Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sirtuins in kidney health and disease

Abstract

Sirtuins (SIRTs) are putative regulators of lifespan in model organisms. Since the initial discovery that SIRTs could promote longevity in nematodes and flies, the identification of additional properties of these proteins has led to understanding of their roles as exquisite sensors that link metabolic activity to oxidative states. SIRTs have major roles in biological processes that are important in kidney development and physiological functions, including mitochondrial metabolism, oxidative stress, autophagy, DNA repair and inflammation. Furthermore, altered SIRT activity has been implicated in the pathophysiology and progression of acute and chronic kidney diseases, including acute kidney injury, diabetic kidney disease, chronic kidney disease, polycystic kidney disease, autoimmune diseases and renal ageing. The renoprotective roles of SIRTs in these diseases make them attractive therapeutic targets. A number of SIRT-activating compounds have shown beneficial effects in kidney disease models; however, further research is needed to identify novel SIRT-targeting strategies with the potential to treat and/or prevent the progression of kidney diseases and increase the average human healthspan.

Key points

  • Sirtuins (SIRTs) were initially of great scientific interest owing to their putative roles in modulating lifespan in experimental models; however, they are now generally understood to be drivers of healthy ageing.

  • SIRTs regulate key processes in cellular homeostasis, including metabolism, mitochondrial functions, oxidative stress, DNA repair, apoptosis, senescence and inflammation.

  • SIRTs have essential roles in kidney development and physiology owing to their broad cytoprotective effects in highly specialized and differentiated renal cell types, including podocytes and tubular cells.

  • SIRT alterations have been identified as drivers of various kidney diseases in humans and experimental models, including acute kidney injury, chronic kidney disease and diabetic kidney disease.

  • The identification of sirtuin-activating compounds is a major goal in the field; some sirtuin-activating compounds have been shown to boost SIRT activity and confer renoprotection in experimental models but few have reached clinical trials.

  • Novel SIRT-targeting compounds with improved potency and bioavailability are needed to realize the potential of these interventions to treat and prevent kidney diseases and increase the human healthspan.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SIRT localization, structure and enzymatic activity.
Fig. 2: NAD+ functions and biosynthetic pathways.
Fig. 3: Overview of the main biological processes regulated by sirtuins.
Fig. 4: Sirtuins in kidney health and disease.

Similar content being viewed by others

References

  1. Guarente, L. & Franklin, H. Epstein lecture: sirtuins, aging, and medicine. N. Engl. J. Med. 364, 2235–2244 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Imai, S., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Tissenbaum, H. A. & Guarente, L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227–230 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Rogina, B. & Helfand, S. L. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl Acad. Sci. USA 101, 15998–16003 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kanfi, Y. et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature 483, 218–221 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Burnett, C. et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477, 482–485 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Satoh, A. et al. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 18, 416–430 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Benigni, A. et al. Sirt3 deficiency shortens life span and impairs cardiac mitochondrial function rescued by Opa1 gene transfer. Antioxid. Redox Signal. 31, 1255–1271 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Mostoslavsky, R. et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124, 315–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Yuan, H. & Marmorstein, R. Structural basis for sirtuin activity and inhibition. J. Biol. Chem. 287, 42428–42435 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kiran, S. et al. Intracellular distribution of human SIRT7 and mapping of the nuclear/nucleolar localization signal. FEBS J. 280, 3451–3466 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Tanner, K. G., Landry, J., Sternglanz, R. & Denu, J. M. Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc. Natl Acad. Sci. USA 97, 14178–14182 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vaquero, A. et al. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol. Cell 16, 93–105 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Jin, Q. et al. Cytoplasm-localized SIRT1 enhances apoptosis. J. Cell Physiol. 213, 88–97 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Tanno, M., Sakamoto, J., Miura, T., Shimamoto, K. & Horio, Y. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J. Biol. Chem. 282, 6823–6832 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Li, Y., Xu, W., McBurney, M. W. & Longo, V. D. SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab. 8, 38–48 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hisahara, S. et al. Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc. Natl Acad. Sci. USA 105, 15599–15604 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tennen, R. I. & Chua, K. F. Chromatin regulation and genome maintenance by mammalian SIRT6. Trends Biochem. Sci. 36, 39–46 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Tsai, Y.-C., Greco, T. M., Boonmee, A., Miteva, Y. & Cristea, I. M. Functional proteomics establishes the interaction of SIRT7 with chromatin remodeling complexes and expands its role in regulation of RNA polymerase I transcription. Mol. Cell. Proteom. 11, 60–76 (2012).

    Article  CAS  Google Scholar 

  20. Dryden, S. C., Nahhas, F. A., Nowak, J. E., Goustin, A.-S. & Tainsky, M. A. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol. Cell. Biol. 23, 3173–3185 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nekooki-Machida, Y. & Hagiwara, H. Role of tubulin acetylation in cellular functions and diseases. Med. Mol. Morphol. 53, 191–197 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Serrano, L. et al. The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation. Genes. Dev. 27, 639–653 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. North, B. J. et al. SIRT2 induces the checkpoint kinase BubR1 to increase lifespan. EMBO J. 33, 1438–1453 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Baeza, J., Smallegan, M. J. & Denu, J. M. Mechanisms and dynamics of protein acetylation in mitochondria. Trends Biochem. Sci. 41, 231–244 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lombard, D. B. et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 27, 8807–8814 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Iwahara, T., Bonasio, R., Narendra, V. & Reinberg, D. SIRT3 functions in the nucleus in the control of stress-related gene expression. Mol. Cell. Biol. 32, 5022–5034 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, X. et al. Molecular basis for hierarchical histone de-β-hydroxybutyrylation by SIRT3. Cell Discov. 5, 35 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Scher, M. B., Vaquero, A. & Reinberg, D. SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes. Dev. 21, 920–928 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guarente, L. Calorie restriction and sirtuins revisited. Genes. Dev. 27, 2072–2085 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nakagawa, T., Lomb, D. J., Haigis, M. C. & Guarente, L. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 137, 560–570 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Du, J. et al. Sirt5 is an NAD-dependent protein lysine demalonylase and desuccinylase. Science 334, 806–809 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Houtkooper, R. H., Pirinen, E. & Auwerx, J. Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol. 13, 225–238 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ahn, B.-H. et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl Acad. Sci. USA 105, 14447–14452 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Finley, L. W. S. et al. Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS One 6, e23295 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rahman, M. et al. Drosophila Sirt2/mammalian SIRT3 deacetylates ATP synthase β and regulates complex V activity. J. Cell Biol. 206, 289–305 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang, Y. et al. NAD+-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10. J. Biol. Chem. 285, 7417–7429 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Dittenhafer-Reed, K. E. et al. SIRT3 mediates multi-tissue coupling for metabolic fuel switching. Cell Metab. 21, 637–646 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hirschey, M. D. et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464, 121–125 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shimazu, T. et al. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab. 12, 654–661 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Picard, F. et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature 429, 771–776 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434, 113–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Frescas, D., Valenti, L. & Accili, D. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J. Biol. Chem. 280, 20589–20595 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Zhong, L. et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1α. Cell 140, 280–293 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee, Y. et al. Myeloid sirtuin 6 deficiency causes insulin resistance in high-fat diet-fed mice by eliciting macrophage polarization toward an M1 phenotype. Diabetes 66, 2659–2668 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Zhan, M., Brooks, C., Liu, F., Sun, L. & Dong, Z. Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology. Kidney Int. 83, 568–581 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, Q. et al. Resveratrol activation of SIRT1/MFN2 can improve mitochondria function, alleviating doxorubicin-induced myocardial injury. Cancer Innov. 2, 253–264 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Samant, S. A. et al. SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress. Mol. Cell. Biol. 34, 807–819 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Morigi, M. et al. Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury. J. Clin. Invest. 125, 715–726 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chen, Z. et al. Sirt6 deficiency contributes to mitochondrial fission and oxidative damage in podocytes via ROCK1-Drp1 signalling pathway. Cell Prolif. 55, e13296 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115–124 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Dominy, J. E. et al. The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. Mol. Cell 48, 900–913 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xin, T. & Lu, C. SirT3 activates AMPK-related mitochondrial biogenesis and ameliorates sepsis-induced myocardial injury. Aging 12, 16224–16237 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wan, W. et al. Regulation of mitophagy by sirtuin family proteins: a vital role in aging and age-related diseases. Front. Aging Neurosci. 14, 845330 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Forrester, S. J., Kikuchi, D. S., Hernandes, M. S., Xu, Q. & Griendling, K. K. Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res. 122, 877–902 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ogura, Y., Kitada, M. & Koya, D. Sirtuins and renal oxidative stress. Antioxidants 10, 1198 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wu, Q.-J. et al. The sirtuin family in health and disease. Signal. Transduct. Target. Ther. 7, 402 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. He, F., Ru, X. & Wen, T. NRF2, a transcription factor for stress response and beyond. Int. J. Mol. Sci. 21, 4777 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen, Y. et al. Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep. 12, 534–541 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xu, Y. et al. Studies on the regulatory mechanism of isocitrate dehydrogenase 2 using acetylation mimics. Sci. Rep. 7, 9785 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Alves-Fernandes, D. K. & Jasiulionis, M. G. The role of SIRT1 on DNA damage response and epigenetic alterations in cancer. Int. J. Mol. Sci. 20, 3153 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Meng, F. et al. Synergy between SIRT1 and SIRT6 helps recognize DNA breaks and potentiates the DNA damage response and repair in humans and mice. eLife 9, e55828 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Jeong, J. et al. SIRT1 promotes DNA repair activity and deacetylation of Ku70. Exp. Mol. Med. 39, 8–13 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Kume, S. et al. Silent information regulator 2 (SIRT1) attenuates oxidative stress-induced mesangial cell apoptosis via p53 deacetylation. Free. Radic. Biol. Med. 40, 2175–2182 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Kume, S. et al. SIRT1 inhibits transforming growth factor beta-induced apoptosis in glomerular mesangial cells via Smad7 deacetylation. J. Biol. Chem. 282, 151–158 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Chuang, P. Y. et al. Alteration of forkhead box O (foxo4) acetylation mediates apoptosis of podocytes in diabetes mellitus. PLoS One 6, e23566 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jiao, X., Li, Y., Zhang, T., Liu, M. & Chi, Y. Role of Sirtuin3 in high glucose-induced apoptosis in renal tubular epithelial cells. Biochem. Biophys. Res. Commun. 480, 387–393 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Liu, M. et al. Sirt6 deficiency exacerbates podocyte injury and proteinuria through targeting Notch signaling. Nat. Commun. 8, 413 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Guo, H. & Bechtel-Walz, W. The interplay of autophagy and oxidative stress in the kidney: what do we know? Nephron 147, 627–642 (2023).

    Article  PubMed  Google Scholar 

  69. Lee, I. H. Mechanisms and disease implications of sirtuin-mediated autophagic regulation. Exp. Mol. Med. 51, 1–11 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lee, I. H. et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl Acad. Sci. USA 105, 3374–3379 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chun, S. K. et al. Loss of sirtuin 1 and mitofusin 2 contributes to enhanced ischemia/reperfusion injury in aged livers. Aging Cell 17, e12761 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wang, Y., Chang, J., Wang, Z.-Q. & Li, Y. Sirt3 promotes the autophagy of HK-2 human proximal tubular epithelial cells via the inhibition of Notch-1/Hes-1 signaling. Mol. Med. Rep. 24, 634 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li, R. et al. Therapeutic effect of Sirtuin 3 on ameliorating nonalcoholic fatty liver disease: The role of the ERK-CREB pathway and Bnip3-mediated mitophagy. Redox Biol. 18, 229–243 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Takasaka, N. et al. Autophagy induction by SIRT6 through attenuation of insulin-like growth factor signaling is involved in the regulation of human bronchial epithelial cell senescence. J. Immunol. 192, 958–968 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Xu, C. et al. SIRT1 is downregulated by autophagy in senescence and ageing. Nat. Cell Biol. 22, 1170–1179 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lee, S.-H., Lee, J.-H., Lee, H.-Y. & Min, K.-J. Sirtuin signaling in cellular senescence and aging. BMB Rep. 52, 24–34 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hayakawa, T. et al. SIRT1 suppresses the senescence-associated secretory phenotype through epigenetic gene regulation. PLoS One 10, e0116480 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Huang, J. et al. SIRT1 overexpression antagonizes cellular senescence with activated ERK/S6k1 signaling in human diploid fibroblasts. PLoS One 3, e1710 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zu, Y. et al. SIRT1 promotes proliferation and prevents senescence through targeting LKB1 in primary porcine aortic endothelial cells. Circ. Res. 106, 1384–1393 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Grootaert, M. O. J., Finigan, A., Figg, N. L., Uryga, A. K. & Bennett, M. R. SIRT6 protects smooth muscle cells from senescence and reduces atherosclerosis. Circ. Res. 128, 474–491 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Zhao, G. et al. SIRT6 delays cellular senescence by promoting p27Kip1 ubiquitin-proteasome degradation. Aging 8, 2308–2323 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Diao, Z. et al. SIRT3 consolidates heterochromatin and counteracts senescence. Nucleic Acids Res. 49, 4203–4219 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ma, C. et al. Sirt3 attenuates oxidative stress damage and rescues cellular senescence in rat bone marrow mesenchymal stem cells by targeting superoxide dismutase 2. Front. Cell Dev. Biol. 8, 599376 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Fan, X. et al. Sirt3 activates autophagy to prevent DOX-induced senescence by inactivating PI3K/AKT/mTOR pathway in A549 cells. Biochim. Biophys. Acta Mol. Cell Res. 1870, 119411 (2023).

    Article  CAS  PubMed  Google Scholar 

  85. Gómez, H. Reprogramming metabolism to enhance kidney tolerance during sepsis: the role of fatty acid oxidation, aerobic glycolysis, and epithelial de-differentiation. Nephron 147, 31–34 (2023).

    Article  PubMed  Google Scholar 

  86. Vachharajani, V. T. et al. Sirtuins link inflammation and metabolism. J. Immunol. Res. 2016, 8167273 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kauppinen, A., Suuronen, T., Ojala, J., Kaarniranta, K. & Salminen, A. Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell. Signal. 25, 1939–1948 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Rabadi, M. M. et al. High-mobility group box 1 is a novel deacetylation target of Sirtuin1. Kidney Int. 87, 95–108 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Labiner, H. E., Sas, K. M., Baur, J. A. & Sims, C. A. Sirtuin 1 deletion increases inflammation and mortality in sepsis. J. Trauma. Acute Care Surg. 93, 672–678 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhao, W.-Y., Zhang, L., Sui, M.-X., Zhu, Y.-H. & Zeng, L. Protective effects of sirtuin 3 in a murine model of sepsis-induced acute kidney injury. Sci. Rep. 6, 33201 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang, W. et al. An immune atlas of nephrolithiasis: single-cell mass cytometry on SIRT3 knockout and calcium oxalate-induced renal injury. J. Immunol. Res. 2021, 1260140 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Doke, T. et al. NAD+ precursor supplementation prevents mtRNA/RIG-I-dependent inflammation during kidney injury. Nat. Metab. 5, 414–430 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Pantaleon, M. & Kaye, P. L. Glucose transporters in preimplantation development. Rev. Reprod. 3, 77–81 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Ochocki, J. D. & Simon, M. C. Nutrient-sensing pathways and metabolic regulation in stem cells. J. Cell Biol. 203, 23–33 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chevalier, R. L. Bioenergetic evolution explains prevalence of low nephron number at birth: risk factor for CKD. Kidney360 1, 863–879 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Mandal, S., Lindgren, A. G., Srivastava, A. S., Clark, A. T. & Banerjee, U. Mitochondrial function controls proliferation and early differentiation potential of embryonic stem cells. Stem Cell 29, 486–495 (2011).

    Article  CAS  Google Scholar 

  97. Chung, S. et al. Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat. Clin. Pract. Cardiovasc. Med. 4, S60–S67 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Folmes, C. D. L. & Terzic, A. Metabolic determinants of embryonic development and stem cell fate. Reprod. Fertil. Dev. 27, 82–88 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Liu, J. et al. Regulation of nephron progenitor cell self-renewal by intermediary metabolism. J. Am. Soc. Nephrol. 28, 3323–3335 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Perico, L. et al. Post-translational modifications by SIRT3 de-2-hydroxyisobutyrylase activity regulate glycolysis and enable nephrogenesis. Sci. Rep. 11, 23580 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pezzotta, A. et al. Low nephron number induced by maternal protein restriction is prevented by nicotinamide riboside supplementation depending on sirtuin 3 activation. Cells 11, 3316 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Luyckx, V. A. & Brenner, B. M. Birth weight, malnutrition and kidney-associated outcomes — a global concern. Nat. Rev. Nephrol. 11, 135–149 (2015).

    Article  PubMed  Google Scholar 

  103. Erichsen, L. & Adjaye, J. Crosstalk between age accumulated DNA-damage and the SIRT1-AKT-GSK3ß axis in urine derived renal progenitor cells. Aging 14, 8179–8204 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Bhargava, P. & Schnellmann, R. G. Mitochondrial energetics in the kidney. Nat. Rev. Nephrol. 3, 629–646 (2017).

    Article  Google Scholar 

  105. Haschler, T. N. et al. Sirtuin 5 depletion impairs mitochondrial function in human proximal tubular epithelial cells. Sci. Rep. 11, 15510 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chiba, T. et al. Sirtuin 5 regulates proximal tubule fatty acid oxidation to protect against AKI. J. Am. Soc. Nephrol. 30, 2384–2398 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ozawa, S. et al. Glycolysis, but not mitochondria, responsible for intracellular ATP distribution in cortical area of podocytes. Sci. Rep. 5, 18575 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Perico, L., Conti, S., Benigni, A. & Remuzzi, G. Podocyte-actin dynamics in health and disease. Nat. Rev. Nephrol. 12, 692–710 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Tsai, Y.-C. et al. Upregulating sirtuin 6 ameliorates glycolysis, EMT and distant metastasis of pancreatic adenocarcinoma with krüppel-like factor 10 deficiency. Exp. Mol. Med. 53, 1623–1635 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Huang, W. et al. Sirt6 deficiency results in progression of glomerular injury in the kidney. Aging 9, 1069–1083 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhang, D., Li, S., Cruz, P. & Kone, B. C. Sirtuin 1 functionally and physically interacts with disruptor of telomeric silencing-1 to regulate alpha-ENaC transcription collecting duct. J. Biol. Chem. 284, 20917–20926 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yang, S.-Y. et al. A low-salt diet increases the expression of renal sirtuin 1 through activation of the ghrelin receptor in rats. Sci. Rep. 6, 32787 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Noriega, L. G. et al. SIRT7 modulates the stability and activity of the renal K-Cl cotransporter KCC4 through deacetylation. EMBO Rep. 22, e50766 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mercado, A. et al. The K+:Cl cotransporter KCC4 is activated by deacetylation induced by the sirtuin7 (SIRT7). FASEB J. 29, 666.24 (2015).

    Article  Google Scholar 

  115. Mattagajasingh, I. et al. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc. Natl Acad. Sci. USA 104, 14855–14860 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dioum, E. M. et al. Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1. Science 324, 1289–1293 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Potente, M. et al. SIRT1 controls endothelial angiogenic functions during vascular growth. Genes. Dev. 21, 2644–2658 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Pezzotta, A. et al. Sirt3 deficiency promotes endothelial dysfunction and aggravates renal injury. PLoS One 18, e0291909 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ho, K. M. & Morgan, D. J. R. The proximal tubule as the pathogenic and therapeutic target in acute kidney injury. Nephron 146, 494–502 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Koehler, F. C., Späth, M. R., Hoyer-Allo, K. J. R. & Müller, R.-U. Mechanisms of caloric restriction-mediated stress-resistance in acute kidney injury. Nephron 146, 234–238 (2022).

    Article  CAS  PubMed  Google Scholar 

  121. Hasegawa, K. et al. Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function. J. Biol. Chem. 285, 13045–13056 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Funk, J. A. & Schnellmann, R. G. Accelerated recovery of renal mitochondrial and tubule homeostasis with SIRT1/PGC-1α activation following ischemia-reperfusion injury. Toxicol. Appl. Pharmacol. 273, 345–354 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fan, H. et al. The histone deacetylase, SIRT1, contributes to the resistance of young mice to ischemia/reperfusion-induced acute kidney injury. Kidney Int. 83, 404–413 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Han, S. et al. miR-132-3p promotes the cisplatin-induced apoptosis and inflammatory response of renal tubular epithelial cells by targeting SIRT1 via the NF-κB pathway. Int. Immunopharmacol. 99, 108022 (2021).

    Article  CAS  PubMed  Google Scholar 

  125. He, S. et al. NAD+ ameliorates endotoxin-induced acute kidney injury in a sirtuin1-dependent manner via GSK-3β/Nrf2 signalling pathway. J. Cell. Mol. Med. 26, 1979–1993 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhang, J., Yang, S., Chen, F., Li, H. & Chen, B. Ginkgetin aglycone ameliorates LPS-induced acute kidney injury by activating SIRT1 via inhibiting the NF-κB signaling pathway. Cell Biosci. 7, 44 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Lempiäinen, J., Finckenberg, P., Levijoki, J. & Mervaala, E. AMPK activator AICAR ameliorates ischaemia reperfusion injury in the rat kidney. Br. J. Pharmacol. 166, 1905–1915 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Gan, Y., Tao, S., Cao, D., Xie, H. & Zeng, Q. Protection of resveratrol on acute kidney injury in septic rats. Hum. Exp. Toxicol. 36, 1015–1022 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Li, Z. et al. Overexpressed SIRT6 attenuates cisplatin-induced acute kidney injury by inhibiting ERK1/2 signaling. Kidney Int. 93, 881–892 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Miao, J. et al. Sirtuin 6 is a key contributor to gender differences in acute kidney injury. Cell Death Discov. 9, 134 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Jian, Y. et al. Sirt3 mitigates LPS-induced mitochondrial damage in renal tubular epithelial cells by deacetylating YME1L1. Cell Prolif. 56, e13362 (2023).

    Article  CAS  PubMed  Google Scholar 

  132. Shen, L., Zhang, Q., Tu, S. & Qin, W. SIRT3 mediates mitofusin 2 ubiquitination and degradation to suppress ischemia reperfusion-induced acute kidney injury. Exp. Cell Res. 408, 112861 (2021).

    Article  CAS  PubMed  Google Scholar 

  133. Brooks, C., Wei, Q., Cho, S.-G. & Dong, Z. Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J. Clin. Invest. 119, 1275–1285 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ugur, S. et al. The renoprotective effect of curcumin in cisplatin-induced nephrotoxicity. Ren. Fail. 37, 332–336 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Zhao, L. et al. Protective effect of the total flavonoids from Rosa laevigata Michx fruit on renal ischemia-reperfusion injury through suppression of oxidative stress and inflammation. Molecules 21, 952 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Li, Y. et al. Activation of sirtuin 3 by silybin attenuates mitochondrial dysfunction in cisplatin-induced acute kidney injury. Front. Pharmacol. 8, 178 (2017).

    PubMed  PubMed Central  Google Scholar 

  137. Xu, S. et al. SIRT1/3 activation by resveratrol attenuates acute kidney injury in a septic rat model. Oxid. Med. Cell. Longev. 2016, 7296092 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Pan, J. S.-C. et al. Stanniocalcin-1 inhibits renal ischemia/reperfusion injury via an AMP-activated protein kinase-dependent pathway. J. Am. Soc. Nephrol. 26, 364–378 (2015).

    Article  PubMed  Google Scholar 

  139. Perico, L. et al. Human mesenchymal stromal cells transplanted into mice stimulate renal tubular cells and enhance mitochondrial function. Nat. Commun. 8, 983 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Miyasato, Y. et al. Sirtuin 7 deficiency ameliorates cisplatin-induced acute kidney injury through regulation of the inflammatory response. Sci. Rep. 8, 5927 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Sánchez-Navarro, A. et al. Sirtuin 7 deficiency reduces inflammation and tubular damage induced by an episode of acute kidney injury. Int. J. Mol. Sci. 23, 2573 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Poyan Mehr, A. et al. De novo NAD+ biosynthetic impairment in acute kidney injury in humans. Nat. Med. 24, 1351–1359 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Katsyuba, E. et al. De novo NAD+ synthesis enhances mitochondrial function and improves health. Nature 563, 354–359 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Cortinovis, M., Perico, N., Ruggenenti, P., Remuzzi, A. & Remuzzi, G. Glomerular hyperfiltration. Nat. Rev. Nephrol. 18, 435–451 (2022).

    Article  PubMed  Google Scholar 

  145. Kitada, M., Kume, S., Takeda-Watanabe, A., Kanasaki, K. & Koya, D. Sirtuins and renal diseases: relationship with aging and diabetic nephropathy. Clin. Sci. 124, 153–164 (2013).

    Article  CAS  Google Scholar 

  146. Lagouge, M. et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127, 1109–1122 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Baur, J. A. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zoja, C., Xinaris, C. & Macconi, D. Diabetic nephropathy: novel molecular mechanisms and therapeutic targets. Front. Pharmacol. 11, 586892 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Yasuda, I. et al. Pre-emptive short-term nicotinamide mononucleotide treatment in a mouse model of diabetic nephropathy. J. Am. Soc. Nephrol. 32, 1355–1370 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hasegawa, K. et al. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat. Med. 19, 1496–1504 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Yubero-Serrano, E. M. et al. Effects of sevelamer carbonate on advanced glycation end products and antioxidant/pro-oxidant status in patients with diabetic kidney disease. Clin. J. Am. Soc. Nephrol. 10, 759–766 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Fan, Y. et al. Sirt6 suppresses high glucose-induced mitochondrial dysfunction and apoptosis in podocytes through AMPK activation. Int. J. Biol. Sci. 15, 701–713 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wang, X., Ji, T., Li, X., Qu, X. & Bai, S. FOXO3a protects against kidney injury in type II diabetic nephropathy by promoting Sirt6 expression and inhibiting Smad3 acetylation. Oxid. Med. Cell. Longev. 2021, 5565761 (2021).

    PubMed  PubMed Central  Google Scholar 

  154. Liu, J. et al. CircRNA circ-ITCH improves renal inflammation and fibrosis in streptozotocin-induced diabetic mice by regulating the miR-33a-5p/SIRT6 axis. Inflamm. Res. 70, 835–846 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Muraoka, H. et al. Role of Nampt-Sirt6 axis in renal proximal tubules in extracellular matrix deposition in diabetic nephropathy. Cell Rep. 27, 199–212.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. Ji, L. et al. Overexpression of Sirt6 promotes M2 macrophage transformation, alleviating renal injury in diabetic nephropathy. Int. J. Oncol. 55, 103–115 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Locatelli, M. et al. Manipulating Sirtuin 3 pathway ameliorates renal damage in experimental diabetes. Sci. Rep. 10, 8418 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wang, X. X. et al. G protein-coupled bile acid receptor TGR5 activation inhibits kidney disease in obesity and diabetes. J. Am. Soc. Nephrol. 27, 1362–1378 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. Locatelli, M. et al. Sirtuin 3 deficiency aggravates kidney disease in response to high-fat diet through lipotoxicity-induced mitochondrial damage. Int. J. Mol. Sci. 23, 8345 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zhou, Y. et al. Metrnl alleviates lipid accumulation by modulating mitochondrial homeostasis in diabetic nephropathy. Diabetes 72, 611–626 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Macconi, D., Remuzzi, G. & Benigni, A. Key fibrogenic mediators: old players. Renin-angiotensin system. Kidney Int. Suppl. 4, 58–64 (2014).

    Article  CAS  Google Scholar 

  162. Liu, X. et al. Impaired nicotinamide adenine dinucleotide biosynthesis in the kidney of chronic kidney disease. Front. Physiol. 12, 723690 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Zhang, Y. et al. Sirtuin 1 activation reduces transforming growth factor-β1-induced fibrogenesis and affords organ protection in a model of progressive, experimental kidney and associated cardiac disease. Am. J. Pathol. 187, 80–90 (2017).

    Article  CAS  PubMed  Google Scholar 

  164. He, W. et al. Sirt1 activation protects the mouse renal medulla from oxidative injury. J. Clin. Invest. 120, 1056–1068 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Simic, P. et al. SIRT1 suppresses the epithelial-to-mesenchymal transition in cancer metastasis and organ fibrosis. Cell Rep. 3, 1175–1186 (2013).

    Article  CAS  PubMed  Google Scholar 

  166. Huang, X.-Z. et al. Sirt1 activation ameliorates renal fibrosis by inhibiting the TGF-β/Smad3 pathway. J. Cell. Biochem. 115, 996–1005 (2014).

    Article  CAS  PubMed  Google Scholar 

  167. Vasko, R. et al. Endothelial sirtuin 1 deficiency perpetrates nephrosclerosis through downregulation of matrix metalloproteinase-14: relevance to fibrosis of vascular senescence. J. Am. Soc. Nephrol. 25, 276–291 (2014).

    Article  CAS  PubMed  Google Scholar 

  168. Kida, Y., Zullo, J. A. & Goligorsky, M. S. Endothelial sirtuin 1 inactivation enhances capillary rarefaction and fibrosis following kidney injury through Notch activation. Biochem. Biophys. Res. Commun. 478, 1074–1079 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Li, P. et al. SIRT1 attenuates renal fibrosis by repressing HIF-2α. Cell Death Discov. 7, 59 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lipphardt, M., Dihazi, H., Müller, G. A. & Goligorsky, M. S. Fibrogenic secretome of sirtuin 1-deficient endothelial cells: Wnt, notch and glycocalyx rheostat. Front. Physiol. 9, 1325 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Cai, J. et al. The deacetylase sirtuin 6 protects against kidney fibrosis by epigenetically blocking β-catenin target gene expression. Kidney Int. 97, 106–118 (2020).

    Article  CAS  PubMed  Google Scholar 

  172. Li, X., Li, W., Zhang, Z., Wang, W. & Huang, H. SIRT6 overexpression retards renal interstitial fibrosis through targeting HIPK2 in chronic kidney disease. Front. Pharmacol. 13, 1007168 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Cai, J. et al. Phosphorylation by GSK-3β increases the stability of SIRT6 to alleviate TGF-β-induced fibrotic response in renal tubular cells. Life Sci. 308, 120914 (2022).

    Article  CAS  PubMed  Google Scholar 

  174. Benigni, A., Perico, L. & Macconi, D. Mitochondrial dynamics is linked to longevity and protects from end-organ injury: the emerging role of sirtuin 3. Antioxid. Redox Signal. 25, 185–199 (2016).

    Article  CAS  PubMed  Google Scholar 

  175. Sundaresan, N. R. et al. SIRT3 blocks aging-associated tissue fibrosis in mice by deacetylating and activating glycogen synthase kinase 3β. Mol. Cell. Biol. 36, 678–692 (2015).

    Article  PubMed  Google Scholar 

  176. Cheng, L. et al. SIRT3 deficiency exacerbates early-stage fibrosis after ischaemia-reperfusion-induced AKI. Cell. Signal. 93, 110284 (2022).

    Article  CAS  PubMed  Google Scholar 

  177. Zhang, Y. et al. Sirtuin 3 regulates mitochondrial protein acetylation and metabolism in tubular epithelial cells during renal fibrosis. Cell Death Dis. 12, 847 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Quan, Y. et al. Sirtuin 3 activation by honokiol decreases unilateral ureteral obstruction-induced renal inflammation and fibrosis via regulation of mitochondrial dynamics and the renal NF-κB-TGF-β1/Smad signaling pathway. Int. J. Mol. Sci. 21, 402 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Li, N. et al. SIRT3-KLF15 signaling ameliorates kidney injury induced by hypertension. Oncotarget 8, 39592–39604 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Srivastava, S. P. et al. Endothelial SIRT3 regulates myofibroblast metabolic shifts in diabetic kidneys. iScience 24, 102390 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. The EMPA-KIDNEY Collaborative Group. Empagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 388, 117–127 (2023).

    Article  Google Scholar 

  182. Wang, Z. et al. Canagliflozin ameliorates epithelial-mesenchymal transition in high-salt diet-induced hypertensive renal injury through restoration of sirtuin 3 expression and the reduction of oxidative stress. Biochem. Biophys. Res. Commun. 653, 53–61 (2023).

    Article  CAS  PubMed  Google Scholar 

  183. Packer, M. Critical reanalysis of the mechanisms underlying the cardiorenal benefits of SGLT2 inhibitors and reaffirmation of the nutrient deprivation signaling/autophagy hypothesis. Circulation 146, 1383–1405 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Li, W. et al. SIRT6 protects vascular smooth muscle cells from osteogenic transdifferentiation via Runx2 chronic kidney disease. J. Clin. Invest. 132, e150051 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Badi, I. et al. miR-34a promotes vascular smooth muscle cell calcification by downregulating SIRT1 (Sirtuin 1) and Axl (AXL receptor tyrosine kinase). Arterioscler. Thromb. Vasc. Biol. 38, 2079–2090 (2018).

    Article  CAS  PubMed  Google Scholar 

  186. Liu, X. et al. Spermidine inhibits vascular calcification in chronic kidney disease through modulation of SIRT1 signaling pathway. Aging Cell 20, e13377 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Liu, S.-M. et al. Intermedin alleviates vascular calcification in CKD through sirtuin 3-mediated inhibition of mitochondrial oxidative stress. Pharmaceuticals 15, 1224 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Ong, A. C. M., Devuyst, O., Knebelmann, B. & Walz, G. & ERA-EDTA Working Group for Inherited Kidney Diseases. Autosomal dominant polycystic kidney disease: the changing face of clinical management. Lancet 385, 1993–2002 (2015).

    Article  PubMed  Google Scholar 

  189. Zhou, X. et al. Sirtuin 1 inhibition delays cyst formation in autosomal-dominant polycystic kidney disease. J. Clin. Invest. 123, 3084–3098 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. El Ters, M. et al. Biological efficacy and safety of niacinamide in patients with ADPKD. Kidney Int. Rep. 5, 1271–1279 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Shen, P. et al. SIRT1: a potential therapeutic target in autoimmune diseases. Front. Immunol. 12, 779177 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Olivares, D. et al. Urinary levels of sirtuin-1 associated with disease activity in lupus nephritis. Clin. Sci. 132, 569–579 (2018).

    Article  CAS  Google Scholar 

  193. Consiglio, C. R. et al. SIRT1 promoter polymorphisms as clinical modifiers on systemic lupus erythematosus. Mol. Biol. Rep. 41, 4233–4239 (2014).

    Article  CAS  PubMed  Google Scholar 

  194. Hu, N., Long, H., Zhao, M., Yin, H. & Lu, Q. Aberrant expression pattern of histone acetylation modifiers and mitigation of lupus by SIRT1-siRNA in MRL/lpr mice. Scand. J. Rheumatol. 38, 464–471 (2009).

    Article  CAS  PubMed  Google Scholar 

  195. Gan, H. et al. B cell Sirt1 deacetylates histone and non-histone proteins for epigenetic modulation of AID expression and the antibody response. Sci. Adv. 6, eaay2793 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Guan, Y. et al. Nicotinamide mononucleotide, an NAD+ precursor, rescues age-associated susceptibility to AKI in a sirtuin 1-dependent manner. J. Am. Soc. Nephrol. 28, 2337–2352 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Kume, S. et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J. Clin. Invest. 120, 1043–1055 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Chuang, P. Y. et al. Reduction in podocyte SIRT1 accelerates kidney injury in aging mice. Am. J. Physiol. Renal Physiol. 313, F621–F628 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Chen, J. et al. Cathepsin cleavage of sirtuin 1 in endothelial progenitor cells mediates stress-induced premature senescence. Am. J. Pathol. 180, 973–983 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Mitchell, S. J. et al. The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep. 6, 836–843 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Zhang, N. et al. Calorie restriction-induced SIRT6 activation delays aging by suppressing NF-κB signaling. Cell Cycle 15, 1009–1018 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Benigni, A. et al. Disruption of the Ang II type 1 receptor promotes longevity in mice. J. Clin. Invest. 119, 524–530 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Dai, H., Sinclair, D. A., Ellis, J. L. & Steegborn, C. Sirtuin activators and inhibitors: promises, achievements, and challenges. Pharmacol. Ther. 188, 140–154 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Dang, W. The controversial world of sirtuins. Drug. Discov. Today Technol. 12, e9–e17 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  205. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/search?intr=Resveratrol&limit=100&page=1&viewType=Table (accessed 2 February 2024).

  206. Baksi, A. et al. A phase II, randomized, placebo-controlled, double-blind, multi-dose study of SRT2104, a SIRT1 activator, in subjects with type 2 diabetes. Br. J. Clin. Pharmacol. 78, 69–77 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Curry, A. M., White, D. S., Donu, D. & Cen, Y. Human sirtuin regulators: the “Success” stories. Front. Physiol. 12, 752117 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Radenkovic, D. R. & Verdin, E. Clinical evidence for targeting NAD therapeutically. Pharmaceuticals 13, 247 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Camacho-Pereira, J. et al. CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell Metab. 23, 1127–1139 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Ugamraj, H. S. et al. TNB-738, a biparatopic antibody, boosts intracellular NAD+ by inhibiting CD38 ecto-enzyme activity. mAbs 14, 2095949 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Loboda, A., Sobczak, M., Jozkowicz, A. & Dulak, J. TGF-β1/Smads and miR-21 in renal fibrosis and inflammation. Mediators Inflamm. 2016, 8319283 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Zhuo, L. et al. NAD blocks high glucose induced mesangial hypertrophy via activation of the sirtuins-AMPK-mTOR pathway. Cell. Physiol. Biochem. 27, 681–690 (2011).

    Article  CAS  PubMed  Google Scholar 

  213. Ren, Y. et al. The Sirt1 activator, SRT1720, attenuates renal fibrosis by inhibiting CTGF and oxidative stress. Int. J. Mol. Med. 39, 1317–1324 (2017).

    Article  CAS  PubMed  Google Scholar 

  214. Mercken, E. M. et al. SRT2104 extends survival of male mice on a standard diet and preserves bone and muscle mass. Aging Cell 13, 787–796 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Davenport, A. M., Huber, F. M. & Hoelz, A. Structural and functional analysis of human SIRT1. J. Mol. Biol. 426, 526–541 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

L.P. and A.B. researched the data for the article and wrote the manuscript. All authors contributed to discussions of the content and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Ariela Benigni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Michael Goligorsky and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perico, L., Remuzzi, G. & Benigni, A. Sirtuins in kidney health and disease. Nat Rev Nephrol 20, 313–329 (2024). https://doi.org/10.1038/s41581-024-00806-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-024-00806-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing