Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sex differences in energy metabolism: natural selection, mechanisms and consequences

Abstract

Metabolic homeostasis operates differently in men and women. This sex asymmetry is the result of evolutionary adaptations that enable women to resist loss of energy stores and protein mass while remaining fertile in times of energy deficit. During starvation or prolonged exercise, women rely on oxidation of lipids, which are a more efficient energy source than carbohydrates, to preserve glucose for neuronal and placental function and spare proteins necessary for organ function. Carbohydrate reliance in men could be an evolutionary adaptation related to defence and hunting, as glucose, unlike lipids, can be used as a fuel for anaerobic high-exertion muscle activity. The larger subcutaneous adipose tissue depots in healthy women than in healthy men provide a mechanism for lipid storage. As female mitochondria have higher functional capacity and greater resistance to oxidative damage than male mitochondria, uniparental inheritance of female mitochondria may reduce the transmission of metabolic disorders. However, in women, starvation resistance and propensity to obesity have evolved in tandem, and the current prevalence of obesity is greater in women than in men. The combination of genetic sex, programming by developmental testosterone in males, and pubertal sex hormones defines sex-specific biological systems in adults that produce phenotypic sex differences in energy homeostasis, metabolic disease and drug responses.

Key points

  • Females have evolved more efficient mechanisms than males to conserve energy and resist loss of energy stores and proteins in times of food scarcity or prolonged exercise.

  • During starvation or prolonged exercise, the actions of oestrogens enable females to rely on lipid oxidation as an efficient energy source and preserve glucose for neuronal functions and proteins for organ functions.

  • Healthy women have larger subcutaneous adipose depots than healthy men; these depots provide a mechanism for long-term lipid storage and starvation resistance.

  • Females transmit healthy mitochondria with high functional capacity and thereby reduce the risk of heritable metabolic disorders in their offspring.

  • In women, mechanisms of starvation resistance and propensity to obesity have evolved in tandem; in populations worldwide, the prevalence of obesity is greater in women than in men.

  • Together, genetic sex, developmental programming by testosterone, and pubertal sex hormones define sex-specific biological systems that produce sex differences in energy homeostasis, metabolic disease and responses to anti-diabetic and anti-obesity drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of sex differences in energy metabolism.
Fig. 2: Sex differences in the pathogenesis of type 2 diabetes mellitus (T2DM).
Fig. 3: Testosterone-induced epigenetic programming of metabolic homeostasis.
Fig. 4: Males and females represent different biological systems.

Similar content being viewed by others

References

  1. Darwin, C. On the Origin of Species (John Murray, 1859).

  2. Darwin, C. The Descent of Man, and Selection in Relation to Sex (John Murray, 1871).

  3. Frisch, R. E. & McArthur, J. W. Menstrual cycles: fatness as a determinant of minimum weight for height necessary for their maintenance or onset. Science 185, 949–951 (1974).

    Article  CAS  PubMed  Google Scholar 

  4. Frisch, R. E. Body fat, menarche, fitness and fertility. Hum. Reprod. 2, 521–533 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. Gerisch, B., Weitzel, C., Kober-Eisermann, C., Rottiers, V. & Antebi, A. A hormonal signaling pathway influencing C. elegans metabolism, reproductive development, and life span. Dev. Cell 1, 841–851 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Brüning, J. C. et al. Role of brain insulin receptor in control of body weight and reproduction. Science 289, 2122–2125 (2000).

    Article  PubMed  Google Scholar 

  7. Burks, D. J. et al. IRS-2 pathways integrate female reproduction and energy homeostasis. Nature 407, 377–382 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Chehab, F. F., Lim, M. E. & Lu, R. Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nat. Genet. 12, 318–320 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Ahima, R. S. et al. Role of leptin in the neuroendocrine response to fasting. Nature 382, 250–252 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Ahima, R. S., Dushay, J., Flier, S. N., Prabakaran, D. & Flier, J. S. Leptin accelerates the onset of puberty in normal female mice. J. Clin. Invest. 99, 391–395 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Paczoska-Eliasiewicz, H. E. et al. Exogenous leptin advances puberty in domestic hen. Domest. Anim. Endocrinol. 31, 211–226 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Paczoska-Eliasiewicz, H. E. et al. Attenuation by leptin of the effects of fasting on ovarian function in hens (Gallus domesticus). Reproduction 126, 739–751 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Ahmed, M. L., Ong, K. K. & Dunger, D. B. Childhood obesity and the timing of puberty. Trends Endocrinol. Metab. 20, 237–242 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Hoyenga, K. B. & Hoyenga, K. T. Gender and energy balance: sex differences in adaptations for feast and famine. Physiol. Behav. 28, 545–563 (1982).

    Article  CAS  PubMed  Google Scholar 

  16. Widdowson, E. M. The response of the sexes to nutritional stress. Proc. Nutr. Soc. 35, 175–180 (1976).

    Article  CAS  PubMed  Google Scholar 

  17. Della Torre, S. & Maggi, A. Sex differences: a resultant of an evolutionary pressure? Cell Metab. 25, 499–505 (2017).

    Article  PubMed  Google Scholar 

  18. Grayson, D. Differential mortality and the Donner Party disaster. Evol. Anthropol. 2, 151–159 (1993).

    Article  Google Scholar 

  19. Dols, M. J. & Van Arcken, D. J. Food supply and nutrition in the Netherlands during and immediately after World War II. Milbank Mem. Fund. Q. 24, 319–358 (1946).

    Article  CAS  PubMed  Google Scholar 

  20. Banning, C. Food shortage and public health, first half of 1945. Ann. Am. Acad. Pol. Soc. Sci. 245, 93–110 (1946).

    Article  Google Scholar 

  21. Zarulli, V. et al. Women live longer than men even during severe famines and epidemics. Proc. Natl Acad. Sci. USA 115, E832–E840 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shi, H., Strader, A. D., Woods, S. C. & Seeley, R. J. Sexually dimorphic responses to fat loss after caloric restriction or surgical lipectomy. Am. J. Physiol. Endocrinol. Metab. 293, E316–E326 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Valle, A. et al. Sex-related differences in energy balance in response to caloric restriction. Am. J. Physiol. Endocrinol. Metab. 289, E15–E22 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Halsey, L. G. et al. Variability in energy expenditure is much greater in males than females. J. Hum. Evol. 171, 103229 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Carter, S. L., Rennie, C. & Tarnopolsky, M. A. Substrate utilization during endurance exercise in men and women after endurance training. Am. J. Physiol. Endocrinol. Metab. 280, E898–E907 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Henderson, G. C. Sexual dimorphism in the effects of exercise on metabolism of lipids to support resting metabolism. Front. Endocrinol. 5, 162 (2014).

    Google Scholar 

  27. Horton, T. J., Pagliassotti, M. J., Hobbs, K. & Hill, J. O. Fuel metabolism in men and women during and after long-duration exercise. J. Appl. Physiol. 85, 1823–1832 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Tarnopolsky, M. A., Atkinson, S. A., Phillips, S. M. & MacDougall, J. D. Carbohydrate loading and metabolism during exercise in men and women. J. Appl. Physiol. 78, 1360–1368 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Braun, B. et al. Women at altitude: carbohydrate utilization during exercise at 4,300 m. J. Appl. Physiol. 88, 246–256 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Schmidt-Nielsen, K. Animal Physiology: Adaptation and Environment 5th edn (Cambridge Univ. Press, 1997).

  31. Speechly, D. P., Taylor, S. R. & Rogers, G. G. Differences in ultra-endurance exercise in performance-matched male and female runners. Med. Sci. Sports Exerc. 28, 359–365 (1996).

    CAS  PubMed  Google Scholar 

  32. Bam, J., Noakes, T. D., Juritz, J. & Dennis, S. C. Could women outrun men in ultramarathon races? Med. Sci. Sports Exerc. 29, 244–247 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Hamadeh, M. J., Devries, M. C. & Tarnopolsky, M. A. Estrogen supplementation reduces whole body leucine and carbohydrate oxidation and increases lipid oxidation in men during endurance exercise. J. Clin. Endocrinol. Metab. 90, 3592–3599 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Salehzadeh, F., Rune, A., Osler, M. & Al-Khalili, L. Testosterone or 17β-estradiol exposure reveals sex-specific effects on glucose and lipid metabolism in human myotubes. J. Endocrinol. 210, 219–229 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Maher, A. C., Akhtar, M. & Tarnopolsky, M. A. Men supplemented with 17β-estradiol have increased β-oxidation capacity in skeletal muscle. Physiol. Genomics 42, 342–347 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Ribas, V. et al. Skeletal muscle action of estrogen receptor α is critical for the maintenance of mitochondrial function and metabolic homeostasis in females. Sci. Transl. Med. 8, 334ra354 (2016).

    Article  Google Scholar 

  37. Donnelly, J. E. et al. Effects of a 16-month randomized controlled exercise trial on body weight and composition in young, overweight men and women: the Midwest Exercise Trial. Arch. Intern. Med. 163, 1343–1350 (2003).

    Article  PubMed  Google Scholar 

  38. Pietrobelli, A. et al. Sexual dimorphism in the energy content of weight change. Int. J. Obes. Relat. Metab. Disord. 26, 1339–1348 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Nielsen, S. et al. Energy expenditure, sex, and endogenous fuel availability in humans. J. Clin. Invest. 111, 981–988 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Henderson, G. C. et al. Lipolysis and fatty acid metabolism in men and women during the postexercise recovery period. J. Physiol. 584, 963–981 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Uranga, A. P., Levine, J. & Jensen, M. Isotope tracer measures of meal fatty acid metabolism: reproducibility and effects of the menstrual cycle. Am. J. Physiol. Endocrinol. Metab. 288, E547–E555 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. O’Sullivan, A. J., Crampton, L. J., Freund, J. & Ho, K. K. The route of estrogen replacement therapy confers divergent effects on substrate oxidation and body composition in postmenopausal women. J. Clin. Invest. 102, 1035–1040 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lwin, R. et al. Effect of oral estrogen on substrate utilization in postmenopausal women. Fertil. Steril. 90, 1275–1278 (2008).

    Article  PubMed  Google Scholar 

  44. Marlatt, K. L. et al. Effect of conjugated estrogens and bazedoxifene on glucose, energy and lipid metabolism in obese postmenopausal women. Eur. J. Endocrinol. 183, 439–452 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mauvais-Jarvis, F., Clegg, D. J. & Hevener, A. L. The role of estrogens in control of energy balance and glucose homeostasis. Endocr. Rev. 34, 309–338 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Djouadi, F. et al. A gender-related defect in lipid metabolism and glucose homeostasis in peroxisome proliferator-activated receptor alpha-deficient mice. J. Clin. Invest. 102, 1083–1091 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Karlsson, S., Scheurink, A. J. & Ahren, B. Gender difference in the glucagon response to glucopenic stress in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R281–R288 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Chumlea, W. C. et al. Body composition estimates from NHANES III bioelectrical impedance data. Int. J. Obes. Relat. Metab. Disord. 26, 1596–1609 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Rodríguez, G. et al. Gender differences in newborn subcutaneous fat distribution. Eur. J. Pediatr. 163, 457–461 (2004).

    Article  PubMed  Google Scholar 

  50. Koo, W. W., Walters, J. C. & Hockman, E. M. Body composition in human infants at birth and postnatally. J. Nutr. 130, 2188–2194 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Tarnopolsky, M. A. Gender Differences in Metabolism 179–199 (CRC Press, 1999).

  52. Vague, J. Sexual differentiation; factor determining forms of obesity [French]. Presse Med. 55, 339 (1947).

    CAS  Google Scholar 

  53. Bouchard, C., Despres, J. P. & Mauriege, P. Genetic and nongenetic determinants of regional fat distribution. Endocr. Rev. 14, 72–93 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Bjorntorp, P. Abdominal fat distribution and disease: an overview of epidemiological data. Ann. Med. 24, 15–18 (1992).

    Article  CAS  PubMed  Google Scholar 

  55. Goossens, G. H., Jocken, J. W. E. & Blaak, E. E. Sexual dimorphism in cardiometabolic health: the role of adipose tissue, muscle and liver. Nat. Rev. Endocrinol. 17, 47–66 (2021).

    Article  PubMed  Google Scholar 

  56. Gavin, K. M. & Bessesen, D. H. Sex differences in adipose tissue function. Endocrinol. Metab. Clin. North. Am. 49, 215–228 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Karastergiou, K., Smith, S. R., Greenberg, A. S. & Fried, S. K. Sex differences in human adipose tissues – the biology of pear shape. Biol. Sex. Differ. 3, 13 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Palmer, B. F. & Clegg, D. J. The sexual dimorphism of obesity. Mol. Cell. Endocrinol. 402, 113–119 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Schorr, M. et al. Sex differences in body composition and association with cardiometabolic risk. Biol. Sex. Differ. 9, 28 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Tchoukalova, Y. D. et al. Regional differences in cellular mechanisms of adipose tissue gain with overfeeding. Proc. Natl Acad. Sci. USA 107, 18226–18231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Guo, Z., Johnson, C. M. & Jensen, M. D. Regional lipolytic responses to isoproterenol in women. Am. J. Physiol. 273, E108–E112 (1997).

    CAS  PubMed  Google Scholar 

  62. Rebuffé-Scrive, M. et al. Fat cell metabolism in different regions in women. Effect of menstrual cycle, pregnancy, and lactation. J. Clin. Invest. 75, 1973–1976 (1985).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Nguyen, T. T., Hernández Mijares, A., Johnson, C. M. & Jensen, M. D. Postprandial leg and splanchnic fatty acid metabolism in nonobese men and women. Am. J. Physiol. 271, E965–E972 (1996).

    CAS  PubMed  Google Scholar 

  64. Moverare-Skrtic, S. et al. Dihydrotestosterone treatment results in obesity and altered lipid metabolism in orchidectomized mice. Obesity 14, 662–672 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Finkelstein, J. S. et al. Gonadal steroids and body composition, strength, and sexual function in men. N. Engl. J. Med. 369, 1011–1022 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Considine, R. V. et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334, 292–295 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Nishizawa, H. et al. Androgens decrease plasma adiponectin, an insulin-sensitizing adipocyte-derived protein. Diabetes 51, 2734–2741 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Lanfranco, F., Zitzmann, M., Simoni, M. & Nieschlag, E. Serum adiponectin levels in hypogonadal males: influence of testosterone replacement therapy. Clin. Endocrinol. 60, 500–507 (2004).

    Article  CAS  Google Scholar 

  69. Fan, W. et al. Androgen receptor null male mice develop late-onset obesity caused by decreased energy expenditure and lipolytic activity but show normal insulin sensitivity with high adiponectin secretion. Diabetes 54, 1000–1008 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Graham, T. E. Thermal, metabolic, and cardiovascular changes in men and women during cold stress. Med. Sci. Sports Exerc. 20, S185–S192 (1988).

    Article  CAS  PubMed  Google Scholar 

  71. Quevedo, S., Roca, P., Picó, C. & Palou, A. Sex-associated differences in cold-induced UCP1 synthesis in rodent brown adipose tissue. Pflug. Arch. 436, 689–695 (1998).

    Article  CAS  Google Scholar 

  72. Rodriguez-Cuenca, S. et al. Sex-dependent thermogenesis, differences in mitochondrial morphology and function, and adrenergic response in brown adipose tissue. J. Biol. Chem. 277, 42958–42963 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Gómez-García, I., Trepiana, J., Fernández-Quintela, A., Giralt, M. & Portillo, M. P. Sexual dimorphism in brown adipose tissue activation and white adipose tissue browning. Int. J. Mol. Sci. 23, 8250 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Nedergaard, J., Bengtsson, T. & Cannon, B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293, E444–E452 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Herz, C. T. et al. Sex differences in brown adipose tissue activity and cold-induced thermogenesis. Mol. Cell. Endocrinol. 534, 111365 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Nookaew, I. et al. Adipose tissue resting energy expenditure and expression of genes involved in mitochondrial function are higher in women than in men. J. Clin. Endocrinol. Metab. 98, E370–E378 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Fuller-Jackson, J. P., Dordevic, A. L., Clarke, I. J. & Henry, B. A. Effect of sex and sex steroids on brown adipose tissue heat production in humans. Eur. J. Endocrinol. 183, 343–355 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Whitfield, J. Everything you always wanted to know about sexes. PLoS Biol. 2, e183 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Birky, C. W. Jr. Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc. Natl Acad. Sci. USA 92, 11331–11338 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ventura-Clapier, R. et al. Mitochondria: a central target for sex differences in pathologies. Clin. Sci. 131, 803–822 (2017).

    Article  CAS  Google Scholar 

  82. Pinto, R. E. & Bartley, W. The nature of the sex-linked differences in glutathione peroxidase activity and aerobic oxidation of glutathione in male and female rat liver. Biochem. J. 115, 449–456 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Borrás, C. et al. Mitochondria from females exhibit higher antioxidant gene expression and lower oxidative damage than males. Free. Radic. Biol. Med. 34, 546–552 (2003).

    Article  PubMed  Google Scholar 

  84. Orr, W. C. & Sohal, R. S. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263, 1128–1130 (1994).

    Article  CAS  PubMed  Google Scholar 

  85. Kobayashi, A., Azuma, K., Ikeda, K. & Inoue, S. Mechanisms underlying the regulation of mitochondrial respiratory chain complexes by nuclear steroid receptors. Int. J. Mol. Sci. 21, 6683 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Klinge, C. M. Estrogenic control of mitochondrial function. Redox Biol. 31, 101435 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Beikoghli Kalkhoran, S. & Kararigas, G. Oestrogenic regulation of mitochondrial dynamics. Int. J. Mol. Sci. 23, 1118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Norheim, F. et al. Gene-by-sex interactions in mitochondrial functions and cardio-metabolic traits. Cell Metab. 29, 932–949.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Krishnan, K. C. et al. Sex-specific genetic regulation of adipose mitochondria and metabolic syndrome by Ndufv2. Nat. Metab. 3, 1552–1568 (2021).

    Article  PubMed Central  Google Scholar 

  90. Gannon, M., Kulkarni, R. N., Tse, H. M. & Mauvais-Jarvis, F. Sex differences underlying pancreatic islet biology and its dysfunction. Mol. Metab. 15, 82–91 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Navarro, G., Allard, C., Xu, W. & Mauvais-Jarvis, F. The role of androgens in metabolism, obesity, and diabetes in males and females. Obesity 23, 713–719 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Mauvais-Jarvis, F. Role of sex steroids in β cell function, growth, and survival. Trends Endocrinol. Metab. 27, 844–855 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mauvais-Jarvis, F. Sex differences in metabolic homeostasis, diabetes, and obesity. Biol. Sex. Differ. 6, 14 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Frias, J. P. et al. Decreased susceptibility to fatty acid-induced peripheral tissue insulin resistance in women. Diabetes 50, 1344–1350 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Nuutila, P. et al. Gender and insulin sensitivity in the heart and in skeletal muscles. Studies using positron emission tomography. Diabetes 44, 31–36 (1995).

    Article  CAS  PubMed  Google Scholar 

  96. Fonseca, V. Effect of thiazolidinediones on body weight in patients with diabetes mellitus. Am. J. Med. 115, 42s–48s (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Basu, R. et al. Effects of age and sex on postprandial glucose metabolism: differences in glucose turnover, insulin secretion, insulin action, and hepatic insulin extraction. Diabetes 55, 2001–2014 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Hevener, A. L., Ribas, V., Moore, T. M. & Zhou, Z. ERα in the control of mitochondrial function and metabolic health. Trends Mol. Med. 27, 31–46 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. Allard, C. et al. Loss of nuclear and membrane estrogen receptor-α differentially impairs insulin secretion and action in male and female mice. Diabetes 68, 490–501 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. Mauvais-Jarvis, F., Manson, J. E., Stevenson, J. C. & Fonseca, V. A. Menopausal hormone therapy and type 2 diabetes prevention: evidence, mechanisms and clinical implications. Endocr. Rev. 38, 173–188 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Navarro, G. et al. Androgen excess in pancreatic β cells and neurons predisposes female mice to type 2 diabetes. JCI Insight 3, e98607 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Andrisse, S. et al. Androgen-induced insulin resistance is ameliorated by deletion of hepatic androgen receptor in females. FASEB J. 35, e21921 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Haider, N. et al. Signaling defects associated with insulin resistance in nondiabetic and diabetic individuals and modification by sex. J. Clin. Invest. 131, e151818 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Xu, W., Morford, J. & Mauvais-Jarvis, F. Emerging role of testosterone in pancreatic β-cell function and insulin secretion. J. Endocrinol. 240, R97–R105 (2019).

    Article  CAS  Google Scholar 

  105. Tiano, J. P. & Mauvais-Jarvis, F. Importance of oestrogen receptors to preserve functional β-cell mass in diabetes. Nat. Rev. Endocrinol. 8, 342–351 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Merimee, T. J. & Tyson, J. E. Stabilization of plasma glucose during fasting; normal variations in two separate studies. N. Engl. J. Med. 291, 1275–1278 (1974).

    Article  CAS  PubMed  Google Scholar 

  107. Heras, V. et al. Central ceramide signaling mediates obesity-induced precocious puberty. Cell Metab. 32, 951–966.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Kelly, T., Yang, W., Chen, C. S., Reynolds, K. & He, J. Global burden of obesity in 2005 and projections to 2030. Int. J. Obes. 32, 1431–1437 (2008).

    Article  CAS  Google Scholar 

  109. Ford, E. S., Giles, W. H. & Mokdad, A. H. Increasing prevalence of the metabolic syndrome among U.S. adults. Diabetes Care 27, 2444–2449 (2004).

    Article  PubMed  Google Scholar 

  110. Al-Lawati, J. A., Mohammed, A. J., Al-Hinai, H. Q. & Jousilahti, P. Prevalence of the metabolic syndrome among Omani adults. Diabetes Care 26, 1781–1785 (2003).

    Article  PubMed  Google Scholar 

  111. Gu, D. et al. Prevalence of the metabolic syndrome and overweight among adults in China. Lancet 365, 1398–1405 (2005).

    Article  PubMed  Google Scholar 

  112. Gupta, R. et al. Prevalence of metabolic syndrome in an Indian urban population. Int. J. Cardiol. 97, 257–261 (2004).

    Article  PubMed  Google Scholar 

  113. O’Sullivan, A. J., Hoffman, D. M. & Ho, K. K. Estrogen, lipid oxidation, and body fat. N. Engl. J. Med. 333, 669–670 (1995).

    Article  PubMed  Google Scholar 

  114. Walsh, B. W. et al. Effects of postmenopausal estrogen replacement on the concentrations and metabolism of plasma lipoproteins. N. Engl. J. Med. 325, 1196–1204 (1991).

    Article  CAS  PubMed  Google Scholar 

  115. Chella Krishnan, K. et al. Liver pyruvate kinase promotes NAFLD/NASH in both mice and humans in a sex-specific manner. Cell Mol. Gastroenterol. Hepatol. 11, 389–406 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Dynamic RNA modifications in gene expression regulation. Cell 169, 1187–1200 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Meyer, K. D. & Jaffrey, S. R. The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat. Rev. Mol. Cell Biol. 15, 313–326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zaccara, S., Ries, R. J. & Jaffrey, S. R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 20, 608–624 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Salisbury, D. A. et al. Transcriptional regulation of N6-methyladenosine orchestrates sex-dimorphic metabolic traits. Nat. Metab. 3, 940–953 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nikkanen, J. et al. An evolutionary trade-off between host immunity and metabolism drives fatty liver in male mice. Science 378, 290–295 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hong, J., Stubbins, R. E., Smith, R. R., Harvey, A. E. & Núñez, N. P. Differential susceptibility to obesity between male, female and ovariectomized female mice. Nutr. J. 8, 11 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Karp, C. L. Unstressing intemperate models: how cold stress undermines mouse modeling. J. Exp. Med. 209, 1069–1074 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Maloney, S. K., Fuller, A., Mitchell, D., Gordon, C. & Overton, J. M. Translating animal model research: does it matter that our rodents are cold. Physiology 29, 413–420 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Stemmer, K. et al. Thermoneutral housing is a critical factor for immune function and diet-induced obesity in C57BL/6 nude mice. Int. J. Obes. 39, 791–797 (2015).

    Article  CAS  Google Scholar 

  125. Bowers, S. L., Bilbo, S. D., Dhabhar, F. S. & Nelson, R. J. Stressor-specific alterations in corticosterone and immune responses in mice. Brain Behav. Immun. 22, 105–113 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Giles, D. A. et al. Thermoneutral housing exacerbates nonalcoholic fatty liver disease in mice and allows for sex-independent disease modeling. Nat. Med. 23, 829–838 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Seeley, R. J. & MacDougald, O. A. Mice as experimental models for human physiology: when several degrees in housing temperature matter. Nat. Metab. 3, 443–445 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Glumer, C., Jorgensen, T. & Borch-Johnsen, K. Prevalences of diabetes and impaired glucose regulation in a Danish population: the Inter99 study. Diabetes Care 26, 2335–2340 (2003).

    Article  PubMed  Google Scholar 

  129. Sicree, R. A. et al. Differences in height explain gender differences in the response to the oral glucose tolerance test – the AusDiab study. Diabet. Med. 25, 296–302 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. van Genugten, R. E. et al. Effects of sex and hormone replacement therapy use on the prevalence of isolated impaired fasting glucose and isolated impaired glucose tolerance in subjects with a family history of type 2 diabetes. Diabetes 55, 3529–3535 (2006).

    Article  PubMed  Google Scholar 

  131. Williams, J. W. et al. Gender differences in the prevalence of impaired fasting glycaemia and impaired glucose tolerance in Mauritius. Does sex matter? Diabet. Med. 20, 915–920 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Wild, S., Roglic, G., Green, A., Sicree, R. & King, H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27, 1047–1053 (2004).

    Article  PubMed  Google Scholar 

  133. Mauvais-Jarvis, F. et al. Ketosis-prone type 2 diabetes in patients of sub-Saharan African origin: clinical pathophysiology and natural history of β-cell dysfunction and insulin resistance. Diabetes 53, 645–653 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Umpierrez, G. E., Smiley, D. & Kitabchi, A. E. Narrative review: ketosis-prone type 2 diabetes mellitus. Ann. Intern. Med. 144, 350–357 (2006).

    Article  PubMed  Google Scholar 

  135. Louet, J. F. et al. Gender and neurogenin3 influence the pathogenesis of ketosis-prone diabetes. Diabetes, Obes. Metab. 10, 912–920 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Perreault, L. et al. Sex differences in diabetes risk and the effect of intensive lifestyle modification in the Diabetes Prevention Program. Diabetes Care 31, 1416–1421 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wannamethee, S. G. et al. Do women exhibit greater differences in established and novel risk factors between diabetes and non-diabetes than men? The British Regional Heart Study and British Women’s Heart Health Study. Diabetologia 55, 80–87 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Peters, S. A., Huxley, R. R., Sattar, N. & Woodward, M. Sex differences in the excess risk of cardiovascular diseases associated with type 2 diabetes: potential explanations and clinical implications. Curr. Cardiovasc. Risk Rep. 9, 36 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Du, T. et al. Sex differences in cardiovascular risk profile from childhood to midlife between individuals who did and did not develop diabetes at follow-up: the Bogalusa Heart Study. Diabetes Care 42, 635–643 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Yoshida, Y. et al. Sex differences in the progression of metabolic risk factors in diabetes development. JAMA Netw. Open. 5, e2222070 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Mauvais-Jarvis, F. Sex differences in the pathogenesis of type 2 diabetes may explain the stronger impact of diabetes on atherosclerotic heart disease in women. J. Diabetes Complications 33, 460–461 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Ellegren, H. & Parsch, J. The evolution of sex-biased genes and sex-biased gene expression. Nat. Rev. Genet. 8, 689–698 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Fox, C. S. et al. Genome-wide association for abdominal subcutaneous and visceral adipose reveals a novel locus for visceral fat in women. PLoS Genet. 8, e1002695 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sung, Y. J. et al. Genome-wide association studies suggest sex-specific loci associated with abdominal and visceral fat. Int. J. Obes. 40, 662–674 (2016).

    Article  CAS  Google Scholar 

  145. Rifas, L. & Weitzmann, M. N. A novel T cell cytokine, secreted osteoclastogenic factor of activated T cells, induces osteoclast formation in a RANKL-independent manner. Arthritis Rheum. 60, 3324–3335 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kilpelainen, T. O. et al. Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile. Nat. Genet. 43, 753–760 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187–196 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bernabeu, E. et al. Sex differences in genetic architecture in the UK Biobank. Nat. Genet. 53, 1283–1289 (2021).

    Article  CAS  PubMed  Google Scholar 

  149. Waraich, R. S. & Mauvais-Jarvis, F. Paracrine and intracrine contributions of androgens and estrogens to adipose tissue biology: physiopathological aspects. Horm. Mol. Biol. Clin. Invest. 14, 49–55 (2013).

    CAS  Google Scholar 

  150. Xu, W. et al. Intracrine testosterone activation in human pancreatic β-cells stimulates insulin secretion. Diabetes 69, 2392–2399 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wei, L. et al. Incidence of type 2 diabetes mellitus in men receiving steroid 5α-reductase inhibitors: population based cohort study. BMJ 365, l1204 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Boszkiewicz, K., Piwowar, A. & Petryszyn, P. Aromatase inhibitors and risk of metabolic and cardiovascular adverse effects in breast cancer patients – a systematic review and meta-analysis. J. Clin. Med. 11, 3133 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Deslypere, J. P., Verdonck, L. & Vermeulen, A. Fat tissue: a steroid reservoir and site of steroid metabolism. J. Clin. Endocrinol. Metab. 61, 564–570 (1985).

    Article  CAS  PubMed  Google Scholar 

  154. Borg, W., Shackleton, C. H., Pahuja, S. L. & Hochberg, R. B. Long-lived testosterone esters in the rat. Proc. Natl Acad. Sci. USA 92, 1545–1549 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Mauvais-Jarvis, F. Estrogen sulfotransferase: intracrinology meets metabolic diseases. Diabetes 61, 1353–1354 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Gao, J. et al. Sex-specific effect of estrogen sulfotransferase on mouse models of type 2 diabetes. Diabetes 61, 1543–1551 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Laudet, V. Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor. J. Mol. Endocrinol. 19, 207–226 (1997).

    Article  CAS  PubMed  Google Scholar 

  158. Thornton, J. W., Need, E. & Crews, D. Resurrecting the ancestral steroid receptor: ancient origin of estrogen signaling. Science 301, 1714–1717 (2003).

    Article  CAS  PubMed  Google Scholar 

  159. Eick, G. N. & Thornton, J. W. Evolution of steroid receptors from an estrogen-sensitive ancestral receptor. Mol. Cell Endocrinol. 334, 31–38 (2011).

    Article  CAS  PubMed  Google Scholar 

  160. Bridgham, J. T., Carroll, S. M. & Thornton, J. W. Evolution of hormone-receptor complexity by molecular exploitation. Science 312, 97–101 (2006).

    Article  CAS  PubMed  Google Scholar 

  161. Carroll, S. M., Bridgham, J. T. & Thornton, J. W. Evolution of hormone signaling in elasmobranchs by exploitation of promiscuous receptors. Mol. Biol. Evol. 25, 2643–2652 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Markov, G. V. et al. Independent elaboration of steroid hormone signaling pathways in metazoans. Proc. Natl Acad. Sci. USA 106, 11913–11918 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Corbier, P., Edwards, D. A. & Roffi, J. The neonatal testosterone surge: a comparative study. Arch. Int. Physiol. Biochim. Biophys. 100, 127–131 (1992).

    CAS  PubMed  Google Scholar 

  164. Siiteri, P. K. & Wilson, J. D. Testosterone formation and metabolism during male sexual differentiation in the human embryo. J. Clin. Endocrinol. Metab. 38, 113–125 (1974).

    Article  CAS  PubMed  Google Scholar 

  165. Arnold, A. P. & Gorski, R. A. Gonadal steroid induction of structural sex differences in the central nervous system. Annu. Rev. Neurosci. 7, 413–442 (1984).

    Article  CAS  PubMed  Google Scholar 

  166. MacLusky, N. J. & Naftolin, F. Sexual differentiation of the central nervous system. Science 211, 1294–1302 (1981).

    Article  CAS  PubMed  Google Scholar 

  167. Simerly, R. B. Wired for reproduction: organization and development of sexually dimorphic circuits in the mammalian forebrain. Annu. Rev. Neurosci. 25, 507–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  168. Morris, J. A., Jordan, C. L. & Breedlove, S. M. Sexual differentiation of the vertebrate nervous system. Nat. Neurosci. 7, 1034–1039 (2004).

    Article  CAS  PubMed  Google Scholar 

  169. Negri-Cesi, P. et al. Sexual differentiation of the rodent hypothalamus: hormonal and environmental influences. J. Steroid Biochem. Mol. Biol. 109, 294–299 (2008).

    Article  CAS  PubMed  Google Scholar 

  170. Wu, M. V. et al. Estrogen masculinizes neural pathways and sex-specific behaviors. Cell 139, 61–72 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Mauvais-Jarvis, F. Developmental androgenization programs metabolic dysfunction in adult mice: clinical implications. Adipocyte 3, 151–154 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Nohara, K. et al. Developmental androgen excess programs sympathetic tone and adipose tissue dysfunction and predisposes to a cardiometabolic syndrome in female mice. Am. J. Physiol. Endocrinol. Metab. 304, E1321–E1330 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Nohara, K. et al. Early-life exposure to testosterone programs the hypothalamic melanocortin system. Endocrinology 152, 1661–1669 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Alexanderson, C. et al. Postnatal testosterone exposure results in insulin resistance, enlarged mesenteric adipocytes, and an atherogenic lipid profile in adult female rats: comparisons with estradiol and dihydrotestosterone. Endocrinology 148, 5369–5376 (2007).

    Article  CAS  PubMed  Google Scholar 

  175. Barnes, R. B. et al. Ovarian hyperandrogynism as a result of congenital adrenal virilizing disorders: evidence for perinatal masculinization of neuroendocrine function in women. J. Clin. Endocrinol. Metab. 79, 1328–1333 (1994).

    CAS  PubMed  Google Scholar 

  176. Eisner, J. R., Dumesic, D. A., Kemnitz, J. W., Colman, R. J. & Abbott, D. H. Increased adiposity in female rhesus monkeys exposed to androgen excess during early gestation. Obes. Res. 11, 279–286 (2003).

    Article  PubMed  Google Scholar 

  177. Hague, W. M. et al. The prevalence of polycystic ovaries in patients with congenital adrenal hyperplasia and their close relatives. Clin. Endocrinol. 33, 501–510 (1990).

    Article  CAS  Google Scholar 

  178. Nilsson, C., Niklasson, M., Eriksson, E., Bjorntorp, P. & Holmang, A. Imprinting of female offspring with testosterone results in insulin resistance and changes in body fat distribution at adult age in rats. J. Clin. Invest. 101, 74–78 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Reizel, Y. et al. Gender-specific postnatal demethylation and establishment of epigenetic memory. Genes. Dev. 29, 923–933 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Solomon, O. et al. Meta-analysis of epigenome-wide association studies in newborns and children show widespread sex differences in blood DNA methylation. Mutat. Res. Rev. Mutat. Res. 789, 108415 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Burgoyne, P. S. A Y-chromosomal effect on blastocyst cell number in mice. Development 117, 341–345 (1993).

    Article  CAS  PubMed  Google Scholar 

  182. Ray, P. F., Conaghan, J., Winston, R. M. & Handyside, A. H. Increased number of cells and metabolic activity in male human preimplantation embryos following in vitro fertilization. J. Reprod. Fertil. 104, 165–171 (1995).

    Article  CAS  PubMed  Google Scholar 

  183. Zore, T., Palafox, M. & Reue, K. Sex differences in obesity, lipid metabolism, and inflammation–a role for the sex chromosomes? Mol. Metab. 15, 35–44 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Mauvais-Jarvis, F., Arnold, A. P. & Reue, K. A guide for the design of pre-clinical studies on sex differences in metabolism. Cell Metab. 25, 1216–1230 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Chen, X. et al. The number of X chromosomes causes sex differences in adiposity in mice. PLoS Genet. 8, e1002709 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Link, J. C. et al. X chromosome dosage of histone demethylase KDM5C determines sex differences in adiposity. J. Clin. Invest. 130, 5688–5702 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Chen, X., McClusky, R., Itoh, Y., Reue, K. & Arnold, A. P. X and Y chromosome complement influence adiposity and metabolism in mice. Endocrinology 154, 1092–1104 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Arnold, A. P. & Lusis, A. J. Understanding the sexome: measuring and reporting sex differences in gene systems. Endocrinology 153, 2551–2555 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Donnelly, L. A., Doney, A. S., Hattersley, A. T., Morris, A. D. & Pearson, E. R. The effect of obesity on glycaemic response to metformin or sulphonylureas in type 2 diabetes. Diabet. Med. 23, 128–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  190. Kim, Y. M. et al. Predictive clinical parameters for therapeutic efficacy of rosiglitazone in Korean type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 67, 43–52 (2005).

    Article  CAS  PubMed  Google Scholar 

  191. Wilding, J. P., Overgaard, R. V., Jacobsen, L. V., Jensen, C. B. & le Roux, C. W. Exposure-response analyses of liraglutide 3.0 mg for weight management. Diabetes Obes. Metab. 18, 491–499 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Mauvais-Jarvis, F. et al. Sex- and gender-based pharmacological response to drugs. Pharmacol. Rev. 73, 730–762 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author’s work is supported by National Institutes of Health grant DK074970, Department of Veterans Affairs Merit Awards BX003725 and BX005218, and the Tulane Center of Excellence in Sex-Based Biology & Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Mauvais-Jarvis.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Aldons Lusis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mauvais-Jarvis, F. Sex differences in energy metabolism: natural selection, mechanisms and consequences. Nat Rev Nephrol 20, 56–69 (2024). https://doi.org/10.1038/s41581-023-00781-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-023-00781-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing