Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Vascular damage in systemic lupus erythematosus

Abstract

Vascular disease is a major cause of morbidity and mortality in patients with systemic autoimmune diseases, particularly systemic lupus erythematosus (SLE). Although comorbid cardiovascular risk factors are frequently present in patients with SLE, they do not explain the high burden of premature vascular disease. Profound innate and adaptive immune dysregulation seems to be the primary driver of accelerated vascular damage in SLE. In particular, evidence suggests that dysregulation of type 1 interferon (IFN-I) and aberrant neutrophils have key roles in the pathogenesis of vascular damage. IFN-I promotes endothelial dysfunction directly via effects on endothelial cells and indirectly via priming of immune cells that contribute to vascular damage. SLE neutrophils are vasculopathic in part because of their increased ability to form immunostimulatory neutrophil extracellular traps. Despite improvements in clinical care, cardiovascular disease remains the leading cause of mortality among patients with SLE, and treatments that improve vascular outcomes are urgently needed. Improved understanding of the mechanisms of vascular injury in inflammatory conditions such as SLE could also have implications for common cardiovascular diseases, such as atherosclerosis and hypertension, and may ultimately lead to personalized therapeutic approaches to the prevention and treatment of this potentially fatal complication.

Key points

  • Systemic lupus erythematosus (SLE) is associated with an increased risk of developing cardiovascular disease (CVD), which is a leading cause of morbidity and mortality.

  • Traditional risk factors, such as older age, male sex, smoking, hypertension, total cholesterol levels and diabetes mellitus, do not fully account for the increased risk of CVD among patients with SLE.

  • Type 1 interferon and neutrophils may have important pathogenic roles in vascular damage in SLE.

  • SLE remains a leading cause of premature death in women, mainly as a result of CVD; therefore, treatments that improve vascular outcomes are urgently needed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The role of IFN-I in innate immune system-mediated vascular damage in SLE.
Fig. 2: The role of neutrophils and NETs in innate immune system-mediated vascular damage in SLE.
Fig. 3: Adaptive immune-mediated vascular damage in SLE.

Similar content being viewed by others

References

  1. Del Rincón, I., Williams, K., Stern, M. P., Freeman, G. L. & Escalante, A. High incidence of cardiovascular events in a rheumatoid arthritis cohort not explained by traditional cardiac risk factors. Arthritis Rheum. 44, 2737–2745 (2001).

    Article  PubMed  Google Scholar 

  2. Solomon, D. H. et al. Explaining the cardiovascular risk associated with rheumatoid arthritis: traditional risk factors versus markers of rheumatoid arthritis severity. Ann. Rheum. Dis. 69, 1920–1925 (2010).

    Article  PubMed  Google Scholar 

  3. Roman, M. J. et al. Prevalence and correlates of accelerated atherosclerosis in systemic lupus erythematosus. N. Engl. J. Med. 349, 2399–2406 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Weber, B. & Liao, K. P. Evidence for biologic drug modifying anti-rheumatoid drugs and association with cardiovascular disease risk mitigation in inflammatory arthritis. Rheum. Dis. Clin. North. Am. 49, 165–178 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Myasoedova, E., Davis, J. M., Roger, V. L., Achenbach, S. J. & Crowson, C. S. Improved incidence of cardiovascular disease in patients with incident rheumatoid arthritis in the 2000s: a population-based cohort study. J. Rheumatol. 48, 1379–1387 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yen, E. Y. & Singh, R. R. Brief report: lupus-an unrecognized leading cause of death in young females: a population-based study using nationwide death certificates, 2000-2015. Arthritis Rheumatol. 70, 1251–1255 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Moghaddam, B., Marozoff, S., Li, L., Sayre, E. C. & Zubieta, J. A. A.- All-cause and cause-specific mortality in systemic lupus erythematosus: a population-based study. Rheumatology 61, 367–376 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Asanuma, Y. et al. Premature coronary-artery atherosclerosis in systemic lupus erythematosus. N. Engl. J. Med. 349, 2407–2415 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Mendoza-Pinto, C. et al. Endothelial dysfunction and arterial stiffness in patients with systemic lupus erythematosus: a systematic review and meta-analysis. Atherosclerosis 297, 55–63 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Bulkley, B. H. & Roberts, W. C. The heart in systemic lupus erythematosus and the changes induced in it by corticosteroid therapy: a study of 36 necropsy patients. Am. J. Med. 58, 243–264 (1975).

    Article  CAS  PubMed  Google Scholar 

  11. Urowitz, M. B. et al. The bimodal mortality pattern of systemic lupus erythematosus. Am. J. Med. 60, 221–225 (1976).

    Article  CAS  PubMed  Google Scholar 

  12. Esdaile, J. M. et al. Traditional Framingham risk factors fail to fully account for accelerated atherosclerosis in systemic lupus erythematosus. Arthritis Rheum. 44, 2331–2337 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Manzi, S. et al. Age-specific incidence rates of myocardial infarction and angina in women with systemic lupus erythematosus: comparison with the Framingham study. Am. J. Epidemiol. 145, 408–415 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Bruce, I. N. ‘Not only…but also’: factors that contribute to accelerated atherosclerosis and premature coronary heart disease in systemic lupus erythematosus. Rheumatology 44, 1492–1502 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Schanberg, L. E. et al. Use of atorvastatin in systemic lupus erythematosus in children and adolescents. Arthritis Rheum. 64, 285–296 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barbhaiya, M. et al. Comparative risks of cardiovascular disease in patients with systemic lupus erythematosus, diabetes mellitus, and in general Medicaid recipients. Arthritis Care Res. 72, 1431–1439 (2020).

    Article  Google Scholar 

  17. Mak, A., Liu, Y. & Ho, R. C. Endothelium-dependent but not endothelium-independent flow-mediated dilation is significantly reduced in patients with systemic lupus erythematosus without vascular events: a metaanalysis and metaregression. J. Rheumatol. 38, 1296–1303 (2011).

    Article  PubMed  Google Scholar 

  18. Weber, B. N. et al. Coronary microvascular dysfunction in systemic lupus erythematosus. J. Am. Heart Assoc. 10, e018555 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Koletsos, N. et al. Skin microvascular dysfunction in systemic lupus erythematosus patients with and without cardiovascular risk factors. Rheumatology 60, 2834–2841 (2021).

