abolish cognitive impairment induced by ablation of Dicer in adult neural stem cells. Stroke 48 (Suppl. 1), AWMP48 (2017).

    Google Scholar 

  105. 105.

    Mead, B. & Tomarev, S. Bone marrow-derived mesenchymal stem cells-derived exosomes promote survival of retinal ganglion cells through miRNA-dependent mechanisms. Stem Cells Transl Med. 6, 1273–1285 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Katsuda, T., Oki, K. & Ochiya, T. Potential application of extracellular vesicles of human adipose tissue-derived mesenchymal stem cells in Alzheimer’s disease therapeutics. Methods Mol. Biol. 1212, 171–181 (2015).

    PubMed  Google Scholar 

  107. 107.

    Xin, H. et al. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells 30, 1556–1564 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Nam, J. W. et al. Global analyses of the effect of different cellular contexts on microRNA targeting. Mol. Cell 53, 1031–1043 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    He, Z. & Jin, Y. Intrinsic control of axon regeneration. Neuron 90, 437–451 (2016).

    CAS  Google Scholar 

  110. 110.

    Zhang, Y. et al. The microRNA-17-92 cluster enhances axonal outgrowth in embryonic cortical neurons. J. Neurosci. 33, 6885–6894 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Jones, E. V. & Bouvier, D. S. Astrocyte-secreted matricellular proteins in CNS remodelling during development and disease. Neural Plast. 2014, 321209 (2014).

    PubMed  PubMed Central  Google Scholar 

  112. 112.

    Edbauer, D. et al. Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65, 373–384 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Magill, S. T. et al. microRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. Proc. Natl Acad. Sci. USA 107, 20382–20387 (2010).

    CAS  PubMed  Google Scholar 

  114. 114.

    Dozio, V. & Sanchez, J. C. Characterisation of extracellular vesicle-subsets derived from brain endothelial cells and analysis of their protein cargo modulation after TNF exposure. J. Extracell. Vesicles 6, 1302705 (2017).

    Google Scholar 

  115. 115.

    Tkach, M. & Thery, C. Communication by extracellular vesicles: where we are and where we need to go. Cell 164, 1226–1232 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Alvarez-Erviti, L. et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29, 341–345 (2011).

    CAS  PubMed  Google Scholar 

  117. 117.

    Kumar, P. et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature 448, 39–43 (2007).

    CAS  PubMed  Google Scholar 

  118. 118.

    Coimbra, J. R. M. et al. Highlights in BACE1 inhibitors for Alzheimer’s disease treatment. Front. Chem. 6, 178 (2018).

    PubMed  PubMed Central  Google Scholar 

  119. 119.

    Yang, J., Zhang, X., Chen, X., Wang, L. & Yang, G. Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Mol. Ther. Nucleic Acids 7, 278–287 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Gyorgy, B. et al. Rescue of hearing by gene delivery to inner-ear hair cells using exosome-associated AAV. Mol. Ther. 25, 379–391 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Tian, T. et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials 150, 137–149 (2018).

    CAS  PubMed  Google Scholar 

  122. 122.

    Zhuang, X. et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol. Ther. 19, 1769–1779 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Kalani, A. et al. Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury. Int. J. Biochem. Cell Biol. 79, 360–369 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Xin, H. et al. MicroRNA cluster miR-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats. Stroke 48, 747–753 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Shen, H. et al. Role of exosomes derived from miR-133b modified MSCs in an experimental rat model of intracerebral hemorrhage. J. Mol. Neurosci. 64, 421–430 (2018).

    CAS  PubMed  Google Scholar 

  126. 126.

    Sterzenbach, U. et al. Engineered exosomes as vehicles for biologically active proteins. Mol. Ther. 25, 1269–1278 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Long, Q. et al. Intranasal MSC-derived A1-exosomes ease inflammation, and prevent abnormal neurogenesis and memory dysfunction after status epilepticus. Proc. Natl Acad. Sci. USA 114, E3536–E3545 (2017).

    CAS  PubMed  Google Scholar 

  128. 128.

    Haney, M. J. et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J. Control. Release 207, 18–30 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Pachler, K. et al. A Good Manufacturing Practice-grade standard protocol for exclusively human mesenchymal stromal cell-derived extracellular vesicles. Cytotherapy 19, 458–472 (2017).

    PubMed  Google Scholar 

  130. 130.

    Gimona, M., Pachler, K., Laner-Plamberger, S., Schallmoser, K. & Rohde, E. Manufacturing of human extracellular vesicle-based therapeutics for clinical use. Int. J. Mol. Sci. 18, E1190 (2017).

    PubMed  Google Scholar 

  131. 131.

    Frank, J. et al. Extracellular vesicles protect glucuronidase model enzymes during freeze-drying. Sci. Rep. 8, 12377 (2018).

    PubMed  PubMed Central  Google Scholar 

  132. 132.

    Pachler, K. et al. An in vitro potency assay for monitoring the immunomodulatory potential of stromal cell-derived extracellular vesicles. Int. J. Mol. Sci. 18, E1413 (2017).

    PubMed  Google Scholar 

  133. 133.

    Reiner, A. T. et al. Concise review: developing best-practice models for the therapeutic use of extracellular vesicles. Stem Cells Transl Med. 6, 1730–1739 (2017).

    PubMed  PubMed Central  Google Scholar 

  134. 134.

    Cunningham, C. J., Redondo-Castro, E. & Allan, S. M. The therapeutic potential of the mesenchymal stem cell secretome in ischaemic stroke. J. Cereb. Blood Flow Metab. 38, 1276–1292 (2018).

    PubMed  PubMed Central  Google Scholar 

  135. 135.

    Anderson, J. D. et al. Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-kappaB signaling. Stem Cells 34, 601–613 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from US NIH grants R01 NS 088656 (M.C.) and RO1 NS075156 (Z.G.Z.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Affiliations

Authors

Contributions

Z.G.Z. and B.B. researched data for the article. All authors made substantial contributions to discussion of content, contributed to writing of the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Zheng Gang Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

US National Library of Medicine Clinical Trials: http://www.clinicaltrials.gov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z.G., Buller, B. & Chopp, M. Exosomes — beyond stem cells for restorative therapy in stroke and neurological injury. Nat Rev Neurol 15, 193–203 (2019). https://doi.org/10.1038/s41582-018-0126-4

Download citation

Further reading