Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clonal haematopoiesis, ageing and kidney disease

Abstract

Clonal haematopoiesis of indeterminate potential (CHIP) is a preclinical condition wherein a sizeable proportion of an individual’s circulating blood cells are derived from a single mutated haematopoietic stem cell. CHIP occurs frequently with ageing — more than 10% of individuals over 65 years of age are affected — and is associated with an increased risk of disease across several organ systems and premature death. Emerging evidence suggests that CHIP has a role in kidney health, including associations with predisposition to acute kidney injury, impaired recovery from acute kidney injury and kidney function decline, both in the general population and among those with chronic kidney disease. Beyond its direct effect on the kidney, CHIP elevates the susceptibility of individuals to various conditions that can detrimentally affect the kidneys, including cardiovascular disease, obesity and insulin resistance, liver disease, gout, osteoporosis and certain autoimmune diseases. Aberrant pro-inflammatory signalling, telomere attrition and epigenetic ageing are potential causal pathophysiological pathways and mediators that underlie CHIP-related disease risk. Experimental animal models have shown that inhibition of inflammatory cytokine signalling can ameliorate many of the pathological effects of CHIP, and assessment of the efficacy and safety of this class of medications for human CHIP-associated pathology is ongoing.

Key points

  • Clonal haematopoiesis of indeterminate potential (CHIP) is a common, acquired condition wherein mutated white blood cells form an expanded clonal population in the blood and cause chronic organ damage through dysregulated inflammation.

  • CHIP has been associated with a greater risk of acute kidney injury (AKI) and impaired recovery from AKI in human population cohorts and in mouse models, as well as loss of kidney function in the general population and in those with chronic kidney disease.

  • In addition to its direct effects on the kidney, CHIP predisposes individuals to several conditions that impact kidney health, including cardiovascular disease, gout, osteoporosis and insulin resistance.

  • CHIP affects 10–20% of individuals aged 65 and older; other than age, risk factors include smoking, male sex, chronic inflammation, cytotoxic therapies and certain inherited genetic variants.

  • In preclinical models, cytokine blockade strategies mitigate many of the pathological effects of CHIP; these strategies are being evaluated in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Subtypes of clonal haematopoiesis.
Fig. 2: The spectrum of clonal myeloid disease.
Fig. 3: CHIP mouse model systems.
Fig. 4: Conceptual model of the role of CHIP in kidney health.

Similar content being viewed by others

References

  1. Cagan, A. et al. Somatic mutation rates scale with lifespan across mammals. Nature 604, 517–524 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  2. Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538, 260–264 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  3. Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041.e21 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Martincorena, I. et al. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  5. Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. Science 362, 911–917 (2018).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  6. Lee-Six, H. et al. The landscape of somatic mutation in normal colorectal epithelial cells. Nature 574, 532–537 (2019).

    CAS  PubMed  ADS  Google Scholar 

  7. Lawson, A. R. J. et al. Extensive heterogeneity in somatic mutation and selection in the human bladder. Science 370, 75–82 (2020).

    CAS  PubMed  ADS  Google Scholar 

  8. Yoshida, K. et al. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature 578, 266–272 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. Moore, L. et al. The mutational landscape of human somatic and germline cells. Nature 597, 381–386 (2021).

    CAS  PubMed  ADS  Google Scholar 

  10. Mustjoki, S. & Young, N. S. Somatic mutations in “benign” disease. N. Engl. J. Med. 384, 2039–2052 (2021).

    CAS  PubMed  Google Scholar 

  11. Beck, D. B. et al. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N. Engl. J. Med. 383, 2628–2638 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Anglesio, M. S. et al. Cancer-associated mutations in endometriosis without cancer. N. Engl. J. Med. 376, 1835–1848 (2017).

    PubMed  PubMed Central  Google Scholar 

  13. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).

    PubMed  PubMed Central  Google Scholar 

  14. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    PubMed  PubMed Central  Google Scholar 

  15. Mass, E., Nimmerjahn, F., Kierdorf, K. & Schlitzer, A. Tissue-specific macrophages: how they develop and choreograph tissue biology. Nat. Rev. Immunol. 23, 563–579 (2023).

    CAS  PubMed  Google Scholar 

  16. Mitchell, E. et al. Clonal dynamics of haematopoiesis across the human lifespan. Nature 606, 343–350 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Niroula, A. et al. Distinction of lymphoid and myeloid clonal hematopoiesis. Nat. Med. 27, 1921–1927 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, A. et al. Population analyses of mosaic X chromosome loss identify genetic drivers and widespread signatures of cellular selection. Preprint at medRxiv https://www.medrxiv.org/content/10.1101/2023.01.28.23285140v1 (2023).

  19. Thompson, D. J. et al. Genetic predisposition to mosaic Y chromosome loss in blood. Nature 575, 652–657 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Haitjema, S. et al. Loss of Y chromosome in blood is associated with major cardiovascular events during follow-up in men after carotid endarterectomy. Circ. Cardiovasc. Genet. 10, e001544 (2017).

    CAS  PubMed  Google Scholar 

  21. Sano, S. et al. Hematopoietic loss of Y chromosome leads to cardiac fibrosis and heart failure mortality. Science 377, 292–297 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Stewart, B. J. et al. Spatiotemporal immune zonation of the human kidney. Science 365, 1461–1466 (2019).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  23. Vlasschaert, C., Moran, S. M. & Rauh, M. J. The myeloid–kidney interface in health and disease. CJASN 17, 323–331 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Nikolich-Žugich, J. The twilight of immunity: emerging concepts in aging of the immune system. Nat. Immunol. 19, 10–19 (2018).

    PubMed  Google Scholar 

  25. Zhang, H., Weyand, C. M. & Goronzy, J. J. Hallmarks of the aging T-cell system. FEBS J. 288, 7123–7142 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. de Mol, J., Kuiper, J., Tsiantoulas, D. & Foks, A. C. The dynamics of B cell aging in health and disease. Front. Immunol. 12, 733566 (2021).

    PubMed  PubMed Central  Google Scholar 

  27. Mogilenko, D. A., Shchukina, I. & Artyomov, M. N. Immune ageing at single-cell resolution. Nat. Rev. Immunol. 22, 484–498 (2022).

    CAS  PubMed  Google Scholar 

  28. Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yousefzadeh, M. J. et al. An aged immune system drives senescence and ageing of solid organs. Nature 594, 100–105 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. Buscarlet, M. et al. Lineage restriction analyses in CHIP indicate myeloid bias for TET2 and multipotent stem cell origin for DNMT3A. Blood 132, 277–280 (2018).

    CAS  PubMed  Google Scholar 

  31. Arends, C. M. et al. Hematopoietic lineage distribution and evolutionary dynamics of clonal hematopoiesis. Leukemia 32, 1908–1919 (2018).

    CAS  PubMed  Google Scholar 

  32. Fuster, J. J. et al. TET2-loss-of-function-driven clonal hematopoiesis exacerbates experimental insulin resistance in aging and obesity. Cell Rep. 33, 108326 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Nam, A. S. et al. Single-cell multi-omics of human clonal hematopoiesis reveals that DNMT3A R882 mutations perturb early progenitor states through selective hypomethylation. Nat. Genet. 54, 1514–1526 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Rossi, D. J. et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc. Natl Acad. Sci. USA 102, 9194–9199 (2005).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. Beerman, I. et al. Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc. Natl Acad. Sci. USA 107, 5465–5470 (2010).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. Pang, W. W. et al. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc. Natl Acad. Sci. USA 108, 20012–20017 (2011).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Cull, A. H., Snetsinger, B., Buckstein, R., Wells, R. A. & Rauh, M. J. Tet2 restrains inflammatory gene expression in macrophages. Exp. Hematol. 55, 56–70.e13 (2017).

    CAS  PubMed  Google Scholar 

  38. Jaiswal, S. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377, 111–121 (2017).

    PubMed  PubMed Central  Google Scholar 

  39. Fuster, J. J. et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355, 842–847 (2017).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  40. Sano, S. et al. CRISPR-mediated gene editing to assess the roles of Tet2 and Dnmt3a in clonal hematopoiesis and cardiovascular disease. Circ. Res. 123, 335–341 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Cai, Z. et al. Inhibition of inflammatory signaling in Tet2 mutant preleukemic cells mitigates stress-induced abnormalities and clonal hematopoiesis. Cell Stem Cell 23, 833–849.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sano, S. et al. JAK2 V617F-mediated clonal hematopoiesis accelerates pathological remodeling in murine heart failure. JACC Basic. Transl. Sci. 4, 684–697 (2019).