    Article  PubMed  Google Scholar 

  20. Munguia-Realpozo, P. et al. Systemic lupus erythematosus and hypertension. Autoimmun. Rev. 18, 102371 (2019).

    Article  PubMed  Google Scholar 

  21. Thacker, S. G. et al. The detrimental effects of IFN-α on vasculogenesis in lupus are mediated by repression of IL-1 pathways: potential role in atherogenesis and renal vascular rarefaction. J. Immunol. 185, 4457–4469 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Clowse, M. E., Jamison, M., Myers, E. & James, A. H. A national study of the complications of lupus in pregnancy. Am. J. Obstet. Gynecol. 199, 127.e121–126 (2008).

    Article  Google Scholar 

  23. Tselios, K., Koumaras, C., Urowitz, M. B. & Gladman, D. D. Do current arterial hypertension treatment guidelines apply to systemic lupus erythematosus patients? A critical appraisal. Semin. Arthritis Rheum. 43, 521–525 (2014).

    Article  PubMed  Google Scholar 

  24. Schoenfeld, S. R., Kasturi, S. & Costenbader, K. H. The epidemiology of atherosclerotic cardiovascular disease among patients with SLE: a systematic review. Semin. Arthritis Rheum. 43, 77–95 (2013).

    Article  PubMed  Google Scholar 

  25. Gandelman, J. S. et al. Increased incidence of resistant hypertension in patients with systemic lupus erythematosus: a retrospective cohort study. Arthritis Care Res. 72, 534–543 (2020).

    Article  CAS  Google Scholar 

  26. Whelton, P. K. et al. Harmonization of the American College of Cardiology/American Heart Association and European Society of Cardiology/European Society of Hypertension Blood Pressure/Hypertension Guidelines: comparisons, reflections, and recommendations. Circulation 146, 868–877 (2022).

    Article  PubMed  Google Scholar 

  27. Urowitz, M. B. et al. Accumulation of coronary artery disease risk factors over three years: data from an international inception cohort. Arthritis Care Res. 59, 176–180 (2008).

    Article  CAS  Google Scholar 

  28. Tselios, K., Koumaras, C., Gladman, D. D. & Urowitz, M. B. Dyslipidemia in systemic lupus erythematosus: just another comorbidity? Semin. Arthritis Rheum. 45, 604–610 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Sun, C. et al. Prevalence and risk of metabolic syndrome in patients with systemic lupus erythematosus: a meta-analysis. Int. J. Rheum. Dis. 20, 917–928 (2017).

    Article  PubMed  Google Scholar 

  30. Apostolopoulos, D., Vincent, F., Hoi, A. & Morand, E. Associations of metabolic syndrome in SLE. Lupus Sci. Med. 7, e000436 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ronda, N. et al. Impaired serum cholesterol efflux capacity in rheumatoid arthritis and systemic lupus erythematosus. Ann. Rheum. Dis. 73, 609–615 (2014).

    Article  PubMed  Google Scholar 

  32. Tyrrell, P. N., Beyene, J., Benseler, S. M., Sarkissian, T. & Silverman, E. D. Predictors of lipid abnormalities in children with new-onset systemic lupus erythematosus. J. Rheumatol. 34, 2112–2119 (2007).

    CAS  PubMed  Google Scholar 

  33. Ockene, I. S. & Miller, N. H. Cigarette smoking, cardiovascular disease, and stroke. Circulation 96, 3243–3247 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Lopez-Neyman, S. M. et al. Racial disparities and prevalence of cardiovascular disease risk factors, cardiometabolic risk factors, and cardiovascular health metrics among US adults: NHANES 2011–2018. Sci. Rep. 12, 19475 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Costenbader, K. H. et al. Cigarette smoking and the risk of systemic lupus erythematosus: a meta-analysis. Arthritis Rheum. 50, 849–857 (2004).

    Article  PubMed  Google Scholar 

  36. Barbhaiya, M. et al. Cigarette smoking and the risk of systemic lupus erythematosus, overall and by anti-double stranded DNA antibody subtype, in the Nurses’ Health Study cohorts. Ann. Rheum. Dis. 77, 196–202 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Montes, R. A. et al. Smoking and its association with morbidity in systemic lupus erythematosus evaluated by the systemic lupus International Collaborating Clinics/American College of Rheumatology Damage Index: preliminary data and systematic review. Arthritis Rheumatol. 68, 441–448 (2016).

    Article  PubMed  Google Scholar 

  38. Raymond, W. D., Hamdorf, M., Furfaro, M., Eilertsen, G. O. & Nossent, J. C. Smoking associates with increased BAFF and decreased interferon-γ levels in patients with systemic lupus erythematosus. Lupus Sci. Med. 8, e000537 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bruce, I. N., Urowitz, M. B., Gladman, D. D., Ibañez, D. & Steiner, G. Risk factors for coronary heart disease in women with systemic lupus erythematosus: the Toronto risk factor study. Arthritis Rheum. 48, 3159–3167 (2003).

    Article  PubMed  Google Scholar 

  40. Legge, A., Blanchard, C. & Hanly, J. G. Physical activity, sedentary behaviour and their associations with cardiovascular risk in systemic lupus erythematosus. Rheumatology 59, 1128–1136 (2019).

    Article  Google Scholar 

  41. Matthews, C. E. et al. Amount of time spent in sedentary behaviors in the United States, 2003–2004. Am. J. Epidemiol. 167, 875–881 (2008).

    Article  PubMed  Google Scholar 

  42. Barbhaiya, M. et al. Race/ethnicity and cardiovascular events among patients with systemic lupus erythematosus. Arthritis Rheumatol. 69, 1823–1831 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Scalzi, L. V., Hollenbeak, C. S. & Wang, L. Racial disparities in age at time of cardiovascular events and cardiovascular-related death in patients with systemic lupus erythematosus. Arthritis Rheum. 62, 2767–2775 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pryor, K. P., Barbhaiya, M., Costenbader, K. H. & Feldman, C. H. Disparities in lupus and lupus nephritis care and outcomes among US Medicaid beneficiaries. Rheum. Dis. Clin. North. Am. 47, 41–53 (2021).

    Article  PubMed  Google Scholar 

  45. Eneanya, N. D. et al. Health inequities and the inappropriate use of race in nephrology. Nat. Rev. Nephrol. 18, 84–94 (2022).

    Article  PubMed  Google Scholar 

  46. Larsen, C. P., Beggs, M. L., Saeed, M. & Walker, P. D. Apolipoprotein L1 risk variants associate with systemic lupus erythematosus-associated collapsing glomerulopathy. J. Am. Soc. Nephrol. 24, 722–725 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Blazer, A. et al. Apolipoprotein L1 risk genotypes in Ghanaian patients with systemic lupus erythematosus: a prospective cohort study. Lupus Sci. Med. 8, e000460 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Freedman, B. I. et al. End-stage renal disease in African Americans with lupus nephritis is associated with APOL1. Arthritis Rheumatol. 66, 390–396 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jaiswal, S. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377, 111–121 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jaiswal, S. & Libby, P. Clonal haematopoiesis: connecting ageing and inflammation in cardiovascular disease. Nat. Rev. Cardiol. 17, 137–144 (2020).

    Article  PubMed  Google Scholar 

  52. David, C. et al. Clonal haematopoiesis of indeterminate potential and cardiovascular events in systemic lupus erythematosus (HEMATOPLUS study).Rheumatology 61, 4355–4363 (2022).

    Article  PubMed  Google Scholar 

  53. Magder, L. S. & Petri, M. Incidence of and risk factors for adverse cardiovascular events among patients with systemic lupus erythematosus. Am. J. Epidemiol. 176, 708–719 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Nikpour, M., Urowitz, M. B., Ibanez, D., Harvey, P. J. & Gladman, D. D. Importance of cumulative exposure to elevated cholesterol and blood pressure in development of atherosclerotic coronary artery disease in systemic lupus erythematosus: a prospective proof-of-concept cohort study. Arthritis Res. Ther. 13, R156 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kandane-Rathnayake, R. et al. Lupus low disease activity state and remission and risk of mortality in patients with systemic lupus erythematosus: a prospective, multinational, longitudinal cohort study. Lancet Rheumatol. 4, e822–e830 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Ajeganova, S., Hafström, I. & Frostegård, J. Patients with SLE have higher risk of cardiovascular events and mortality in comparison with controls with the same levels of traditional risk factors and intima-media measures, which is related to accumulated disease damage and antiphospholipid syndrome: a case-control study over 10 years. Lupus Sci. Med. 8, e000454 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Li, D. et al. Initial disease severity, cardiovascular events and all-cause mortality among patients with systemic lupus erythematosus. Rheumatology 59, 495–504 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Ugarte-Gil, M. F. et al. Impact of glucocorticoids on the incidence of lupus-related major organ damage: a systematic literature review and meta-regression analysis of longitudinal observational studies. Lupus Sci. Med. 8, e000590 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hoover, P. J. & Costenbader, K. H. Insights into the epidemiology and management of lupus nephritis from the US rheumatologist’s perspective. Kidney Int. 90, 487–492 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hermansen, M.-L., Lindhardsen, J., Torp-Pedersen, C., Faurschou, M. & Jacobsen, S. The risk of cardiovascular morbidity and cardiovascular mortality in systemic lupus erythematosus and lupus nephritis: a Danish nationwide population-based cohort study. Rheumatology 56, 709–715 (2017).

    PubMed  Google Scholar 

  61. Garg, S. et al. High burden of premature arteriosclerosis on renal biopsy results in incident lupus nephritis. Arthritis Care Res. 73, 394–401 (2021).

    Article  Google Scholar 

  62. Ünlü, O., Zuily, S. & Erkan, D. The clinical significance of antiphospholipid antibodies in systemic lupus erythematosus. Eur. J. Rheumatol. 3, 75–84 (2016).

    Article  PubMed  Google Scholar 

  63. Crow, M. K., Kirou, K. A. & Wohlgemuth, J. Microarray analysis of interferon-regulated genes in SLE. Autoimmunity 36, 481–490 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Baechler, E. C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl Acad. Sci. USA 100, 2610–2615 (2003).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197, 711–723 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Borden, E. C. et al. Interferons at age 50: past, current and future impact on biomedicine. Nat. Rev. Drug. Discov. 6, 975–990 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Feinstein, M. J. et al. Characteristics, prevention, and management of cardiovascular disease in people living with HIV: a scientific statement from the American Heart Association. Circulation 140, e98–e124 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Petta, S. et al. Hepatitis C virus infection is associated with increased cardiovascular mortality: a meta-analysis of observational studies. Gastroenterology 150, 145–155.e4 (2016).

    Article  PubMed  Google Scholar 

  69. Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371, 507–518 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. RAMESH, V. et al. Intracerebral large artery disease in Aicardi–Goutières syndrome implicates SAMHD1 in vascular homeostasis. Dev. Med. Child. Neurol. 52, 725–732 (2010).

    Article  PubMed  Google Scholar 

  71. Zhang, M., Malik, A. B. & Rehman, J. Endothelial progenitor cells and vascular repair. Curr. Opin. Hematol. 21, 224–228 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hill, J. M. et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N. Engl. J. Med. 348, 593–600 (2003).

    Article  PubMed  Google Scholar 

  73. Rajagopalan, S. et al. Endothelial cell apoptosis in systemic lupus erythematosus: a common pathway for abnormal vascular function and thrombosis propensity. Blood 103, 3677–3683 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Denny, M. F. et al. Interferon-α promotes abnormal vasculogenesis in lupus: a potential pathway for premature atherosclerosis. Blood 110, 2907–2915 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Thacker, S. G. et al. Type I interferons modulate vascular function, repair, thrombosis, and plaque progression in murine models of lupus and atherosclerosis. Arthritis Rheum. 64, 2975–2985 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fernandez, D. M. et al. Single-cell immune landscape of human atherosclerotic plaques. Nat. Med. 25, 1576–1588 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kahlenberg, J. M. et al. Inflammasome activation of IL-18 results in endothelial progenitor cell dysfunction in systemic lupus erythematosus. J. Immunol. 187, 6143–6156 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Kahlenberg, J. M. et al. An essential role of caspase 1 in the induction of murine lupus and its associated vascular damage. Arthritis Rheumatol. 66, 152–162 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Elhage, R., Ljunggren, H.-G. & Hansson, G. K. Proatherogenic role of interleukin-18: effects on inflammation and action on vascular cells: authors’ retrospective. Cardiovasc. Res. 96, 176–180 (2012).

    Article  CAS  Google Scholar 

  80. Rabkin, S. W. The role of interleukin 18 in the pathogenesis of hypertension-induced vascular disease. Nat. Clin. Pract. Cardiovasc. Med. 6, 192–199 (2009).

    CAS  PubMed  Google Scholar 

  81. Thomas, J. M. et al. IL-18 (Interleukin-18) produced by renal tubular epithelial cells promotes renal inflammation and injury during deoxycorticosterone/salt-induced hypertension in mice. Hypertension 78, 1296–1309 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Buie, J. J., Renaud, L. L., Muise-Helmericks, R. & Oates, J. C. IFN-α negatively regulates the expression of endothelial nitric oxide synthase and nitric oxide production: implications for systemic lupus erythematosus. J. Immunol. 199, 1979–1988 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Daneshpajouhnejad, P., Kopp, J. B., Winkler, C. A. & Rosenberg, A. Z. The evolving story of apolipoprotein L1 nephropathy: the end of the beginning. Nat. Rev. Nephrol. 18, 307–320 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Blazer, A. et al. APOL1 variant-expressing endothelial cells exhibit autophagic dysfunction and mitochondrial stress. Front. Genet. 13, 769936 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shah, S. S. et al. APOL1 kidney risk variants induce cell death via mitochondrial translocation and opening of the mitochondrial permeability transition pore. J. Am. Soc. Nephrol. 30, 2355–2368 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lin, J.-D. et al. Single-cell analysis of fate-mapped macrophages reveals heterogeneity, including stem-like properties, during atherosclerosis progression and regression. JCI Insight 4, e124574 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 20, 902–914 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nehar-Belaid, D. et al. Mapping systemic lupus erythematosus heterogeneity at the single-cell level. Nat. Immunol. 21, 1094–1106 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Billi, A. C. et al. Nonlesional lupus skin contributes to inflammatory education of myeloid cells and primes for cutaneous inflammation. Sci. Transl. Med. 14, eabn2263 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Perez, R. K. et al. Single-cell RNA-seq reveals cell type-specific molecular and genetic associations to lupus. Science 376, eabf1970 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Li, J. et al. Interferon-α priming promotes lipid uptake and macrophage-derived foam cell formation: a novel link between interferon-α and atherosclerosis in lupus. Arthritis Rheumatism 63, 492–502 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Palmer, H. & Libby, P. Interferon-β. A potential autocrine regulator of human vascular smooth muscle cell growth. Lab. Invest. 66, 715–721 (1992).

    CAS  PubMed  Google Scholar 

  93. Bennett, M. R., Sinha, S. & Owens, G. K. Vascular smooth muscle cells in atherosclerosis. Circ. Res. 118, 692–702 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lood, C. et al. Platelet transcriptional profile and protein expression in patients with systemic lupus erythematosus: up-regulation of the type I interferon system is strongly associated with vascular disease. Blood 116, 1951–1957 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Duffau, P. et al. Platelet CD154 potentiates interferon-α secretion by plasmacytoid dendritic cells in systemic lupus erythematosus. Sci. Transl. Med. 2, 47ra63–47ra63 (2010).

    Article  PubMed  Google Scholar 

  96. Nagahama, M. et al. Platelet activation markers and soluble adhesion molecules in patients with systemic lupus erythematosus. Autoimmunity 33, 85–94 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Nhek, S. et al. Activated platelets induce endothelial cell activation via an interleukin-1β pathway in systemic lupus erythematosus. Arterioscler. Thromb. Vasc. Biol. 37, 707–716 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Weckerle, C. E. et al. Brief report: large-scale analysis of tumor necrosis factor α levels in systemic lupus erythematosus. Arthritis Rheum. 64, 2947–2952 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cates, A. M. et al. Interleukin 10 hampers endothelial cell differentiation and enhances the effects of interferon α on lupus endothelial cell progenitors. Rheumatology 54, 1114–1123 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Guarda, G. et al. Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity 34, 213–223 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Marczynski, P. et al. Vascular inflammation and dysfunction in lupus-prone mice-IL-6 as mediator of disease initiation. Int. J. Mol. Sci. 22, 2291 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wigerblad, G. & Kaplan, M. J. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat. Rev. Immunol. 23, 274–288 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Wang, Y. et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J. Cell Biol. 184, 205–213 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Villanueva, E. et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J. Immunol. 187, 538–552 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Lood, C. et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med. 22, 146–153 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Garcia-Romo, G. S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra20 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Denny, M. F. et al. A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs. J. Immunol. 184, 3284–3297 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Carmona-Rivera, C. & Kaplan, M. J. Low-density granulocytes in systemic autoimmunity and autoinflammation. Immunol. Rev. 314, 313–325 (2023).

    Article  CAS  PubMed  Google Scholar 

  109. Mistry, P. et al. Transcriptomic, epigenetic, and functional analyses implicate neutrophil diversity in the pathogenesis of systemic lupus erythematosus. Proc. Natl Acad. Sci. USA 116, 25222–25228 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bashant, K. R. et al. Proteomic, biomechanical and functional analyses define neutrophil heterogeneity in systemic lupus erythematosus. Ann. Rheum. Dis. 80, 209–218 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Kahlenberg, J. M., Carmona-Rivera, C., Smith, C. K. & Kaplan, M. J. Neutrophil extracellular trap-associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J. Immunol. 190, 1217–1226 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Carlucci, P. M. et al. Neutrophil subsets and their gene signature associate with vascular inflammation and coronary atherosclerosis in lupus. JCI Insight 3, e99276 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Hartl, J. et al. Autoantibody-mediated impairment of DNASE1L3 activity in sporadic systemic lupus erythematosus. J. Exp. Med. 218, e20201138 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hakkim, A. et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc. Natl Acad. Sci. USA 107, 9813–9818 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lande, R. et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA–peptide complexes in systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra19–73ra19 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Caielli, S. et al. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. J. Exp. Med. 213, 697–713 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gehrke, N. et al. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity 39, 482–495 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Blanco, L. P. et al. RNA externalized by neutrophil extracellular traps promotes inflammatory pathways in endothelial cells. Arthritis Rheumatol. 73, 2282–2292 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Carmona-Rivera, C., Zhao, W., Yalavarthi, S. & Kaplan, M. J. Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase-2. Ann. Rheum. Dis. 74, 1417–1424 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Smith, C. K. et al. Neutrophil extracellular trap-derived enzymes oxidize high-density lipoprotein: an additional proatherogenic mechanism in systemic lupus erythematosus. Arthritis Rheumatol. 66, 2532–2544 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Knight, J. S. et al. Peptidylarginine deiminase inhibition disrupts NET formation and protects against kidney, skin and vascular disease in lupus-prone MRL/lpr mice. Ann. Rheum. Dis. 74, 2199–2206 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Liu, Y. et al. Myeloid-specific deletion of peptidylarginine deiminase 4 mitigates atherosclerosis. Front. Immunol. 9, 1680 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Moore, S. et al. Role of neutrophil extracellular traps regarding patients at risk of increased disease activity and cardiovascular comorbidity in systemic lupus erythematosus. J. Rheumatol. 47, 1652–1660 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Walport, M. J. Complement and systemic lupus erythematosus. Arthritis Res. 4, S279–293 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Watanabe, H. et al. Modulation of renal disease in MRL/lpr mice genetically deficient in the alternative complement pathway factor B. J. Immunol. 164, 786–794 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Bao, L., Haas, M. & Quigg, R. J. Complement factor H deficiency accelerates development of lupus nephritis. J. Am. Soc. Nephrol. 22, 285–295 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Svenungsson, E. et al. Complement deposition, C4d, on platelets is associated with vascular events in systemic lupus erythematosus. Rheumatology 59, 3264–3274 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Holers, V. M. et al. Complement C3 activation is required for antiphospholipid antibody-induced fetal loss. J. Exp. Med. 195, 211–220 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kim, M. Y. et al. Complement activation predicts adverse pregnancy outcome in patients with systemic lupus erythematosus and/or antiphospholipid antibodies. Ann. Rheum. Dis. 77, 549–555 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Kello, N. et al. Secondary thrombotic microangiopathy in systemic lupus erythematosus and antiphospholipid syndrome, the role of complement and use of eculizumab: case series and review of literature. Semin. Arthritis Rheum. 49, 74–83 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Steinmetz, O. M. et al. CXCR3 mediates renal Th1 and Th17 immune response in murine lupus nephritis1. J. Immunol. 183, 4693–4704 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Suárez-Fueyo, A., Bradley, S. J. & Tsokos, G. C. T cells in systemic lupus erythematosus. Curr. Opin. Immunol. 43, 32–38 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Wilhelm, A. J., Rhoads, J. P., Wade, N. S. & Major, A. S. Dysregulated CD4+ T cells from SLE-susceptible mice are sufficient to accelerate atherosclerosis in LDLr−/− mice. Ann. Rheum. Dis. 74, 778–785 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Crispín, J. C. et al. Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J. Immunol. 181, 8761–8766 (2008).

    Article  PubMed  Google Scholar 

  135. Shin, M. S., Lee, N. & Kang, I. Effector T-cell subsets in systemic lupus erythematosus: update focusing on Th17 cells. Curr. Opin. Rheumatol. 23, 444–448 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Li, W. et al. T cells expressing the lupus susceptibility allele Pbx1d enhance autoimmunity and atherosclerosis in dyslipidemic mice. JCI Insight 5, e138274 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Choi, S. C. et al. The lupus susceptibility gene Pbx1 regulates the balance between follicular helper T cell and regulatory T cell differentiation. J. Immunol. 197, 458–469 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Tellides, G. et al. Interferon-γ elicits arteriosclerosis in the absence of leukocytes. Nature 403, 207–211 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  139. Dunlap, G. S. et al. Single-cell transcriptomics reveals distinct effector profiles of infiltrating T cells in lupus skin and kidney. JCI Insight 7, e156341 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Tsokos, G. C., Lo, M. S., Costa Reis, P. & Sullivan, K. E. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat. Rev. Rheumatol. 12, 716–730 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. Baumgarth, N. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat. Rev. Immunol. 11, 34–46 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Gruber, S. et al. Sialic acid-binding immunoglobulin-like lectin g promotes atherosclerosis and liver inflammation by suppressing the protective functions of b-1 cells. Cell Rep. 14, 2348–2361 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Enghard, P. et al. Class switching and consecutive loss of dsDNA-reactive B1a B cells from the peritoneal cavity during murine lupus development. Eur. J. Immunol. 40, 1809–1818 (2010).

    Article  CAS  PubMed  Google Scholar 

  144. Anania, C. et al. Increased prevalence of vulnerable atherosclerotic plaques and low levels of natural IgM antibodies against phosphorylcholine in patients with systemic lupus erythematosus. Arthritis Res. Ther. 12, R214 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Svenungsson, E. et al. Decreased levels of autoantibodies against apolipoprotein B-100 antigens are associated with cardiovascular disease in systemic lupus erythematosus. Clin. Exp. Immunol. 181, 417–426 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Knight, J. S. & Kanthi, Y. Mechanisms of immunothrombosis and vasculopathy in antiphospholipid syndrome. Semin. Immunopathol. 44, 347–362 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Frostegård, J. et al. Lipid peroxidation is enhanced in patients with systemic lupus erythematosus and is associated with arterial and renal disease manifestations. Arthritis Rheumatism 52, 192–200 (2005).

    Article  PubMed  Google Scholar 

  148. Purmalek, M. M. et al. Association of lipoprotein subfractions and glycoprotein acetylation with coronary plaque burden in SLE. Lupus Sci. Med. 6, e000332 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Khera, A. V. et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N. Engl. J. Med. 364, 127–135 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Connelly, M. A., Otvos, J. D., Shalaurova, I., Playford, M. P. & Mehta, N. N. GlycA, a novel biomarker of systemic inflammation and cardiovascular disease risk. J. Transl. Med. 15, 219 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  151. De Nardo, D. et al. High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. Nat. Immunol. 15, 152–160 (2014).

    Article  PubMed  Google Scholar 

  152. Smith, C. K. et al. Lupus high-density lipoprotein induces proinflammatory responses in macrophages by binding lectin-like oxidised low-density lipoprotein receptor 1 and failing to promote activating transcription factor 3 activity. Ann. Rheum. Dis. 76, 602–611 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Ghazarian, M. et al. Type I interferon responses drive intrahepatic T cells to promote metabolic syndrome. Sci. Immunol. 2, eaai7616 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Norlander, A. E., Madhur, M. S. & Harrison, D. G. The immunology of hypertension. J. Exp. Med. 215, 21–33 (2017).

    Article  PubMed  Google Scholar 

  155. Venegas-Pont, M. et al. Tumor necrosis factor-α antagonist etanercept decreases blood pressure and protects the kidney in a mouse model of systemic lupus erythematosus. Hypertension 56, 643–649 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Ripley, B. J. M., Goncalves, B., Isenberg, D. A., Latchman, D. S. & Rahman, A. Raised levels of interleukin 6 in systemic lupus erythematosus correlate with anaemia. Ann. Rheum. Dis. 64, 849–853 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Li, K. et al. Interleukin-6 stimulates epithelial sodium channels in mouse cortical collecting duct cells. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R590–595 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Nguyen, H. et al. Interleukin-17 causes Rho-kinase-mediated endothelial dysfunction and hypertension. Cardiovasc. Res. 97, 696–704 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Kamat, N. V. et al. Renal transporter activation during angiotensin-ii hypertension is blunted in interferon-γ−/− and interleukin-17A−/− mice. Hypertension 65, 569–576 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. Rodríguez-Iturbe, B. et al. Mycophenolate mofetil prevents salt-sensitive hypertension resulting from angiotensin II exposure. Kidney Int. 59, 2222–2232 (2001).

    Article  PubMed  Google Scholar 

  161. Urowitz, M. B., Ibañez, D., Su, J. & Gladman, D. D. Modified Framingham risk factor score for systemic lupus erythematosus. J. Rheumatol. 43, 875–879 (2016).

    Article  PubMed  Google Scholar 

  162. Hippisley-Cox, J., Coupland, C. & Brindle, P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ 357, j2099 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Petri, M. A., Barr, E. & Magder, L. S. Development of a systemic lupus erythematosus cardiovascular risk equation. Lupus Sci. Med. 6, e000346 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  164. McMahon, M. et al. A panel of biomarkers is associated with increased risk of the presence and progression of atherosclerosis in women with systemic lupus erythematosus. Arthritis Rheumatol. 66, 130–139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Skaggs, B. J. et al. A panel of biomarkers associates with increased risk for cardiovascular events in women with systemic lupus erythematosus. ACR Open. Rheumatol. 3, 209–220 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Zhu, L. et al. Assessing the validity of QRISK3 in predicting cardiovascular events in systemic lupus erythematosus. Lupus Sci. Med. 9, e000564 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Sivakumaran, J. et al. Assessment of cardiovascular risk tools as predictors of cardiovascular disease events in systemic lupus erythematosus. Lupus Sci. Med. 8, e000448 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Enocsson, H. et al. Interferon-α mediates suppression of C-reactive protein: explanation for muted C-reactive protein response in lupus flares? Arthritis Rheum. 60, 3755–3760 (2009).

    Article  CAS  PubMed  Google Scholar 

  169. Chang, J. C. et al. Nocturnal blood pressure dipping as a marker of endothelial function and subclinical atherosclerosis in pediatric-onset systemic lupus erythematosus. Arthritis Res. Ther. 22, 129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Stojan, G., Li, J., Budoff, M., Arbab-Zadeh, A. & Petri, M. A. High-risk coronary plaque in SLE: low-attenuation non-calcified coronary plaque and positive remodelling index. Lupus Sci. Med. 7, e000409 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Kiani, A. N. et al. Semiquantified noncalcified coronary plaque in systemic lupus erythematosus. J. Rheumatol. 39, 2286–2293 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Williams, M. C. et al. Low-attenuation noncalcified plaque on coronary computed tomography angiography predicts myocardial infarction: results from the multicenter SCOT-HEART Trial (Scottish Computed Tomography of the HEART). Circulation 141, 1452–1462 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Frerix, M., Stegbauer, J., Kreuter, A. & Weiner, S. M. Atherosclerotic plaques occur in absence of intima-media thickening in both systemic sclerosis and systemic lupus erythematosus: a duplexsonography study of carotid and femoral arteries and follow-up for cardiovascular events. Arthritis Res. Ther. 16, R54 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Bakshi, J. et al. Extent of vascular plaque predicts future cardiovascular events in patients with systemic lupus erythematosus. Rheumatology 62, 225–233 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Drosos, G. C. et al. EULAR recommendations for cardiovascular risk management in rheumatic and musculoskeletal diseases, including systemic lupus erythematosus and antiphospholipid syndrome. Ann. Rheum. Dis. 81, 768–779 (2022).

    Article  CAS  PubMed  Google Scholar 

  176. Ugarte-Gil, M. F. et al. Remission and low disease activity (LDA) prevent damage accrual in patients with systemic lupus erythematosus: results from the Systemic Lupus International Collaborating Clinics (SLICC) inception cohort. Ann. Rheum. Dis. 81, 1541–1548 (2022).

    Article  CAS  PubMed  Google Scholar 

  177. Petri, M. & Magder, L. S. Comparison of remission and lupus low disease activity state in damage prevention in a United States systemic lupus erythematosus cohort. Arthritis Rheumatol. 70, 1790–1795 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Ruiz-Irastorza, G., Ramos-Casals, M., Brito-Zeron, P. & Khamashta, M. A. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann. Rheum. Dis. 69, 20–28 (2010).

    Article  CAS  PubMed  Google Scholar 

  179. Yang, D. H., Leong, P. Y., Sia, S. K., Wang, Y. H. & Wei, J. C. Long-term hydroxychloroquine therapy and risk of coronary artery disease in patients with systemic lupus erythematosus. J. Clin. Med. 8, 796 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Liu, D. et al. Chloroquine and hydroxychloroquine are associated with reduced cardiovascular risk: a systematic review and meta-analysis. Drug. Des. Devel Ther. 12, 1685–1695 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  181. Schrezenmeier, E. & Dörner, T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat. Rev. Rheumatol. 16, 155–166 (2020).

    Article  CAS  PubMed  Google Scholar 

  182. Virdis, A. et al. Early treatment with hydroxychloroquine prevents the development of endothelial dysfunction in a murine model of systemic lupus erythematosus. Arthritis Res. Ther. 17, 277 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Richez, C. et al. The effect of mycophenolate mofetil on disease development in the gld.apoE−/− mouse model of accelerated atherosclerosis and systemic lupus erythematosus. PLoS One 8, e61042 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  184. van Leuven, S. I. et al. Mycophenolate mofetil attenuates plaque inflammation in patients with symptomatic carotid artery stenosis. Atherosclerosis 211, 231–236 (2010).

    Article  PubMed  Google Scholar 

  185. Kaczmarek, I. et al. Preventing cardiac allograft vasculopathy: long-term beneficial effects of mycophenolate mofetil. J. Heart Lung Transpl. 25, 550–556 (2006).

    Article  Google Scholar 

  186. Ait-Oufella, H. et al. B cell depletion reduces the development of atherosclerosis in mice. J. Exp. Med. 207, 1579–1587 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kridin, K., Mruwat, N. & Ludwig, R. J. Association of rituximab with risk of long-term cardiovascular and metabolic outcomes in patients with pemphigus. JAMA Dermatol. 159, 56–61 (2023).

    Article  PubMed  Google Scholar 

  188. Furie, R. et al. Two-year, randomized, controlled trial of belimumab in lupus nephritis. N. Engl. J. Med. 383, 1117–1128 (2020).

    Article  CAS  PubMed  Google Scholar 

  189. Furie, R. et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 63, 3918–3930 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Sage, A. P. et al. BAFF receptor deficiency reduces the development of atherosclerosis in mice — brief report. Arterioscler. Thromb. Vasc. Biol. 32, 1573–1576 (2012).

    Article  CAS  PubMed  Google Scholar 

  191. Morand, E. F. et al. Trial of anifrolumab in active systemic lupus erythematosus. N. Engl. J. Med. 382, 211–221 (2019).

    Article  PubMed  Google Scholar 

  192. Casey, K. A. et al. Modulation of cardiometabolic disease markers by type I interferon inhibition in systemic lupus erythematosus. Arthritis Rheumatol. 73, 459–471 (2021).

    Article  CAS  PubMed  Google Scholar 

  193. Werth, V. P. et al. Trial of anti-BDCA2 antibody litifilimab for cutaneous lupus erythematosus. N. Engl. J. Med. 387, 321–331 (2022).

    Article  CAS  PubMed  Google Scholar 

  194. Furie, R. A. et al. Trial of anti-BDCA2 antibody litifilimab for systemic lupus erythematosus. N. Engl. J. Med. 387, 894–904 (2022).

    Article  CAS  PubMed  Google Scholar 

  195. Hasni, S. A. et al. Phase 1 double-blind randomized safety trial of the Janus kinase inhibitor tofacitinib in systemic lupus erythematosus. Nat. Commun. 12, 3391 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  196. Winthrop, K. L. & Cohen, S. B. Oral surveillance and JAK inhibitor safety: the theory of relativity. Nat. Rev. Rheumatol. 18, 301–304 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Morand, E. et al. Deucravacitinib, a tyrosine kinase 2 inhibitor, in systemic lupus erythematosus: a phase II, randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol. 75, 242–252 (2023).

    Article  CAS  PubMed  Google Scholar 

  198. Knight, J. S. et al. Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus. J. Clin. Invest. 123, 2981–2993 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Knight, J. S. et al. Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis. Circ. Res. 114, 947–956 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. MACANOVIC, M. et al. The treatment of systemic lupus erythematosus (SLE) in NZB/W F1 hybrid mice; studies with recombinant murine DNase and with dexamethasone. Clin. Exp. Immunol. 106, 243–252 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Davis Jr, J. C. et al. Recombinant human Dnase I (rhDNase) in patients with lupus nephritis. Lupus 8, 68–76 (1999).

    Article  CAS  PubMed  Google Scholar 

  202. Hasni, S. et al. Peroxisome proliferator activated receptor-γ agonist pioglitazone improves vascular and metabolic dysfunction in systemic lupus erythematosus. Ann. Rheum. Dis. 81, 1576–1584 (2022).

    Article  CAS  PubMed  Google Scholar 

  203. Wang, H., Li, T., Chen, S., Gu, Y. & Ye, S. Neutrophil extracellular trap mitochondrial DNA and its autoantibody in systemic lupus erythematosus and a proof-of-concept trial of metformin. Arthritis Rheumatol. 67, 3190–3200 (2015).

    Article  CAS  PubMed  Google Scholar 

  204. Sun, F. et al. Safety and efficacy of metformin in systemic lupus erythematosus: a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Rheumatol. 2, e210–e216 (2020).

    Article  PubMed  Google Scholar 

  205. Sun, F. et al. Effects of metformin on disease flares in patients with systemic lupus erythematosus: post hoc analyses from two randomised trials. Lupus Sci. Med. 7, e000429 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Marx, N., Husain, M., Lehrke, M., Verma, S. & Sattar, N. GLP-1 receptor agonists for the reduction of atherosclerotic cardiovascular risk in patients with type 2 diabetes. Circulation 146, 1882–1894 (2022).

    Article  CAS  PubMed  Google Scholar 

  207. Wilding, J. P. H. et al. Once-weekly semaglutide in adults with overweight or obesity. N. Engl. J. Med. 384, 989–1002 (2021).

    Article  CAS  PubMed  Google Scholar 

  208. Petri, M. A., Kiani, A. N., Post, W., Christopher-Stine, L. & Magder, L. S. Lupus atherosclerosis prevention study (LAPS). Ann. Rheum. Dis. 70, 760 (2011).

    Article  CAS  PubMed  Google Scholar 

  209. van Rosendael, A. R. et al. Association of statin treatment with progression of coronary atherosclerotic plaque composition. JAMA Cardiol. 6, 1257–1266 (2021).

    Article  PubMed  Google Scholar 

  210. Yu, H.-H. et al. Statin reduces mortality and morbidity in systemic lupus erythematosus patients with hyperlipidemia: a nationwide population-based cohort study. Atherosclerosis 243, 11–18 (2015).

    Article  CAS  PubMed  Google Scholar 

  211. Gibson, C. M. et al. Rationale and design of ApoA-I event reducing in ischemic syndromes II (AEGIS-II): a phase 3, multicenter, double-blind, randomized, placebo-controlled, parallel-group study to investigate the efficacy and safety of CSL112 in subjects after acute myocardial infarction. Am. Heart J. 231, 121–127 (2021).

    Article  CAS  PubMed  Google Scholar 

  212. Woo, J. M. et al. Treatment with apolipoprotein A-1 mimetic peptide reduces lupus-like manifestations in a murine lupus model of accelerated atherosclerosis. Arthritis Res. Ther. 12, R93 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Arnett, D. K. et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 140, e596–e646 (2019).

    PubMed  PubMed Central  Google Scholar 

  214. Iudici, M. et al. Low-dose aspirin as primary prophylaxis for cardiovascular events in systemic lupus erythematosus: a long-term retrospective cohort study. Rheumatology 55, 1623–1630 (2016).

    Article  CAS  PubMed  Google Scholar 

  215. Fanouriakis, A. et al. 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. Ann. Rheum. Dis. 78, 736–745 (2019).

    Article  CAS  PubMed  Google Scholar 

  216. Dai, J. et al. Acetylation blocks cGAS activity and inhibits self-DNA-induced autoimmunity. Cell 176, 1447–1460.e1414 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Rovin, B. H. et al. Efficacy and safety of voclosporin versus placebo for lupus nephritis (AURORA 1): a double-blind, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 397, 2070–2080 (2021).

    Article  CAS  PubMed  Google Scholar 

  218. Korbet, S. M. & Lewis, E. J., Collaborative Study Group. Severe lupus nephritis: the predictive value of a ≥ 50% reduction in proteinuria at 6 months. Nephrol. Dial. Transplant. 28, 2313–2318 (2013).

    Article  CAS  PubMed  Google Scholar 

  219. Agca, R. et al. EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann. Rheum. Dis. 76, 17–28 (2017).

    Article  CAS  PubMed  Google Scholar 

  220. Herrington, W., Lacey, B., Sherliker, P., Armitage, J. & Lewington, S. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ. Res. 118, 535–546 (2016).

    Article  CAS  PubMed  Google Scholar 

  221. Borén, J. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 41, 2313–2330 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Edfeldt, K., Swedenborg, J., Hansson, G. K. & Yan, Z. Q. Expression of Toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 105, 1158–1161 (2002).

    Article  CAS  PubMed  Google Scholar 

  223. Stemme, S. et al. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc. Natl Acad. Sci. USA 92, 3893–3897 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  224. Hermansson, A. et al. Inhibition of T cell response to native low-density lipoprotein reduces atherosclerosis. J. Exp. Med. 207, 1081–1093 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Spitz, C. et al. Regulatory T cells in atherosclerosis: critical immune regulatory function and therapeutic potential. Cell Mol. Life Sci. 73, 901–922 (2016).

    Article  CAS  PubMed  Google Scholar 

  226. Gisterå, A. & Hansson, G. K. The immunology of atherosclerosis. Nat. Rev. Nephrol. 13, 368–380 (2017).

    Article  PubMed  Google Scholar 

  227. Libby, P., Pasterkamp, G., Crea, F. & Jang, I. K. Reassessing the mechanisms of acute coronary syndromes. Circ. Res. 124, 150–160 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Quillard, T. et al. TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion. Eur. Heart J. 36, 1394–1404 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Depuydt, M. A. C. et al. Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics. Circ. Res. 127, 1437–1455 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Durcan, L., Clarke, W. A., Magder, L. S. & Petri, M. Hydroxychloroquine blood levels in systemic lupus erythematosus: clarifying dosing controversies and improving adherence. J. Rheumatol. 42, 2092–2097 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors’ work was supported by the Intramural Research Program at NIAMS (ZIA AR041199).

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched the data for the article, discussed the content, wrote the text and edited or reviewed the manuscript before submission.

Corresponding author

Correspondence to Mariana J. Kaplan.

Ethics declarations

Competing interests

NIAMS has collaborative research agreements with Astra Zeneca and Bristol Myers Squibb that relate to mechanisms of vascular damage in autoimmunity. M.J.K. is a member of the scientific advisory boards of Neutrolis and Cytrill.

Peer review

Peer review information

Nature Reviews Nephrology thanks Anne Davidson, who co-reviewed with YoungMin Cho, Keisa Mathis, Anisur Rahman and Alan Salama for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Emergency granulopoiesis

A rapid increase in neutrophil generation in the bone marrow with a subsequent increase in neutrophil output in the circulation that occurs in response to an increase in neutrophil growth factors such as granulocyte colony-stimulating factor owing to an immune response, often to an infection.

Foam cells

Macrophages with a specialized phenotype that are present within atherosclerotic plaques. These cells have a high lipid content in their cytoplasm, which results in a foamy appearance.

Resistant hypertension

Hypertension that persists despite treatment with three concurrent antihypertensive agents at the maximally tolerated doses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambler, W.G., Kaplan, M.J. Vascular damage in systemic lupus erythematosus. Nat Rev Nephrol 20, 251–265 (2024). https://doi.org/10.1038/s41581-023-00797-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-023-00797-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing