Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunotherapy in myasthenia gravis in the era of biologics

Abstract

No consensus has been reached on the ideal therapeutic algorithm for myasthenia gravis (MG). Most patients with MG require induction therapy with high doses of corticosteroids and maintenance with an immunosuppressant. Severe cases and acute worsening require intravenous immunoglobulin or plasmapheresis before oral immunosuppressants start having an effect. However, biologics are emerging as important therapeutic tools that promise to provide better corticosteroid sparing effects than standard treatments and can even induce remission. In particular, eculizumab, a monoclonal antibody against complement C5, has been approved by the FDA for refractory MG on the basis of a phase III trial. Rituximab, an anti-CD20 monoclonal antibody that depletes peripheral B cells, has also been effective in many large uncontrolled series, although was not in a small phase III trial. Whether the newer anti-CD20 agents ocrelizumab, ofatumumab, obinutuzumab, ublituximab or inebilizumab will be more effective remains unclear. Belimumab, an antibody against the B cell trophic factor BAFF, was ineffective in phase III trials, and efgartigimod, which depletes antibodies, was effective in a phase II study. Some anti-cytokine agents relevant to MG immunopathogenesis also seem promising. Checkpoint inhibitors can trigger MG in some patients, necessitating early intervention. Increased availability of new biologics provides targeted immunotherapies and the opportunities to develop more specific therapies.

Key points

  • In myasthenia gravis (MG), the clinical phenotype and the type of circulating antibodies that are present have the greatest influence on therapeutic decisions and outcomes.

  • Targeted immunotherapy seems to be the most promising therapeutic approach in MG because it can effectively overcome the limitations of current nonspecific immunotherapies and has the potential to induce remission.

  • Biologics that are relevant to treating MG target B cells, molecules associated with T cell activation, complement, the neonatal crystallizable fragment of immunglobulin G antibodies, and cytokines associated with antibody production.

  • The checkpoint inhibitors that are used for the treatment of advanced malignancies have a paradoxical effect that means they can trigger MG that requires early recognition and prompt immunotherapy.

  • In the era of biologics, more-effective therapies are creating a need for new criteria that define clinical responses and remission, and for better outcome measures and biomarkers to assess clinical benefits.

  • Several outdated or unverified views, including unsubstantiated concerns that exercise or administration of common drugs, such as antibiotics or statins, can worsen MG symptoms, need to be revisited.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The main cells and pathways in the immune network of myasthenia gravis and their potential as therapeutic targets.

Similar content being viewed by others

References

  1. Gilhus, N. E. Myasthenia gravis. N. Engl. J. Med. 375, 2570–2581 (2016).

    CAS  PubMed  Google Scholar 

  2. Dalakas, M. C. Future perspectives in target-specific immunotherapies of myasthenia gravis. Therap. Adv. Neurol. Disord. 8, 316–327 (2015).

    CAS  Google Scholar 

  3. Guptil, J. T., Soni, M. & Meriggioli, M. N. Current treatment, emerging translational therapies, and new therapeutic targets for autoimmune myasthenia gravis. Neurotherapeutics 13, 118–131 (2016).

    Google Scholar 

  4. Drachman, D. B. Myasthenia gravis. Semin. Neurol. 36, 419–424 (2016). A useful overview from a very experienced clinician and MG scholar.

    PubMed  Google Scholar 

  5. Sanders, D. B. et al. International consensus guidance for management of myasthenia gravis: executive summary. Neurology 87, 419–425 (2016). An important effort to establish consensus criteria in the treatment of MG.

    PubMed  PubMed Central  Google Scholar 

  6. Dalakas, M. C. Treating mysasthenia on a consesus guide: helpful and challenging but still unfinished business. Neurology 87, 1–2 (2016). An objective critique of the proposed consensus criteria in the MG management.

    Google Scholar 

  7. Melzer, N. et al. Clinical features, pathogenesis and treatment of myasthenia gravis: a supplement to the guidelines of the German Neurological Society. J. Neurol. 263, 1473–1494 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Carr, A. S., Cardwell, C. R., McCarron, P. O. & McConville, J. A systematic review of population based epidemiological studies in Myasthenia Gravis. BMC Neurol. 10, 46 (2010).

    PubMed  PubMed Central  Google Scholar 

  9. Gilhus, N. E. & Verschuuren, J. J. Myasthenia gravis: subgroup classification and therapeutic strategies. Lancet Neurol. 14, 1023–1036 (2015).

    CAS  PubMed  Google Scholar 

  10. Evoli, A. Myasthenia gravis: new developments in research and treatment. Curr. Opin. Neurol. 30, 464–470 (2017).

    CAS  PubMed  Google Scholar 

  11. Benatar, M. et al. Efficacy of prednisone for the treatment of ocular myasthenia (Epitome): a randomized controlled trial. Muscle Nerve 53, 363–369 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Alkahawajah, N. M. & Oger, J. Treatment of myasthenia gravis in the aged. Drugs Aging 32, 689–697 (2015).

    Google Scholar 

  13. Sih, M. et al. Head-drop: a frequent feature in late onset myasthenia gravis. Muscle Nerve 56, 441–444 (2017).

    PubMed  Google Scholar 

  14. Phillips, W. D. & Vincent, A. Pathogenesis of myasthenia gravis: update on disease types, models, and mechanisms. F1000Res 5, 1513 (2016).

    Google Scholar 

  15. Vincent, A. & Rothwell, P. Myasthenia gravis. Autoimmunity 37, 317–319 (2004).

    CAS  PubMed  Google Scholar 

  16. Evoli, A. et al. Clinical correlates with anti-MuSK antibodies in generalized seronegative myasthenia gravis. Brain 126, 2304–2311 (2003).

    PubMed  Google Scholar 

  17. Sanders, D. B., El-Salem, K., Massey, J. M., McConville, J. & Vincent, A. Clinical aspects of MuSK antibody positive seronegative MG. Neurology 60, 1978–1980 (2003).

    CAS  PubMed  Google Scholar 

  18. Kubiszewska, J. et al. Prevalence and impact of autoimmune thyroid disease on myasthenia gravis course. Brain Behav. 6, e00537 (2016).

    PubMed  PubMed Central  Google Scholar 

  19. Leite, M. I. et al. Myasthenia gravis and neuromyelitis optica spectrum disorder: a multicenter study of 16 patients. Neurology 78, 1601–1607 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Dalakas, M. C. Novel future therapeutic options in myasthenia gravis. Autoimmun. Rev. 12, 936–941 (2013).

    CAS  PubMed  Google Scholar 

  21. Dalakas, M. C. Biologics and other novel approaches and new therapeutic options in myasthenia gravis: a view to the future. Ann. NY Acad. Sci. 1274, 168–175 (2012).

    Google Scholar 

  22. Molko, N. et al. Zika virus infection and myasthenia gravis: report of 2 cases. Neurology 88, 1097–1098 (2017).

    PubMed  Google Scholar 

  23. Leis, A. A., Szatmary, G., Ross, M. A. & Stokic, D. S. West nile virus infection and myasthenia gravis. Muscle Nerve 49, 26–29 (2014).

    CAS  PubMed  Google Scholar 

  24. Yi, S. J., Guptil, J. T., Stathopoulos, P., Nowak, R. J. & O’Connor, K. C. B cells in the pathophysiology of myasthenia gravis. Muscle Nerve 57, 172–184 (2018). An up-to-date review on B cells in MG, including excellent B cell molecular immunology.

    PubMed  Google Scholar 

  25. Drachman, D. B. Comment: methotrexate for patients with generalized myasthenia gravis. Neurology 87, 63 (2016).

    PubMed  Google Scholar 

  26. Palace, J., Newsom-Davis, J. & Lecky, B. A randomized double-blind trial of prednisolone alone or with azathioprine in myasthenia gravis. Neurology 50, 1778–1783 (1998).

    CAS  PubMed  Google Scholar 

  27. Meriggioli, M. N., Rowin, J., Richman, J. G. & Leurgans, S. Mycophenolate mofetil for myasthenia gravis: a double-blind, placebo-controlled pilot study. Ann. NY Acad. Sci. 998, 494–499 (2003).

    CAS  PubMed  Google Scholar 

  28. Muscle Study Group. A trial of mycophenolate mofetil with prednisone as initial immunotherapy in myasthenia gravis. Neurology 71, 394–399 (2008).

    Google Scholar 

  29. Burns, T. M. et al. Two steps forward, one step back: mycophenolate mofetil treatment for myasthenia gravis in the United States. Muscle Nerve 51, 635–637 (2015). A practical commentary on the use of mycophenolate in MG.

    CAS  PubMed  Google Scholar 

  30. Oskarsson, B., Rocke, D. M., Dengel, K. & Richman, D. P. Myasthenia gravis exacerbation after discontinuing mycophenolate: a single-center cohort study. Neurology 86, 1159 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hobson-Webb, L. D. et al. Can Mycophenolate mofetil be tapered safely in myasthenia gravis? A retrospective multicenter analysis. Muscle Nerve 52, 211–215 (2015).

    PubMed  Google Scholar 

  32. Tindall, R. S., Phillips, J. T., Rollins, J. A., Wells, L. & Hall, K. A clinical therapeutic trial of cyclosporine in myasthenia gravis. Ann. NY Acad. Sci. 681, 539–551 (1993).

    CAS  PubMed  Google Scholar 

  33. Tindall, R. S. et al. Preliminary results of a double-blind, randomized, placebo-controlled trial of cyclosporine in myasthenia gravis. N. Engl. J. Med. 316, 719–724 (1987).

    CAS  PubMed  Google Scholar 

  34. Cruz, J. L., Wolff, M. L., Vanderman, A. J. & Brown, J. N. The emerging role of Tacrolimus in myasthenia gravis. Ther. Adv. Neurol. Disord. 8, 92–103 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yoshikawa, H. et al. Randomised, double-blind, placebo-controlled study of tacrolimus in myasthenia gravis. J. Neurol. Neurosurg. Psychiatry 82, 970–977 (2011).

    PubMed  Google Scholar 

  36. Zhou, L. et al. Tacrolimus in the treatment of myasthenia gravis in patients with an inadequate response to glucocorticoid therapy: randomized, double-blind, placebo-controlled study conducted in China. Ther. Adv. Neurol. Disord. 10, 315–325 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Pasnoor, M. et al. A randomized controlled trial of methotrexate for patients with generalized myasthenia gravis. Neurology 87, 1–8 (2016).

    Google Scholar 

  38. Patwa, H. S., Chaudhry, V., Katzberg, H., Rae-Grant, A. D. & So, Y. T. Evidence-based guideline: intravenous immunoglobulin in the treatment of neuromuscular disorders: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 78, 1009–1015 (2012).

    CAS  PubMed  Google Scholar 

  39. Kaminski, H. J., Cutter, G. & Ruff, R. Practice parameters and focusing research: plasma exchange for myasthenia gravis. Muscle Nerve 43, 625–626 (2011). A commentary about the practical use of plasmapheresis in MG.

    PubMed  Google Scholar 

  40. Gajdos, P., Chevret, S. & Toyka, K. Intravenous immunoglobulin for myasthenia gravis. Cochrane Database Syst. Rev. 1, CD002277 (2008).

    Google Scholar 

  41. Gajdos, P., Chevret, S., Clair, B., Tranchant, C. & Chastang, C. Clinical trial of plasma exchange and high dose immunoglobulin inmyasthenia gravis. Ann. Neurol. 41, 789–796 (1997).

    CAS  PubMed  Google Scholar 

  42. Gajdos, P. et al. Treatment of myasthenia gravis exacerbation with intravenous immunoglobulin: a randomized double-blind clinical trial. Arch. Neurol. 62, 1689–1693 (2005).

    PubMed  Google Scholar 

  43. Dalakas, M. C. The use of intravenous immunoglobulin in the treatment of autoimmune neurological disorders: evidence-based indications and safety profile. Pharmacol. Ther. 102, 177–193 (2004).

    CAS  PubMed  Google Scholar 

  44. Dalakas, M. C. in Myasthenia Gravis: Disease Mechanisms and Immune Intervention (ed. Christados, P.) 89–102 (Linus Publications, 2010).

  45. Hellmann, M. A., Mosberg-Galili, R., Lotan, I. & Steiner, I. Maintenance IVIg therapy in myasthenia gravis does not affect disease activity. J. Neurol. Sci. 338, 39–42 (2014).

    CAS  PubMed  Google Scholar 

  46. Dalakas, M. C. IVIg in the chronic management of myasthenia gravis: is it enough for your money? J. Neurol. Sci. 338, 1–2 (2014). A commentary about chronic treatment of MG with IVIg and the need for controlled studies.

    PubMed  Google Scholar 

  47. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02473952?term=NCT02473952&rank=1 (2018).

  48. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02473965?term=NCT02473965&rank=1 (2018).

  49. Bourque, P. R., Pringle, C. E., Cameron, W., Cowan, J. & Chardon, J. W. Subcutaneous immunoglobulin therapy in the chronic management of myasthenia gravis: a retrospective cohort study. PLOS ONE 11, e0159993 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Beecher, G., Anderson, D. & Siddiqi, Z. Subcutaneous immunoglobulin in myasthenia gravis exacerbation: a prospective, open-label trial. Neurology 89, 1–7 (2017). A useful study that describes the experience of treating MG with subcutaneous IgG.

    Google Scholar 

  51. Gronseth, G. S. & Barohn, R. J. Practice parameter: thymectomy for autoimmune myasthenia gravis (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 55, 7–15 (2000).

    CAS  PubMed  Google Scholar 

  52. Wolfe, G. I. et al. Randomized trial of thymectomy in myasthenia gravis. N. Engl. J. Med. 375, 511–522 (2016). A monumental controlled trial on the usefulness of thymectomy in MG by leading clinicians.

    PubMed  PubMed Central  Google Scholar 

  53. Ropper, A. H. RetroSternal — looking back at thymectomy for myasthenia gravis. N. Engl. J. Med. 375, 576–577 (2016).

    PubMed  Google Scholar 

  54. Howard, J. F. et al. A randomized, placebo-controlled phase II study of eculizumab in patients with refractory generalized myasthenia gravis. Muscle Nerve 48, 76–84 (2013).

    CAS  PubMed  Google Scholar 

  55. Howard, J. F. et al. Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalized myasthenia gravis (REGAIN): a phase 3, randomised, doubleblind, placebo-controlled, multicentre study. Lancet Neurol. 16, 976–986 (2017). An important, well-conducted controlled study that led to approval of eculizumab as the first FDA-approved drug for MG.

    CAS  Google Scholar 

  56. Suh, J., Goldstein, J. M. & Nowak, R. J. Clinical characteristics of refractory myasthenia gravis patients. Yale J. Biol. Med. 86, 255–226 (2013).

    PubMed  PubMed Central  Google Scholar 

  57. Dalakas, M. C. B cells as therapeutic targets in autoimmune neurological disorders. Nat. Clin. Pract. Neurol. 4, 557–567 (2008).

    CAS  PubMed  Google Scholar 

  58. Illa, I. et al. Sustained response to rituximab in anti-AChR and anti-MuSK positive myasthenia gravis patients. J. Neuroimmunol. 201–202, 90–94 (2008).

    PubMed  Google Scholar 

  59. Nowak, R. J., Dicapua, D. B., Zebardast, N. & Goldstein, J. M. Response of patients with refractory myasthenia gravis to rituximab: a retrospective study. Ther. Adv. Neurol. Disord. 4, 259–266 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Iorio, R., Damato, V., Alboini, P. E. & Evoli, A. Efficacy and safety of rituximab for myasthenia gravis: a systematic review and meta-analysis. J. Neurol. 262, 1115–1119 (2015).

    CAS  PubMed  Google Scholar 

  61. Tandan, R., Hehir, M. K., Waheed, W. & Howard, D. B. Rituximab treatment of myasthenia gravis: a systematic review. Muscle Nerve 56, 185–196 (2017).

    CAS  PubMed  Google Scholar 

  62. Afanasiev, V. et al. Resistant myasthenia gravis and rituximab: a monocentric retrospective study of 28 patients. Neuromuscul. Disord. 27, 251–258 (2017).

    Google Scholar 

  63. Stieglbauer, K., Pihler, R. & Topakian, R. 10-year-outcomes after rituximab for myasthenia gravis: efficacy, safety, costs of in hospital care, and impact on childbearing potential. J. Neurol. Sci. 375, 241–244 (2017).

    CAS  PubMed  Google Scholar 

  64. Díaz-Manera, J. et al. Long-lasting treatment effect of rituximab in MuSK myasthenia. Neurology 78, 189–193 (2012).

    PubMed  Google Scholar 

  65. Hehir, M. K. et al. Rituximab as treatment for anti-MuSK myasthenia gravis: multicenter blinded prospective review. Neurology 89, 1069–1077 (2017). A blinded study that demonstrates the usefulness of rituximab in anti-MuSK MG.

    CAS  PubMed  Google Scholar 

  66. Kosmidis, M. L. & Dalakas, M. C. Practical considerations on the use of rituximab in autoimmune neurological disorders. Ther. Adv. Neurol. Disord. 3, 93–105 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kim, S. H., Huh, S. Y., Lee, S. J., Joung, A. & Kim, H. J. A. 5-year follow-up of rituximab treatment in patients with neuromyelitis optica spectrum disorder. JAMA Neurol. 70, 1110–1117 (2013).

    PubMed  Google Scholar 

  68. Dalakas, M. C. et al. Placebo-controlled trial of rituximab in IgM anti-myelin-associated glycoprotein antibody demyelinating neuropathy. Ann. Neurol. 65, 286–293 (2009).

    CAS  PubMed  Google Scholar 

  69. Lebrun, C. et al. Therapeutic target of memory B cells depletion helps to tailor administration frequency of rituximab in myasthenia gravis J. Neuroimmunol. 298, 79–81 (2016).

    CAS  PubMed  Google Scholar 

  70. Nowak, R. J. et al. B cell targeted treatment in myasthenia gravis (BeatMG): a phase 2 trial of rituximab in myasthenia gravis. Neurology 90, e2182–e2194 (2018).

    Google Scholar 

  71. Dalakas, M. C. Neurological complications of immune check-point inhibitors: what happens when you “take the brakes-off” the immune system. Ther. Adv. Neurol. Disord. https://doi.org/10.1177/1756286418799864 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Nguyen, B. H., Kuo, J., Budiman, A., Christie, H. & Ali, S. Two cases of clinical myasthenia gravis associated with pembrolizumab use in responding melanoma patients. Melanoma Res. 27, 152–154 (2017).

    PubMed  Google Scholar 

  73. Gonzalez, N. L., Puwanant, A., Lu, A., Marks, S. M. & Živkovic´, S. A. Myasthenia triggered by immune checkpoint inhibitors: new case and literature review. Neuromuscul. Disord. 27, 266–268 (2017).

    PubMed  Google Scholar 

  74. Lau, K. H., Kumar, A., Yang, I. H. & Nowak, R. J. Exacerbation of myasthenia gravis in a patient with melanoma treated with pembrolizumab. Muscle Nerve 54, 157–161 (2016).

    Google Scholar 

  75. Suzuki, S. et al. Nivolumab-related myasthenia gravis with myositis and myocarditis in Japan. Neurology 89, 1–8 (2017).

    Google Scholar 

  76. Fee, D. B. & Kasarskis, E. J. Myasthenia gravis associated with etanercept therapy. Muscle Nerve. 39, 866–870 (2009).

    PubMed  Google Scholar 

  77. Tak, P. L. & Kalden, J. R. Advances in rheumatology: new targeted therapeutics. Arthritis Res. Ther. 13 (Suppl. 1), S5 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Fleischmann, R. et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N. Engl. J. Med. 367, 495–507 (2012).

    CAS  PubMed  Google Scholar 

  79. Lee, E. B. et al. Tofacitinib versus methotrexate in rheumatoid arthritis. N. Engl. J. Med. 370, 2377–2386 (2014).

    PubMed  Google Scholar 

  80. Alboini, P. E., Evoli, A., Damato, V., Iorio, R. & Bartoccioni, E. Remisssion of myasthenia gravis with MuSK antibodies during ruxolitinib treatment. Muscle Nerve 55, E12–E13 (2017).

    CAS  PubMed  Google Scholar 

  81. Dalakas, M. C. Inhibition of B cell functions: implications for neurology. Neurology 70, 2252–2260 (2008).

    CAS  PubMed  Google Scholar 

  82. Ragheb, S. A potential role for B cell activating factor in the pathogenesis of autoimmune myasthenia gravis. Arch. Neurol. 65, 1358–1362 (2008).

    PubMed  Google Scholar 

  83. Mantegazza, R. & Antoni, C. When myasthenia gravis is deemed refractory: clinical signposts and treatment strategies. Ther. Adv. Neurol. Dis. 11, 1756285617749134 (2018).

    Google Scholar 

  84. Hewett, K. et al. Randomized study of adjunctive belimumab in participants with generalized myasthenia gravis. Neurology 90, e1425–e1434 (2018). A controlled study on the effect of belimumab in MG.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Greenfield, A. L. & Hauser, S. L. B cell therapy for multiple sclerosis: entering an era. Ann. Neurol. 83, 13–26 (2018). An excellent review of B cell therapies in multiple sclerosis and implications in other autoimmune neurological diseases.

    PubMed  PubMed Central  Google Scholar 

  86. Rakocevic, G., Martinez-Outschoorn, U. & Dalakas, M. C. Obinutuzumab, a potent anti-B cell agent, for rituximab-unresponsive IgM anti-MAG neuropathy. Neurol. Neuroimmunol. Neuroinflamm. 5, e460 (2018).

    PubMed  PubMed Central  Google Scholar 

  87. Russell, A. et al. Obinutuzumab plus clorambucil in a patient with severe myasthenia gravis and chronic lymphocytic leukemia J. Neuromuscul. Dis. 4, 251–257 (2017).

    Google Scholar 

  88. Tüzün, E., Huda, R. & Christadoss, P. Complement and cytokine based therapeutic strategies in myasthenia gravis. J. Autoimmun. 37, 136–143 (2011).

    PubMed  Google Scholar 

  89. Howard, J. F. Jr. Myasthenia gravis: the role of complement at the neuromuscular junction Ann. NY Acad. Sci. 1412, 113–128 (2018).

    CAS  PubMed  Google Scholar 

  90. Basta, M. & Dalakas, M. C. High-dose intravenous immunoglobulin exerts its beneficial effect in patients with dermatomyositis by blocking endomysial deposition of activated complement fragments. J. Clin. Invest. 94, 1729–1735 (1994). The first study to prove that IVIg works by inhibiting complement at the C3 level.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03406507?term=NCT03406507&rank=1 (2018).

  92. Dhodapkar, K. M. et al. Selective blockade of the inhibitory Fcγ receptor (FcγRIIB) in human dendritic cells and monocytes induces a type I interferon response program. J. Exp. Med. 204, 1359–1369 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Anthony, R. M. et al. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320, 373–376 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Roopenian, D. C. & Akilesh, S. FcRn: the neonatal Fc receptor comes of age. Nat. Rev. Immunol. 7, 715–725 (2007).

    CAS  PubMed  Google Scholar 

  95. Howard, J. F. et al. A double-blind placebo-controlled study to evaluate the safety and efficacy of FcRn antagonist ARGX-113 (efgartigimod) in generalized myasthenia gravis. Neurology 90, e2182–e2194 (2018).

    Google Scholar 

  96. Mu, L. et al. Disequilibrium of T helper type 1, 2 and 17 cells and regulatory T cells during the development of experimental autoimmune myasthenia gravis. Immunology 128, e826–e836 (2009).

    PubMed  PubMed Central  Google Scholar 

  97. Roche, J. C. et al. Increased serum interleukin-17 levels in patients with Myasthenia gravis. Muscle Nerve 44, 278–280 (2011).

    CAS  PubMed  Google Scholar 

  98. Jonsson, D. I., Pirskanen, R. & Piehl, F. Beneficial effect of tocilizumab in myasthenia gravis refractory to rituximab. Neuromuscul. Disord. 27, 565–568 (2017).

    PubMed  Google Scholar 

  99. Papp, K. A. et al. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N. Engl. J. Med. 366, 1181–1189 (2012).

    CAS  PubMed  Google Scholar 

  100. Leonardi, C. et al. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N. Engl. J. Med. 366, 1190–1199 (2012).

    CAS  PubMed  Google Scholar 

  101. Langley, R. G. et al. Secukinumab in plaque psoriasis — results of two phase 3 trials. N. Engl. J. Med. 371, 326–338 (2014).

    PubMed  Google Scholar 

  102. Raggi, A., Leonardi, M. & Ayadi, R. Validation of the Italian version of the 15-item myasthenia gravis quality-of-life questionnaire. Muscle Nerve 56, 716–720 (2017).

    PubMed  Google Scholar 

  103. Barnett, C., Brill, V., Kapral, M., Burns, T. M. & MG Composite and MG-QOL 15 Study Group. MG-ADL: still a relevant outcome measure. Muscle Nerve 44, 727–731 (2011).

    PubMed  PubMed Central  Google Scholar 

  104. Muppidi, S., Wolfe, G. I., Conaway, M., Burns, T. M. & MG Composite and MG-QOL 15 Study Group. MG-ADL: still a relevant outcome measure. Muscle Nerve 44, 727–731 (2011).

    PubMed  Google Scholar 

  105. Burns, T. M. et al. The MGQOL15 for following the health-related quality of life of patients with myasthenia gravis. Muscle Nerve 43, 14–18 (2011).

    PubMed  Google Scholar 

  106. Rahbek, M. A. et al. Exercise in myasthenia gravis: a feasibility study of aerobic and resistance training. Muscle Nerve 56, 700–709 (2017).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marinos C. Dalakas.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalakas, M.C. Immunotherapy in myasthenia gravis in the era of biologics. Nat Rev Neurol 15, 113–124 (2019). https://doi.org/10.1038/s41582-018-0110-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-018-0110-z

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research