    PubMed  PubMed Central  Google Scholar 

  43. Abplanalp, W. T. et al. Association of clonal hematopoiesis of indeterminate potential with inflammatory gene expression in patients with severe degenerative aortic valve stenosis or chronic postischemic heart failure. JAMA Cardiol. 5, 1170–1175 (2020).

    PubMed  Google Scholar 

  44. Abplanalp, W. T. et al. Clonal hematopoiesis-driver DNMT3A mutations alter immune cells in heart failure. Circ. Res. 128, 216–228 (2021).

    CAS  PubMed  Google Scholar 

  45. Agrawal, M. et al. TET2-mutant clonal hematopoiesis and risk of gout. Blood 140, 1094–1103 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, Q. et al. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature 525, 389–393 (2015).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  47. Cobo, I. et al. DNA methyltransferase 3 alpha and TET methylcytosine dioxygenase 2 restrain mitochondrial DNA-mediated interferon signaling in macrophages. Immunity 55, 1386–1401.e10 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Cook, E. K. et al. Impact of Tet2 deficiency, and of TET2 mutations in clonal hematopoiesis, on neutrophil/granulocyte immune function. Blood 138, 2159 (2021).

    Google Scholar 

  49. von Beck, K., von Beck, T., Ferrell, P. B., Bick, A. G. & Kishtagari, A. Lymphoid clonal hematopoiesis: implications for malignancy, immunity, and treatment. Blood Cancer J. 13, 5 (2023).

    Google Scholar 

  50. Moran-Crusio, K. et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20, 11–24 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hormaechea-Agulla, D. et al. Chronic infection drives Dnmt3a-loss-of-function clonal hematopoiesis via IFNγ signaling. Cell Stem Cell 28, 1428–1442 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zioni, N. et al. Inflammatory signals from fatty bone marrow support DNMT3A driven clonal hematopoiesis. Nat. Commun. 14, 2070 (2023).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  53. Challen, G. A. & Goodell, M. A. Clonal hematopoiesis: mechanisms driving dominance of stem cell clones. Blood 136, 1590–1598 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Avagyan, S. et al. Resistance to inflammation underlies enhanced fitness in clonal hematopoiesis. Science 374, 768–772 (2021).

    CAS  PubMed  ADS  Google Scholar 

  55. Caiado, F. et al. Aging drives Tet2+/− clonal hematopoiesis via IL-1 signaling. Blood 141, 886–903 (2023).

    CAS  PubMed  Google Scholar 

  56. Arber, D. A. et al. International consensus classification of myeloid neoplasms and acute leukemias: integrating morphologic, clinical, and genomic data. Blood 140, 1200–1228 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Khoury, J. D. et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia 36, 1703–1719 (2022).

    PubMed  PubMed Central  Google Scholar 

  58. Steensma, D. P. et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 126, 9–16 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Vlasschaert, C. et al. A practical approach to curate clonal hematopoiesis of indeterminate potential in human genetic datasets. Blood 141, 2214–2223 (2023).

    CAS  PubMed  Google Scholar 

  60. Turesson, I. et al. Monoclonal gammopathy of undetermined significance and risk of lymphoid and myeloid malignancies: 728 cases followed up to 30 years in Sweden. Blood 123, 338–345 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kyle, R. A. et al. Long-term follow-up of monoclonal gammopathy of undetermined significance. N. Engl. J. Med. 378, 241–249 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. D’Souza, A. & Costa, L. J. MGIP, MGUS, and the PROMISE of meaning in small things. Lancet Haematol. 9, e315–e317 (2022).

    PubMed  Google Scholar 

  63. Weeks, L. D. et al. Prediction of risk for myeloid malignancy in clonal hematopoiesis. NEJM Evid. 2, EVIDoa2200310 (2023).

    Google Scholar 

  64. Bick, A. G. et al. Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature 586, 763–768 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  65. Fairchild, L. et al. Clonal hematopoiesis detection in patients with cancer using cell-free DNA sequencing. Sci. Transl. Med. 15, eabm8729 (2023).

    CAS  PubMed  Google Scholar 

  66. Wong, W. J. et al. Clonal haematopoiesis and risk of chronic liver disease. Nature 616, 747–754 (2023).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  67. Gao, L. et al. Comprehensive structure-function characterization of DNMT3B and DNMT3A reveals distinctive de novo DNA methylation mechanisms. Nat. Commun. 11, 3355 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  68. Anteneh, H., Fang, J. & Song, J. Structural basis for impairment of DNA methylation by the DNMT3A R882H mutation. Nat. Commun. 11, 2294 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  69. Abdel-Wahab, O. et al. ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell 22, 180–193 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Coombs, C. C. et al. Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and impacts clinical outcome. Cell Stem Cell 21, 374–382.e4 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Fabre, M. A. et al. The longitudinal dynamics and natural history of clonal haematopoiesis. Nature 606, 335–342 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  72. Levine, R. L., Pardanani, A., Tefferi, A. & Gilliland, D. G. Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders. Nat. Rev. Cancer 7, 673–683 (2007).

    CAS  PubMed  Google Scholar 

  73. Dawoud, A. A. Z., Gilbert, R. D., Tapper, W. J. & Cross, N. C. P. Clonal myelopoiesis promotes adverse outcomes in chronic kidney disease. Leukemia 36, 507–515 (2022).

    CAS  PubMed  Google Scholar 

  74. Kestenbaum, B. et al. Clonal hematopoiesis of indeterminate potential and kidney function decline in the general population. Am. J. Kidney Dis. 81, 329–335 (2023).

    CAS  PubMed  Google Scholar 

  75. Larsen, M. K. et al. Clonal haematopoiesis of indeterminate potential and impaired kidney function—a Danish general population study with 11 years follow-up. Eur. J. Haematol. 109, 576–585 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Vlasschaert, C. et al. Association of clonal hematopoiesis of indeterminate potential with worse kidney function and anemia in two cohorts of patients with advanced chronic kidney disease. J. Am. Soc. Nephrol. 33, 985–995 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Denicolò, S. et al. Clonal hematopoiesis of indeterminate potential and diabetic kidney disease: a nested case–control study. Kidney Int. Rep. 7, 876–888 (2022).

    PubMed  PubMed Central  Google Scholar 

  78. Vlasschaert, C., Rauh, M. J. & Lanktree, M. B. Response to: “Clonal hematopoiesis of indeterminate potential and diabetic kidney disease: a nested case-control study”. Kidney Int. Rep. 7, 2543 (2022).

    PubMed  PubMed Central  Google Scholar 

  79. Vlasschaert, C. et al. Clonal hematopoiesis of indeterminate potential is associated with acute kidney injury. Preprint at medRxiv https://www.medrxiv.org/content/10.1101/2023.05.16.23290051v1 (2023).

  80. Hsu, C.-Y. et al. Post-acute kidney injury proteinuria and subsequent kidney disease progression: the Assessment, Serial Evaluation, and Subsequent Sequelae in Acute Kidney Injury (ASSESS-AKI) study. JAMA Intern. Med. 180, 402–410 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang, Y. et al. Murine models of clonal haematopoiesis to assess mechanisms of cardiovascular disease. Cardiovasc. Res. 118, 1413–1432 (2021).

    PubMed Central  Google Scholar 

  82. Wang, Y. et al. Tet2-mediated clonal hematopoiesis in nonconditioned mice accelerates age-associated cardiac dysfunction. JCI Insight 5, e135204 (2020).

    PubMed  PubMed Central  Google Scholar 

  83. Jaiswal, S. & Libby, P. Clonal haematopoiesis: connecting ageing and inflammation in cardiovascular disease. Nat. Rev. Cardiol. 17, 137–144 (2020).

    PubMed  Google Scholar 

  84. Heimlich, J. B. et al. Clonal hematopoiesis of indeterminate potential status is associated with left main artery stenosis. Preprint at medRxiv https://www.medrxiv.org/content/10.1101/2023.02.10.23285708v1 (2023).

  85. Zekavat, S. M. et al. TP53-mediated clonal hematopoiesis confers increased risk for incident atherosclerotic disease. Nat. Cardiovasc. Res. 2, 144–158 (2023).

    PubMed  PubMed Central  Google Scholar 

  86. Bhattacharya, R. et al. Clonal hematopoiesis is associated with higher risk of stroke. Stroke 53, 788–797 (2022).

    CAS  PubMed  Google Scholar 

  87. Arends, C. M. et al. Associations of clonal hematopoiesis with recurrent vascular events and death in patients with incident ischemic stroke. Blood 141, 787–799 (2023).

    CAS  PubMed  Google Scholar 

  88. Gumuser, E. D. et al. Clonal hematopoiesis of indeterminate potential predicts adverse outcomes in patients with atherosclerotic cardiovascular disease. J. Am. Coll. Cardiol. 81, 1996–2009 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Yu, B. et al. Supplemental association of clonal hematopoiesis with incident heart failure. J. Am. Coll. Cardiol. 78, 42–52 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Dorsheimer, L. et al. Association of mutations contributing to clonal hematopoiesis with prognosis in chronic ischemic heart failure. JAMA Cardiol. 4, 25–33 (2019).

    PubMed  Google Scholar 

  91. Cremer, S. et al. Multiple somatic mutations for clonal hematopoiesis are associated with increased mortality in patients with chronic heart failure. Circ. Genom. Precis. Med. 13, e003003 (2020).

    PubMed  Google Scholar 

  92. Pascual-Figal, D. A. et al. Clonal hematopoiesis and risk of progression of heart failure with reduced left ventricular ejection fraction. J. Am. Coll. Cardiol. 77, 1747–1759 (2021).

    PubMed  Google Scholar 

  93. Mas-Peiro, S. et al. Clonal haematopoiesis in patients with degenerative aortic valve stenosis undergoing transcatheter aortic valve implantation. Eur. Heart J. 41, 933–939 (2020).

    CAS  PubMed  Google Scholar 

  94. Mas-Peiro, S. et al. Long-term risk associated with clonal hematopoiesis in patients with severe aortic valve stenosis undergoing TAVR. Clin. Res. Cardiol. 112, 585–593 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Nakao, T. et al. Increased risk of thoracic aortic aneurysms with JAK2 V617F. J. Am. Coll. Cardiol. 81, 2128–2130 (2023).

    CAS  PubMed  Google Scholar 

  96. Sano, S. et al. TP53-mediated therapy-related clonal hematopoiesis contributes to doxorubicin-induced cardiomyopathy by augmenting a neutrophil-mediated cytotoxic response. JCI Insight 6, 146076 (2021).

    Google Scholar 

  97. Nakao, T. et al. Mendelian randomization supports bidirectional causality between telomere length and clonal hematopoiesis of indeterminate potential. Sci. Adv. 8, eabl6579 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Nachun, D. et al. Clonal hematopoiesis associated with epigenetic aging and clinical outcomes. Aging Cell 20, e13366 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Sano, S. et al. Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome. J. Am. Coll. Cardiol. 71, 875–886 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    CAS  PubMed  Google Scholar 

  101. Svensson, E. C. et al. TET2-driven clonal hematopoiesis and response to canakinumab: an exploratory analysis of the CANTOS randomized clinical trial. JAMA Cardiol. 7, 521–528 (2022).

    PubMed  PubMed Central  Google Scholar 

  102. Fidler, T. P. et al. The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature 592, 296–301 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  103. Wang, W. et al. Macrophage inflammation, erythrophagocytosis, and accelerated atherosclerosis in Jak2 V617F mice. Circ. Res. 123, e35–e47 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Yura, Y. et al. The cancer therapy-related clonal hematopoiesis driver gene Ppm1d promotes inflammation and non-ischemic heart failure in mice. Circ. Res. 129, 684–698 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Rauch, P. J. et al. Loss-of-function mutations in Dnmt3a and Tet2 lead to accelerated atherosclerosis and concordant macrophage phenotypes. Nat. Cardiovasc. Res. 2, 805–818 (2023).

    Google Scholar 

  106. Bick, A. G. et al. Genetic interleukin 6 signaling deficiency attenuates cardiovascular risk in clonal hematopoiesis. Circulation 141, 124–131 (2020).

    CAS  PubMed  Google Scholar 

  107. Vlasschaert, C., Heimlich, J. B., Rauh, M. J., Natarajan, P. & Bick, A. G. Interleukin-6 receptor polymorphism attenuates clonal hematopoiesis-mediated coronary artery disease risk among 451 180 individuals in the UK Biobank. Circulation 147, 358–360 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Heimlich, J. B. et al. Mutated cells mediate distinct inflammatory responses in clonal hematopoiesis. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/2022.12.01.518580v2 (2022).

  109. O’Sullivan, R. J. & Karlseder, J. Telomeres: protecting chromosomes against genome instability. Nat. Rev. Mol. Cell Biol. 11, 171–181 (2010).

    PubMed  PubMed Central  Google Scholar 

  110. Benetos, A. & Aviv, A. Ancestry, telomere length, and atherosclerosis risk. Circ. Cardiovasc. Genet. 10, e001718 (2017).

    PubMed  PubMed Central  Google Scholar 

  111. Ameh, O. I., Okpechi, I. G., Dandara, C. & Kengne, A.-P. Association between telomere length, chronic kidney disease, and renal traits: a systematic review. OMICS 21, 143–155 (2017).

    CAS  PubMed  Google Scholar 

  112. Cheng, F. et al. Shortened leukocyte telomere length is associated with glycemic progression in type 2 diabetes: a prospective and Mendelian randomization analysis. Diabetes Care 45, 701–709 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. DeBoy, E. A. et al. Familial clonal hematopoiesis in a long telomere syndrome. N. Engl. J. Med. 388, 2422–2433 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Kar, S. P. et al. Genome-wide analyses of 200,453 individuals yield new insights into the causes and consequences of clonal hematopoiesis. Nat. Genet. 54, 1155–1166 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Roetker, N. S., Pankow, J. S., Bressler, J., Morrison, A. C. & Boerwinkle, E. A prospective study of epigenetic age acceleration and incidence of cardiovascular disease outcomes in the atherosclerosis risk in communities (ARIC) study. Circ. Genom. Precis. Med. 11, e001937 (2018).

    PubMed  PubMed Central  Google Scholar 

  116. Joyce, B. T. et al. Epigenetic age acceleration reflects long-term cardiovascular health. Circ. Res. 129, 770–781 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Yusipov, I. et al. Accelerated epigenetic aging and inflammatory/immunological profile (ipAGE) in patients with chronic kidney disease. GeroScience 44, 817–834 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Pan, Y. et al. Effects of epigenetic age acceleration on kidney function: a Mendelian randomization study. Clin. Epigenetics 15, 61 (2023).

    PubMed  PubMed Central  Google Scholar 

  119. Robertson, N. A. et al. Age-related clonal haemopoiesis is associated with increased epigenetic age. Curr. Biol. 29, R786–R787 (2019).

    CAS  PubMed  Google Scholar 

  120. Uddin, M. D. M. et al. Clonal hematopoiesis of indeterminate potential, DNA methylation, and risk for coronary artery disease. Nat. Commun. 13, 5350 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  121. Haring, B. et al. Healthy lifestyle and clonal hematopoiesis of indeterminate potential: results from the women’s health initiative. J. Am. Heart Assoc. 10, e018789 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Pasupuleti, S. K. et al. Obesity induced inflammation exacerbates clonal hematopoiesis. J. Clin. Invest. 133, e163968 (2023).

    PubMed  PubMed Central  Google Scholar 

  123. Tovy, A. et al. Constitutive loss of DNMT3A causes morbid obesity through misregulation of adipogenesis. eLife 11, e72359 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Wu, D. et al. Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. Nature 559, 637–641 (2018).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  125. van Deuren, R. C. et al. Expansion of mutation-driven haematopoietic clones is associated with insulin resistance and low HDL-cholesterol in individuals with obesity. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/2021.05.12.443095v2 (2021).

  126. Andersson-Assarsson, J. C. et al. Evolution of age-related mutation-driven clonal haematopoiesis over 20 years is associated with metabolic dysfunction in obesity. eBioMedicine 92, 104621 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Bhattacharya, R. et al. Association of diet quality with prevalence of clonal hematopoiesis and adverse cardiovascular events. JAMA Cardiol. 6, 1069–1077 (2021).

    PubMed  Google Scholar 

  128. Cimmino, L. et al. Restoration of TET2 function blocks aberrant self-renewal and leukemia progression. Cell 170, 1079–1095.e20 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Taira, A. et al. Vitamin C boosts DNA demethylation in TET2 germline mutation carriers. Clin. Epigenetics 15, 7 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Vargas-Santos, A. B. & Neogi, T. Management of gout and hyperuricemia in CKD. Am. J. Kidney Dis. 70, 422–439 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Krishnan, E. Reduced glomerular function and prevalence of gout: NHANES 2009–10. PLoS ONE 7, e50046 (2012).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  132. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int. Suppl. 7, 1–59 (2017).

    Google Scholar 

  133. Nair, S. S. et al. Temporal trends in the incidence, treatment, and outcomes of hip fracture in older patients initiating dialysis in the United States. Clin. J. Am. Soc. Nephrol. 8, 1336–1342 (2013).

    PubMed  PubMed Central  Google Scholar 

  134. Kim, P. G. et al. Dnmt3a-mutated clonal hematopoiesis promotes osteoporosis. J. Exp. Med. 218, e20211872 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Hecker, J. S. et al. CHIP & HIPs: clonal hematopoiesis is common in hip arthroplasty patients and associates with autoimmune disease. Blood 138, 1727–1732 (2021).

    CAS  PubMed  Google Scholar 

  136. Arends, C. M. et al. Clonal hematopoiesis in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Haematologica 105, e264–e267 (2020).

    PubMed  PubMed Central  Google Scholar 

  137. Wells, K. et al. Clonal hematopoiesis across the age spectrum in patients with systemic vasculitis. ACR Meeting Abstracts https://acrabstracts.org/abstract/clonal-hematopoiesis-across-the-age-spectrum-in-patients-with-systemic-vasculitis/ (2021).

  138. Gutierrez-Rodrigues, F. et al. Spectrum of clonal hematopoiesis in VEXAS syndrome. Blood 142, 244–259 (2023).

    CAS  PubMed  Google Scholar 

  139. De Langhe, E. et al. TET2-driver and NLRC4-passenger variants in adult-onset autoinflammation. N. Engl. J. Med. 388, 1626–1629 (2023).

    PubMed  Google Scholar 

  140. Vlasschaert, C. et al. Infection risk associated with clonal hematopoiesis of indeterminate potential is partly mediated by hematologic cancer transformation in the UK Biobank. Leukemia, https://doi.org/10.1038/s41375-023-02023-7 (2023).

    Article  PubMed  Google Scholar 

  141. Dharan, N. J. et al. HIV is associated with an increased risk of age-related clonal hematopoiesis among older adults. Nat. Med. 27, 1006–1011 (2021).

    CAS  PubMed  Google Scholar 

  142. Bick, A. G. et al. Increased prevalence of clonal hematopoiesis of indeterminate potential amongst people living with HIV. Sci. Rep. 12, 577 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  143. Bolton, K. L. et al. Clonal hematopoiesis is associated with risk of severe Covid-19. Nat. Commun. 12, 5975 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  144. Kessler, M. D. et al. Common and rare variant associations with clonal haematopoiesis phenotypes. Nature 612, 301–309 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  145. Miller, P. G. et al. Clonal hematopoiesis of indeterminate potential and risk of death from COVID-19. Blood 140, 1993–1997 (2022).

    CAS  PubMed  Google Scholar 

  146. Zhou, Y. et al. Clonal hematopoiesis is not significantly associated with COVID-19 disease severity. Blood 140, 1650–1655 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Choudhri, Y., Maslove, D. M. & Rauh, M. J. COVID-19 and the genetics of inflammation. Crit. Care Med. 51, 817–825 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Bouzid, H. et al. Clonal hematopoiesis is associated with protection from Alzheimer’s disease. Nat. Med. 29, 1662–1670 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Hansen, D. V., Hanson, J. E. & Sheng, M. Microglia in Alzheimer’s disease. J. Cell Biol. 217, 459–472 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhang, C.-Y., He, F.-F., Su, H., Zhang, C. & Meng, X.-F. Association between chronic kidney disease and Alzheimer’s disease: an update. Metab. Brain Dis. 35, 883–894 (2020).

    PubMed  Google Scholar 

  151. Krishnan, A. V. & Kiernan, M. C. Neurological complications of chronic kidney disease. Nat. Rev. Neurol. 5, 542–551 (2009).

    CAS  PubMed  Google Scholar 

  152. Fang, C. et al. Chronic kidney disease promotes cerebral microhemorrhage formation. J. Neuroinflammation 20, 51 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Young, A. L., Challen, G. A., Birmann, B. M. & Druley, T. E. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat. Commun. 7, 12484 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  154. Huang, Z. et al. Emerging evidence on the role of clonal hematopoiesis of indeterminate potential in chronic kidney disease. Transl. Res. 256, 87–94 (2022).

    PubMed  Google Scholar 

  155. Dawoud, A. A. Z., Tapper, W. J. & Cross, N. C. P. Clonal myelopoiesis in the UK Biobank cohort: ASXL1 mutations are strongly associated with smoking. Leukemia 34, 2660–2672 (2020).

    CAS  PubMed  Google Scholar 

  156. Pich, O. et al. The evolution of hematopoietic cells under cancer therapy. Nat. Commun. 12, 4803 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  157. Weinstock, J. S. et al. Aberrant activation of TCL1A promotes stem cell expansion in clonal haematopoiesis. Nature 616, 755–763 (2023).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  158. Bolton, K. L. et al. The clinical management of clonal hematopoiesis: creation of a clonal hematopoiesis clinic. Hematol. Oncol. Clin. North. Am. 34, 357–367 (2020).

    PubMed  Google Scholar 

  159. Rossi, M. et al. Clinical relevance of clonal hematopoiesis in the oldest-old population. Blood 138, 2093–2105 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Min, K., Polizio, A. H., Kour, A., Thel, M. C. & Walsh, K. Experimental ASXL1‐mediated clonal hematopoiesis promotes inflammation and accelerates heart failure. J. Am. Heart Assoc. 11, e026154 (2022).

    PubMed  PubMed Central  Google Scholar 

  161. Yokokawa, T. et al. Crucial role of hematopoietic JAK2 V617F in the development of aortic aneurysms. Haematologica 106, 1910–1922 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Zekavat, S. M. et al. Hematopoietic mosaic chromosomal alterations increase the risk for diverse types of infection. Nat. Med. 27, 1012–1024 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Tanaka, T., Narazaki, M. & Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 6, a016295 (2014).

    PubMed  PubMed Central  Google Scholar 

  164. Kaneko, N., Kurata, M., Yamamoto, T., Morikawa, S. & Masumoto, J. The role of interleukin-1 in general pathology. Inflamm. Regen. 39, 12 (2019).

    PubMed  PubMed Central  Google Scholar 

  165. Kalliolias, G. D. & Ivashkiv, L. B. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat. Rev. Rheumatol. 12, 49–62 (2016).

    CAS  PubMed  Google Scholar 

  166. Hughes, C. E. & Nibbs, R. J. B. A guide to chemokines and their receptors. FEBS J. 285, 2944–2971 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Ridker, P. M. et al. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 397, 2060–2069 (2021).

    CAS  PubMed  Google Scholar 

  168. Pergola, P. E. et al. Ziltivekimab for treatment of anemia of inflammation in patients on hemodialysis: results from a phase 1/2 multicenter, randomized, double-blind, placebo-controlled trial. JASN 32, 211–222 (2021).

    CAS  PubMed  Google Scholar 

  169. Yu, Z., Zekavat, S. M., Honigberg, M. C. & Natarajan, P. Genetic IL-6 signaling modifies incident coronary artery disease risk in chronic kidney disease. J. Am. Coll. Cardiol. 79, 415–416 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

C.V. researched data for the article and wrote the manuscript. P.N., C.V., M.B.L. and T.N.K. made substantial contributions to discussions of the content. All authors reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Pradeep Natarajan.

Ethics declarations

Competing interests

P.N. reports research grants from Allelica, Apple, Amgen, Boston Scientific, Genentech/Roche and Novartis, personal fees from Allelica, Apple, AstraZeneca, Blackstone Life Sciences, Foresite Labs, Genentech/Roche, GV, HeartFlow, Magnet Biomedicine and Novartis, scientific advisory board membership of Esperion Therapeutics, Preciseli and TenSixteen Bio, scientific co-founder of TenSixteen Bio, equity in Preciseli and TenSixteen Bio, and spousal employment at Vertex Pharmaceuticals, all unrelated to the present work. M.B.L. reports received speaking and advisory board fees from Bayer, Otsuka, Reata and Sanofi. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks F. Damm, T. Speer and A. M. Zeiher for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Passenger variants

Acquired genetic changes that accumulate in cells over time but are not expected to affect cell fitness or drive clonal expansion, in contrast to driver mutations.

Variant allele fraction

(VAF). The proportion of sequencing reads that contain the variant, which serves as an estimate of the fraction of cells that containing the variant (for autosomal chromosomes and X chromosomes in female individuals, VAF × 2 = the cell fraction).

VEXAS syndrome

First described in 2020, VEXAS syndrome (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) is a severe, adult-onset autoinflammatory disease caused by acquired mutations in the ubiquitin ligase enzyme gene (UBA1) in circulating blood cells.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasschaert, C., Lanktree, M.B., Rauh, M.J. et al. Clonal haematopoiesis, ageing and kidney disease. Nat Rev Nephrol 20, 161–174 (2024). https://doi.org/10.1038/s41581-023-00778-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-023-00778-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing