Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clonal haematopoiesis and dysregulation of the immune system

Abstract

Age-related diseases are frequently linked to pathological immune dysfunction, including excessive inflammation, autoreactivity and immunodeficiency. Recent analyses of human genetic data have revealed that somatic mutations and mosaic chromosomal alterations in blood cells — a condition known as clonal haematopoiesis (CH) — are associated with ageing and pathological immune dysfunction. Indeed, large-scale epidemiological studies and experimental mouse models have demonstrated that CH can promote cardiovascular disease, chronic obstructive pulmonary disease, chronic liver disease, osteoporosis and gout. The genes most frequently mutated in CH, the epigenetic regulators TET2 and DNMT3A, implicate increased chemokine expression and inflammasome hyperactivation in myeloid cells as a possible mechanistic connection between CH and age-related diseases. In addition, TET2 and DNMT3A mutations in lymphoid cells have been shown to drive methylation-dependent alterations in differentiation and function. Here we review the observational and mechanistic studies describing the connection between CH and pathological immune dysfunction, the effects of CH-associated genetic alterations on the function of myeloid and lymphoid cells, and the clinical and therapeutic implications of CH as a target for immunomodulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Features of clonal haematopoiesis.
Fig. 2: Functional effects of clonal haematopoiesis-associated mutations in myeloid cells.
Fig. 3: Impact of TET2 and DNMT3A loss in lymphocytes.

Similar content being viewed by others

References

  1. Orkin, S. H. & Zon, L. I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631–644 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Looker, A. C., Dallman, P. R., Carroll, M. D., Gunter, E. W. & Johnson, C. L. Prevalence of iron deficiency in the United States. J. Am. Med. Assoc. 277, 973–976 (1997).

    Article  CAS  Google Scholar 

  3. Heegaard, E. D. & Brown, K. E. Human parvovirus B19. Clin. Microbiol. Rev. 15, 485 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Afdhal, N. et al. Thrombocytopenia associated with chronic liver disease. J. Hepatol. 48, 1000–1007 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Nimer, S. D. Myelodysplastic syndromes. Blood 111, 4841–4851 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Babitt, J. L. & Lin, H. Y. Mechanisms of anemia in CKD. J. Am. Soc. Nephrol. 23, 1631–1634 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weiss, G., Ganz, T. & Goodnough, L. T. Anemia of inflammation. Blood 133, 40–50 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shimamura, A. & Alter, B. P. Pathophysiology and management of inherited bone marrow failure syndromes. Blood Rev. 24, 101–122 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Slichter, S. J. Relationship between platelet count and bleeding risk in thrombocytopenic patients. Transf. Med. Rev. 18, 153–167 (2004).

    Article  Google Scholar 

  10. Chemaly, R. F. et al. Respiratory viral infections in adults with hematologic malignancies and human stem cell transplantation recipients - a retrospective study at a major cancer center. Medicine 85, 278–287 (2006).

    Article  PubMed  Google Scholar 

  11. Kuderer, N. M., Dale, D. C., Crawford, J., Cosler, L. E. & Lyman, G. H. Mortality, morbidity, and cost associated with febrile neutropenia in adult cancer patients. Cancer 106, 2258–2266 (2006).

    Article  PubMed  Google Scholar 

  12. Wolach, O. & Stone, R. Autoimmunity and inflammation in myelodysplastic syndromes. Acta Haematol. 136, 108–117 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Caligaris-Cappio, F. & Hamblin, T. J. B-cell chronic lymphocytic leukemia: a bird of a different feather. J. Clin. Oncol. 17, 399–408 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Finkel, H. E., Brauer, M. J., Taub, R. N. & Dameshek, W. Immunologic aberrations in Di Guglielmo syndrome. Blood 28, 634–649 (1966).

    Article  CAS  PubMed  Google Scholar 

  15. Lewis, C. M. & Pegrum, G. D. Immune-complexes in myeloproliferative disorders. Lancet 2, 1151–1153 (1977).

    Article  CAS  PubMed  Google Scholar 

  16. Hetzel, P. & Gee, T. S. New observation in clinical spectrums of erythroleukemia - report of 46 cases. Am. J. Med. 64, 765–772 (1978).

    Article  CAS  PubMed  Google Scholar 

  17. Enright, H. et al. Paraneoplastic autoimmune phenomena in patients with myelodysplastic syndromes - response to immunosuppressive therapy. Brit. J. Haematol. 91, 403–408 (1995).

    Article  CAS  Google Scholar 

  18. Colombat, P. H., Renoux, M., Lamagnere, J. P. & Renoux, G. immunological indexes in myelodysplastic syndromes. Cancer 61, 1075–1081 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Young, N. S., Calado, R. T. & Scheinberg, P. Current concepts in the pathophysiology and treatment of aplastic anemia. Blood 108, 2509–2519 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Green, A. R., Shuttleworth, D., Bowen, D. T. & Bentley, D. P. Cutaneous vasculitis in patients with myelodysplasia. Brit. J. Haematol. 74, 364–365 (1990).

    Article  CAS  Google Scholar 

  21. Pagliuca, A., Higgins, E., Samson, D., Humphries, S. & Mufti, G. J. Prodromal cutaneous vasculitis in myelodysplastic syndromes. Brit. J. Haematol. 75, 444–446 (1990).

    Article  CAS  Google Scholar 

  22. Hebbar, M. et al. Association of myelodysplastic syndrome and relapsing polychondritis - further evidence. Leukemia 9, 731–733 (1995).

    CAS  PubMed  Google Scholar 

  23. Fernandezmiranda, C. et al. Vasculitis associated to myelodysplastic syndrome - report of 5 cases. Med. Clin. 103, 539–542 (1994).

    CAS  Google Scholar 

  24. Savige, J. A., Chang, L., Smith, C. L. & Duggan, J. C. Myelodysplasia, vasculitis and antineutrophil cytoplasm antibodies. Leuk. Lymphoma 9, 49–54 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Doutre, M. S. et al. Cutaneous vasculitis and refractory-anemia with excess of blast cells. Ann. Dermatol. Venereol. 114, 97–100 (1987).

    CAS  PubMed  Google Scholar 

  26. Saif, M. W., Hopkins, J. L. & Gore, S. D. Autoimmune phenomena in patients with myelodysplastic syndromes and chronic myelomonocytic leukemia. Leuk. Lymphoma 43, 2083–2092 (2002).

    Article  PubMed  Google Scholar 

  27. Giannouli, S., Voulgarelis, M., Zintzaras, E., Tzioufas, A. G. & Moutsopoulos, H. M. Autoimmune phenomena in myelodysplastic syndromes: a 4-yr prospective study. Rheumatology 43, 626–632 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. de Hollanda, A. et al. Systemic and immune manifestations in myelodysplasia: a multicenter retrospective study. Arthritis Care Res. 63, 1188–1194 (2011).

    Article  Google Scholar 

  29. Mekinian, A. et al. Systemic inflammatory and autoimmune manifestations associated with myelodysplastic syndromes and chronic myelomonocytic leukaemia: a French multicentre retrospective study. Rheumatology 55, 291–300 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Anderson, L. A. et al. Risks of myeloid malignancies in patients with autoimmune conditions. Brit. J. Cancer 100, 822–828 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kristinsson, S. Y. et al. Chronic immune stimulation might act as a trigger for the development of acute myeloid leukemia or myelodysplastic syndromes. J. Clin. Oncol. 29, 2897–2903 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Weeks, L. D. et al. Age-related diseases of inflammation in myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood 139, 1246–1250 (2022). This analysis of SEER (Surveillance, Epidemiology, and End Results)–Medicare data shows greater prevalence of antecedent diseases of inflammageing in patients with MDS and chronic myelomonocytic leukaemia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sujobert, P. et al. Evidence of differentiation in myeloid malignancies associated neutrophilic dermatosis: a fluorescent in situ hybridization study of 14 patients. J. Invest. Dermatol. 133, 1111–1114 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Chavan, R. N. et al. Histiocytoid sweet syndrome may indicate leukemia cutis: a novel application of fluorescence in situ hybridization. J. Am. Acad. Dermatol. 70, 1021–1027 (2014).

    Article  PubMed  Google Scholar 

  35. Passet, M. et al. Next-generation sequencing in myeloid neoplasm-associated sweet’s syndrome demonstrates clonal relation between malignant cells and skin-infiltrating neutrophils. J. Invest. Dermatol. 140, 1873 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Magro, C. M., Kiani, B., Li, J. W. & Crowson, A. N. Clonality in the setting of Sweet’s syndrome and pyoderma gangrenosum is not limited to underlying myeloproliferative disease. J. Cutan. Pathol. 34, 526–534 (2007).

    Article  PubMed  Google Scholar 

  37. de Fremont, G. M. et al. Myeloid clonal infiltrate identified with next-generation sequencing in skin lesions associated with myelodysplastic syndromes and chronic myelomonocytic leukemia: a case series. Front. Immunol. 12, 715053 (2021).

    Article  Google Scholar 

  38. Trowbridge, J. J. & Starczynowski, D. T. Innate immune pathways and inflammation in hematopoietic aging, clonal hematopoiesis, and MDS. J. Exp. Med. 218, e20201544 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Caiado, F., Pietras, E. M. & Manz, M. G. Inflammation as a regulator of hematopoietic stem cell function in disease, and clonal selection. J. Exp. Med. 218, e20201541 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kitagawa, M. et al. Overexpression of tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma by bone marrow cells from patients with myelodysplastic syndromes. Leukemia 11, 2049–2054 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Wetzler, M. et al. Altered levels of interleukin-1-beta and interleukin-1 receptor antagonist in chronic myelogenous leukemia - clinical and prognostic correlates. Blood 84, 3142–3147 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Nievergall, E. et al. TGF-alpha and IL-6 plasma levels selectively identify CML patients who fail to achieve an early molecular response or progress in the first year of therapy. Leukemia 30, 1263–1272 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Pardanani, A. et al. IPSS-independent prognostic value of plasma CXCL10, IL-7 and IL-6 levels in myelodysplastic syndromes. Leukemia 26, 693–699 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Hsu, H. C. et al. Circulating levels of thrombopoietic and inflammatory cytokines in patients with acute myeloblastic leukemia and myelodysplastic syndrome. Oncology 63, 64–69 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Gersuk, G. R. et al. A role for tumour necrosis factor-alpha, Fas and Fas-ligand in marrow failure associated with myelodysplastic syndrome. Brit. J. Haematol. 103, 176–188 (1998).

    Article  CAS  Google Scholar 

  46. Tsimberidou, A. M. et al. The prognostic significance of cytokine levels in newly diagnosed acute myeloid leukemia and high-risk myelodysplastic syndromes. Cancer 113, 1605–1613 (2008).

    Article  PubMed  Google Scholar 

  47. Musto, P. et al. Low serum levels of tumor-necrosis-factor and interleukin-1-beta in myelodysplastic syndromes responsive to recombinant erythropoietin. Haematologica 79, 265–268 (1994).

    CAS  PubMed  Google Scholar 

  48. Pietras, E. M. et al. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat. Cell Biol. 18, 607 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Higa, K. C. et al. Chronic interleukin-1 exposure triggers selection for Cebpa-knockout multipotent hematopoietic progenitors. J. Exp. Med 218, e20200560 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cai, Z. G. et al. Inhibition of inflammatory signaling in Tet2 mutant preleukemic cells mitigates stress-induced abnormalities and clonal hematopoiesis. Cell Stem Cell 23, 833–849.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hormaechea-Agulla, D. et al. Chronic infection drives Dnmt3a-loss-of-function clonal hematopoiesis via IFN gamma signaling. Cell Stem Cell 28, 1428–1442.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Avagyan, S. et al. Resistance to inflammation underlies enhanced fitness in clonal hematopoiesis. Science 374, 768 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Grants, J. M. et al. Altered microRNA expression links IL6 and TNF-induced inflammaging with myeloid malignancy in humans and mice. Blood 135, 2235–2251 (2020).

    Article  PubMed  Google Scholar 

  54. Zhang, T. Y. et al. IL-6 blockade reverses bone marrow failure induced by human acute myeloid leukemia. Sci. Transl. Med. 12, eaax5104 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Reynaud, D. et al. IL-6 controls leukemic multipotent progenitor cell fate and contributes to chronic myelogenous leukemia development. Cancer Cell 20, 661–673 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Twomey, J. J. Infections complicating multiple-myeloma and chronic lymphocytic leukemia. Arch. Int. Med. 132, 562–565 (1973).

    Article  CAS  Google Scholar 

  57. Itala, M., Helenius, H., Nikoskelainen, J. & Remes, K. Infections and serum IgG levels in patients with chronic lymphocytic-leukemia. Eur. J. Haematol. 48, 266–270 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Brown, R. K., Read, J. T., Wiseman, B. K. & France, W. G. The electrophoretic analysis of serum proteins of the blood dyscrasias. J. Lab. Clin. Med. 33, 1523–1533 (1948).

    CAS  PubMed  Google Scholar 

  59. Shaw, R. K. et al. Infection and immunity in chronic lymphocytic leukemia. Arch. Int. Med. 106, 467–478 (1960).

    Article  Google Scholar 

  60. Anderson, L. A., Landgren, O. & Engels, E. A. Common community acquired infections and subsequent risk of chronic lymphocytic leukaemia. Brit. J. Haematol. 147, 444–449 (2009).

    Article  Google Scholar 

  61. Moreira, J. et al. Infectious complications among individuals with clinical monoclonal B-cell lymphocytosis (MBL): a cohort study of newly diagnosed cases compared to controls. Leukemia 27, 136–141 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Tsai, H. T. et al. Evidence of serum immunoglobulin abnormalities up to 9.8 years before diagnosis of chronic lymphocytic leukemia: a prospective study. Blood 114, 4928–4932 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lunning, M. A. & Vose, J. M. Angioimmunoblastic T-cell lymphoma: the many-faced lymphoma. Blood 129, 1095–1102 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Han, L. J. et al. Clinical features and treatment of natural killer/T cell lymphoma associated with hemophagocytic syndrome: comparison with other T cell lymphoma associated with hemophagocytic syndrome. Leuk. Lymphoma 55, 2048–2055 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Kikushige, Y. et al. Self-renewing hematopoietic stem cell is the primary target in pathogenesis of human chronic lymphocytic leukemia. Cancer Cell 20, 246–259 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Jan, M. et al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci. Transl. Med. 4, 149ra118 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Corces-Zimmerman, M. R., Hong, W. J., Weissman, I. L., Medeiros, B. C. & Majeti, R. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc. Natl Acad. Sci. USA 111, 2548–2553 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shlush, L. I. et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506, 328 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chung, S. S. et al. Hematopoietic stem cell origin of BRAFV600E mutations in hairy cell leukemia. Sci. Transl. Med. 6, 238ra71 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Busque, L. et al. Nonrandom X-inactivation patterns in normal females: Lyonization ratios vary with age. Blood 88, 59–65 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Gale, R. E., Fielding, A. K., Harrison, C. N. & Linch, D. C. Acquired skewing of X-chromosome inactivation patterns in myeloid cells of the elderly suggests stochastic clonal loss with age. Brit. J. Haematol. 98, 512–519 (1997).

    Article  CAS  Google Scholar 

  72. Busque, L. et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat. Genet. 44, 1179–1181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Laurie, C. C. et al. Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat. Genet. 44, 642–658 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jacobs, K. B. et al. Detectable clonal mosaicism and its relationship to aging and cancer. Nat. Genet. 44, 651–668 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Xie, M. et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 20, 1472–1478 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bick, A. G. et al. Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature 586, 763 (2020). This analysis of the TOPMed cohort shows increased levels of inflammatory cytokines, including IL-1β, IL-6 and IL-18, in individuals with CHIP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Niroula, A. et al. Distinction of lymphoid and myeloid clonal hematopoiesis. Nat. Med. 27, 1921 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zink, F. et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood 130, 742–752 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Saiki, R. et al. Combined landscape of single-nucleotide variants and copy number alterations in clonal hematopoiesis. Nat. Med. 27, 1239 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Bick, A. G. et al. Genetic interleukin 6 signaling deficiency attenuates cardiovascular risk in clonal hematopoiesis. Circulation 141, 124–131 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Kar, S. P. et al. Genome-wide analyses of 200,453 individuals yield new insights into the causes and consequences of clonal hematopoiesis. Nat. Genet. 54, 1155 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kessler, M. D. et al. Common and rare variant associations with clonal haematopoiesis phenotypes. Nature 612, 301–309 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Abelson, S. et al. Prediction of acute myeloid leukaemia risk in healthy individuals. Nature 559, 400 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Desai, P. et al. Somatic mutations precede myeloid leukemia years before diagnosis. Nat. Med. 24, 1015 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fabre, M. A. et al. The longitudinal dynamics and natural history of clonal haematopoiesis. Nature 606, 335 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Robertson, N. A. et al. Longitudinal dynamics of clonal hematopoiesis identifies gene-specific fitness effects. Nat. Med. 28, 1439–1446 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Watson, C. J. et al. The evolutionary dynamics and fitness landscape of clonal hematopoiesis. Science 367, 1449 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. Loh, P. R. et al. Insights into clonal haematopoiesis from 8,342 mosaic chromosomal alterations. Nature 559, 350 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Terao, C. et al. Chromosomal alterations among age-related haematopoietic clones in Japan. Nature 584, 130 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zekavat, S. M. et al. Hematopoietic mosaic chromosomal alterations increase the risk for diverse types of infection. Nat. Med. 27, 1012 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Terao, C. et al. GWAS of mosaic loss of chromosome Y highlights genetic effects on blood cell differentiation. Nat. Commun. 10, 4719 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Thompson, D. J. et al. Genetic predisposition to mosaic Y chromosome loss in blood. Nature 575, 652 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gao, T. et al. Interplay between chromosomal alterations and gene mutations shapes the evolutionary trajectory of clonal hematopoiesis. Nat. Commun. 12, 338 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jaiswal, S. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377, 111–121 (2017). In addition to providing a link between CHIP and cardiovascular disease, this study provides evidence of increased levels of inflammatory cytokines in TET2-mutant CHIP in humans, in a Tet2-mutant mouse model of atherosclerosis and in Tet2-mutant bone marrow-derived macrophages.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Loh, P. R., Genovese, G. & McCarroll, S. A. Monogenic and polygenic inheritance become instruments for clonal selection. Nature 584, 136 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sano, S. et al. Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1 beta/NLRP3 inflammasome. J. Am. Coll. Cardiol. 71, 875–886 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yu, B. et al. Association of clonal hematopoiesis with incident heart failure. J. Am. Coll. Cardiol. 78, 42–52 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dawoud, A. A. Z., Gilbert, R. D., Tapper, W. J. & Cross, N. C. P. Clonal myelopoiesis promotes adverse outcomes in chronic kidney disease. Leukemia 36, 507–515 (2022).

    Article  CAS  PubMed  Google Scholar 

  101. Sano, S. et al. CRISPR-mediated gene editing to assess the roles of Tet2 and Dnmt3a in clonal hematopoiesis and cardiovascular disease. Circ. Res. 123, 335–341 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wong, W. J. et al. Clonal hematopoiesis and risk of chronic liver disease. Preprint at medRxiv https://doi.org/10.1101/2022.01.17.22269409 (2022).

  103. Miller, P. G. et al. Association of clonal hematopoiesis with chronic obstructive pulmonary disease. Blood 139, 357–368 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Agrawal, M. et al. TET2-mutant clonal hematopoiesis and risk of gout. Blood 140, 1094–1103 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhang, C. R. C. et al. Inflammatory cytokines promote clonal hematopoiesis with specific mutations in ulcerative colitis patients. Exp. Hematol. 80, 36–41 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hecker, J. S. et al. CHIP and hips: clonal hematopoiesis is common in patients undergoing hip arthroplasty and is associated with autoimmune disease. Blood 138, 1727–1732 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Kim, P. G. et al. Dnmt3a-mutated clonal hematopoiesis promotes osteoporosis. J. Exp. Med. 218, e20211872 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Honigberg, M. C. et al. Premature menopause, clonal hematopoiesis, and coronary artery disease in postmenopausal women. Circulation 143, 410–423 (2021).

    Article  PubMed  Google Scholar 

  109. Cordua, S. et al. Prevalence and phenotypes of JAK2 V617F and calreticulin mutations in a Danish general population. Blood 134, 469–479 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Kimishima, Y. et al. Clonal hematopoiesis with JAK2V617F promotes pulmonary hypertension with ALK1 upregulation in lung neutrophils. Nat. Commun. 12, 6177 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Newell, L. F. et al. Graft-versus-host disease after liver transplantation is associated with bone marrow failure, hemophagocytosis, and DNMT3A mutations. Am. J. Transplant. 21, 3894–3906 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Fuster, J. J. et al. TET2-loss-of-function-driven clonal hematopoiesis exacerbates experimental insulin resistance in aging and obesity. Cell Rep. 33, 108326 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Coombs, C. C. et al. Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell 21, 374 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ptashkin, R. N. et al. Prevalence of clonal hematopoiesis mutations in tumor-only clinical genomic profiling of solid tumors. JAMA Oncol. 4, 1589–1593 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Bhattacharya, R. et al. Clonal hematopoiesis is associated with higher risk of stroke. Stroke 53, 788–797 (2022).

    Article  CAS  PubMed  Google Scholar 

  116. Bouzid, H. et al. Clonal hematopoiesis is associated with protection from Alzheimer’s disease. Preprint at medRxiv https://doi.org/10.1101/2021.12.10.21267552 (2021).

  117. Nakao, T. et al. Mendelian randomization supports bidirectional causality between telomere length and clonal hematopoiesis of indeterminate potential. Sci. Adv. 8, abl6579 (2022).

    Article  Google Scholar 

  118. Uddin, M. D. M. et al. Clonal hematopoiesis of indeterminate potential, DNA methylation, and risk for coronary artery disease. Nat. Commun. 13, 5350 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Nachun, D. et al. Clonal hematopoiesis associated with epigenetic aging and clinical outcomes. Aging Cell 20, e13366 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Robertson, N. A. et al. Age-related clonal haemopoiesis is associated with increased epigenetic age. Curr. Biol. 29, R786–R787 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Cook, E. K. et al. Comorbid and inflammatory characteristics of genetic subtypes of clonal hematopoiesis. Blood Adv. 3, 2482–2486 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dharan, N. J. et al. HIV is associated with an increased risk of age-related clonal hematopoiesis among older adults. Nat. Med. 27, 1006 (2021).

    Article  CAS  PubMed  Google Scholar 

  124. Feng, X. M. et al. Cytokine signature profiles in acquired aplastic anemia and myelodysplastic syndromes. Haematologica 96, 602–606 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Tefferi, A. et al. Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study. J. Clin. Oncol. 29, 1356–1363 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. De Santis, M. et al. Mutations associated with clonal hematopoiesis of indeterminate potential are found in peripheral blood and synovial fluid macrophages from patients with rheumatoid and psoriatic arthritis [abstract]. Arthritis Rheumatol. 70 (suppl. 9), (Wiley, 2018).

  127. Wang, Y. et al. Tet2-mediated clonal hematopoiesis in nonconditioned mice accelerates age-associated cardiac dysfunction. J. Clin. Invest. Insight 5, e135204 (2020).

    Google Scholar 

  128. Fuster, J. J. et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355, 842–847 (2017). This study shows that Tet2-mutant CHIP exacerbates the development of atherosclerosis in a mouse model, which correlates with increased IL-1β expression in vivo and in vitro, and that this can be reversed by pharmacological inhibition of the NLRP3 inflammasome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Cull, A. H., Snetsinger, B., Buckstein, R., Wells, R. A. & Rauh, M. J. Tet2 restrains inflammatory gene expression in macrophages. Exp. Hematol. 55, 56–70 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Zhang, Q. et al. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature 525, 389–393 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Swanson, K. V., Deng, M. & Ting, J. P. Y. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19, 477–489 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Coll, R. C. et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 21, 248 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sun, X. X. et al. DNA methylation is involved in the pathogenesis of osteoarthritis by regulating CtBP expression and CtBP-mediated signaling. Int. J. Biol. Sci. 16, 994–1009 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Abplanalp, W. T. et al. Clonal hematopoiesis-driver DNMT3A mutations alter immune cells in heart failure. Circ. Res. 128, 216–228 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Pronier, E. et al. Macrophage migration inhibitory factor is overproduced through EGR1 in TET2low resting monocytes. Commun. Biol. 5, 110 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Rohatgi, N. et al. ASXL1 impairs osteoclast formation by epigenetic regulation of NFATc1. Blood Adv. 2, 2467–2477 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wolach, O. et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci. Transl. Med. 10, eaan8292 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Cook, E. K. et al. Impact of Tet2 deficiency, and of TET2 mutations in clonal hematopoiesis, on neutrophil/granulocyte immune function. Blood 138, 2159 (2021).

    Article  Google Scholar 

  139. Banks, K. M., Lan, Y. & Evans, T. Tet proteins regulate neutrophil granulation in zebrafish through demethylation of Socs3b mRNA. Cell Rep. 34, 108632 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Montagner, S. et al. TET2 regulates mast cell differentiation and proliferation through catalytic and non-catalytic activities. Cell Rep. 15, 1566–1579 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Shen, Q. et al. Tet2 promotes pathogen infection-induced myelopoiesis through mRNA oxidation. Nature 554, 123–127 (2018).

    Article  CAS  PubMed  Google Scholar 

  142. Leoni, C. et al. Dnmt3a restrains mast cell inflammatory responses. Proc. Natl Acad. Sci. USA 114, E1490–E1499 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ma, S. et al. Epigenetic regulator CXXC5 recruits DNA demethylase Tet2 to regulate TLR7/9-elicited IFN response in pDCs. J. Exp. Med. 214, 1471–1491 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Li, X. et al. Methyltransferase Dnmt3a upregulates HDAC9 to deacetylate the kinase TBK1 for activation of antiviral innate immunity. Nat. Immunol. 17, 806 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Balasubramani, A. et al. Cancer-associated ASXL1 mutations may act as gain-of-function mutations of the ASXL1-BAP1 complex. Nat. Commun. 6, 7307 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Wang, W. et al. Macrophage inflammation, erythrophagocytosis, and accelerated atherosclerosis in Jak2(V617F) mice. Circ. Res. 123, E35–E47 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Fidler, T. P. et al. The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature 592, 296 (2021). This study shows that Jak2-mutant CHIP accelerates disease in a mouse model of atherosclerosis via AIM2 inflammasome activation, IL-1β production and gasdermin D-mediated pyroptosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sano, S. et al. TP53-mediated therapy-related clonal hematopoiesis contributes to doxorubicin-induced cardiomyopathy by augmenting a neutrophil-mediated cytotoxic response. J. Clin. Invest. Insight 6, e146076 (2021).

    Google Scholar 

  149. Buscarlet, M. et al. Lineage restriction analyses in CHIP indicate myeloid bias for TET2 and multipotent stem cell origin for DNMT3A. Blood 132, 277–280 (2018).

    Article  CAS  PubMed  Google Scholar 

  150. Arends, C. M. et al. Hematopoietic lineage distribution and evolutionary dynamics of clonal hematopoiesis. Leukemia 32, 1908–1919 (2018).

    Article  CAS  PubMed  Google Scholar 

  151. Gibson, C. J. et al. Donor clonal hematopoiesis and recipient outcomes after transplantation. J. Clin. Oncol. 40, 189 (2022). This study describes an association between donor DNMT3A-mutant CH, increased recipient chronic GVHD and increased recipient IL-12 levels.

    Article  CAS  PubMed  Google Scholar 

  152. Gibson, C. J. et al. Donor-engrafted CHIP is common among stem cell transplant recipients with unexplained cytopenias. Blood 130, 91–94 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Boettcher, S. et al. Clonal hematopoiesis in donors and long-term survivors of related allogeneic hematopoietic stem cell transplantation. Blood 135, 1548–1559 (2020).

    Article  PubMed  Google Scholar 

  154. Frick, M. et al. Role of donor clonal hematopoiesis in allogeneic hematopoietic stem-cell transplantation. J. Clin. Oncol. 37, 375 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Chang, S. J. & Aune, T. M. Dynamic changes in histone-methylation ‘marks’ across the locus encoding interferon-gamma during the differentiation of T helper type 2 cells. Nat. Immunol. 8, 723–731 (2007).

    Article  CAS  PubMed  Google Scholar 

  156. Chang, S. J. & Aune, T. M. Histone hyperacetylated domains across the Ifng gene region in natural killer cells and T cells. Proc. Natl Acad. Sci. USA 102, 17095–17100 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Schoenborn, J. R. et al. Comprehensive epigenetic profiling identifies multiple distal regulatory elements directing transcription of the gene encoding interferon-gamma. Nat. Immunol. 8, 732–742 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Winders, B. R., Schwartz, R. H. & Bruniquel, D. A distinct region of the murine IFN-gamma promoter is hypomethylated from early T cell development through mature naive and Th1 cell differentiation, but is hypermethylated in Th2 cells. J. Immunol. 173, 7377–7384 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Bream, J. H. et al. A distal region in the interferon-gamma gene is a site of epigenetic remodeling and transcriptional regulation by interleukin-2. J. Biol. Chem. 279, 41249–41257 (2004).

    Article  CAS  PubMed  Google Scholar 

  160. Tato, C. et al. Cutting edge: Innate production of IFN-gamma by NK cells is independent of epigenetic modification of the IFN-gamma promoter. J. Immunol. 173, 1514–1517 (2004).

    Article  CAS  PubMed  Google Scholar 

  161. Ichiyama, K. et al. The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells. Immunity 42, 613–626 (2015). This study shows that TET2 colocalizes with lineage-defining transcription factors in CD4+ T cells, leading to targeted epigenetic changes that enable expression of lineage-defining cytokines.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Carty, S. A. et al. The loss of TET2 promotes CD8(+) T cell memory differentiation. J. Immunol. 200, 82–91 (2018).

    Article  CAS  PubMed  Google Scholar 

  163. Ladle, B. H. et al. De novo DNA methylation by DNA methyltransferase 3a controls early effector CD8+T-cell fate decisions following activation. Proc. Natl Acad. Sci. USA 113, 10631–10636 (2016). Using multiple models of viral infection, this study shows that DNMT3A deficiency in T cells is associated with increased abundance of memory precursor CD8+ T cells and reduced abundance terminal effector CD8+ T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Ghoneim, H. E. et al. De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell 170, 142–157.e19 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Youngblood, B. et al. Effector CD8 T cells dedifferentiate into long-lived memory cells. Nature 552, 404 (2017). This study uses the lymphocytic choriomeningitis virus mouse model of acute viral infection and whole-genome bisulfite sequencing to identify DNMT3A-dependent DNA methylation profiles that correlate with increased memory CD8+ T cell differentiation in the absence of DNMT3A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Thomas, R. M., Gamper, C. J., Ladle, B. H., Powell, J. D. & Wells, A. D. De novo DNA methylation is required to restrict T helper lineage plasticity. J. Biol. Chem. 287, 22900–22909 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Gamper, C. J., Agoston, A. T., Nelson, W. G. & Powell, J. D. Identification of DNA methyltransferase 3a as a T cell receptor-induced regulator of Th1 and Th2 differentiation. J. Immunol. 183, 2267–2276 (2009).

    Article  CAS  PubMed  Google Scholar 

  168. Yu, Q. et al. DNA methyltransferase 3a limits the expression of interleukin-13 in T helper 2 cells and allergic airway inflammation. Proc. Natl Acad. Sci. USA 109, 541–546 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Biran, A. et al. Activation of Notch and Myc signaling via B-cell-restricted depletion of Dnmt3a generates a consistent murine model of chronic lymphocytic leukemia. Cancer Res. 81, 6117–6130 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Mahajan, V. S. et al. B1a and B2 cells are characterized by distinct CpG modification states at DNMT3A-maintained enhancers. Nat. Commun. 12, 2208 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Peng, V. et al. Whole-genome profiling of DNA methylation and hydroxymethylation identifies distinct regulatory programs among innate lymphocytes. Nat. Immunol. 23, 619 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Dominguez, P. M. et al. TET2 deficiency causes germinal center hyperplasia, impairs plasma cell differentiation, and promotes B-cell lymphomagenesis. Cancer Discov. 8, 1632–1653 (2018). This study shows that TET2 deletion in B cells is associated with impaired plasma cell differentiation and reduced antigen-specific antibody formation after immunization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ferreira, D. P. et al. Central memory CD8+ T cells derive from stem-like Tcf7hi effector cells in the absence of cytotoxic differentiation. Immunity 53, 985 (2020).

    Article  Google Scholar 

  174. Zhao, X. D., Shan, Q. & Xue, H. H. TCF1 in T cell immunity: a broadened frontier. Nat. Rev. Immunol. 22, 147–157 (2022).

    Article  CAS  PubMed  Google Scholar 

  175. Intlekofer, A. M. et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat. Immunol. 6, 1236–1244 (2005).

    Article  CAS  PubMed  Google Scholar 

  176. Perussia, B. et al. Natural-killer (NK) cell stimulatory factor or IL-12 has differential effects on the proliferation of TCR-alpha-beta+, TCR-gamma-delta+ T lymphocytes, and NK cells. J. Immunol. 149, 3495–3502 (1992).

    Article  CAS  PubMed  Google Scholar 

  177. Hsieh, C. S. et al. Development of Th1 CD4+ T-cells through IL-12 produced by Listeria-induced macrophages. Science 260, 547–549 (1993).

    Article  CAS  PubMed  Google Scholar 

  178. Salcedo, T. W., Azzoni, L., Wolf, S. F. & Perussia, B. Modulation of perforin and granzyme messenger-RNA expression in human natural-killer-cells. J. Immunol. 151, 2511–2520 (1993).

    Article  CAS  PubMed  Google Scholar 

  179. Asteamezaga, M., Dandrea, A., Kubin, M. & Trinchieri, G. Cooperation of natural killer cell stimulatory factor interleukin-12 with other stimuli in the induction of cytokines and cytotoxic cell-associated molecules in human T cells and NK cells. Cell. Immunol. 156, 480–492 (1994).

    Article  CAS  PubMed  Google Scholar 

  180. Miller, P. G. et al. Clonal hematopoiesis in patients receiving chimeric antigen receptor T-cell therapy. Blood Adv. 5, 2982–2986 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Saini, N. Y. et al. Clonal hematopoiesis is associated with increased risk of severe neurotoxicity in axicabtagene ciloleucel therapy of large B-cell lymphoma. Blood Cancer Discov. 3, 385–393 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Fraietta, J. A. et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 558, 307 (2018). This exceptional clinical case report shows that TET2 deficiency in CD8+ CAR T cells is associated with increased central memory cell differentiation and enhanced antitumour activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Nobles, C. L. et al. CD19-targeting CAR T cell immunotherapy outcomes correlate with genomic modification by vector integration. J. Clin. Investig. 130, 673–685 (2020).

    Article  CAS  PubMed  Google Scholar 

  184. Shah, N. N. et al. Clonal expansion of CAR T cells harboring lentivector integration in the CBL gene following anti-CD22 CAR T-cell therapy. Blood Adv. 3, 2317–2322 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Voehringer, D., Koschella, M. & Pircher, H. Lack of proliferative capacity of human effector and memory T cells expressing killer cell lectinlike receptor G1 (KLRG1). Blood 100, 3698–3702 (2002).

    Article  CAS  PubMed  Google Scholar 

  186. Prinzing, B. et al. Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity. Sci. Transl. Med. 13, eabh0272 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Abplanalp, W. T. et al. Association of clonal hematopoiesis of indeterminate potential with inflammatory gene expression in patients with severe degenerative aortic valve stenosis or chronic postischemic heart failure. JAMA Cardiol. 5, 1170–1175 (2020).

    Article  PubMed  Google Scholar 

  188. Shin, T.-H. et al. Macaque clonal hematopoiesis model demonstrates expansion of TET2-disrupted clones and utility for testing interventions. Blood 140, 1774–1789 (2022).

    Article  CAS  PubMed  Google Scholar 

  189. Svensson, E. C. et al. TET2-driven clonal hematopoiesis and response to canakinumab an exploratory analysis of the CANTOS randomized clinical trial. JAMA Cardiol. 7, 521–528 (2022). This exploratory study suggests that the presence of TET2-mutant CHIP might predict improved cardiovascular disease outcomes in the setting of treatment with the IL-1β antibody canakinumab.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Steensma, D. P. & Bolton, K. L. What to tell your patient with clonal hematopoiesis and why: insights from 2 specialized clinics. Blood 136, 1623–1631 (2020).

    PubMed  PubMed Central  Google Scholar 

  191. Singh, M. et al. Lymphoma driver mutations in the pathogenic evolution of an iconic human autoantibody. Cell 180, 878 (2020). This study uses single-cell analyses of samples from patients with mixed cryoglobulinaemic vasculitis to identify lymphoma-associated gene mutations in B cells producing pathogenic autoantibodies.

    Article  CAS  PubMed  Google Scholar 

  192. Beck, D. B. et al. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N. Engl. J. Med. 383, 2628–2638 (2020). This study provides the first description of a late-onset autoinflammatory syndrome, which is associated with recurrent somatic UBA1 mutations in HSCs, haematopoietic progenitor cells and mature myeloid cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Williams, N. et al. Life histories of myeloproliferative neoplasms inferred from phylogenies. Nature 602, 162 (2022).

    Article  CAS  PubMed  Google Scholar 

  194. Gibson, K. L. et al. B-cell diversity decreases in old age and is correlated with poor health status. Aging Cell 8, 18–25 (2009).

    Article  CAS  PubMed  Google Scholar 

  195. Fulop, T., Larbi, A. & Pawelec, G. Human T cell aging and the impact of persistent viral infections. Front. Immunol. 4, 271 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Akbar, A. N. & Fletcher, J. M. Memory T cell homeostasis and senescence during aging. Curr. Op. Immunol. 17, 480–485 (2005).

    Article  CAS  Google Scholar 

  197. Franceschi, C. et al. Inflamm-aging - an evolutionary perspective on immunosenescence. Mol. Cell. Gerontol. 908, 244–254 (2000).

    CAS  Google Scholar 

  198. Lasry, A. & Ben-Neriah, Y. Senescence-associated inflammatory responses: aging and cancer perspectives. Trends Immunol. 36, 217–228 (2015).

    Article  CAS  PubMed  Google Scholar 

  199. Luo, H. Z. et al. Mitochondrial stress-initiated aberrant activation of the NLRP3 inflammasome regulates the functional deterioration of hematopoietic stem cell aging. Cell Rep. 26, 945 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Andina, N. et al. Increased inflammasome activation is associated with aging and chronic myelomonocytic leukemia disease severity. J. Immunol. https://doi.org/10.4049/jimmunol.2200412 (2023).

  201. Basiorka, A. A. et al. The NLRP3 inflammasome functions as a driver of the myelodysplastic syndrome phenotype. Blood 128, 2960–2975 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Picard, E. et al. The frequency of interleukin-1 beta-producing monocytes is significantly associated with varicella-zoster responses of nursing home residents. Clin. Exp. Immunol. 205, 63–74 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Franceschi, C., Garagnani, P., Vitale, G., Capri, M. & Salvioli, S. Inflammaging and ‘Garb-aging’. Trends Endocrinol. Metab. 28, 199–212 (2017).

    Article  CAS  PubMed  Google Scholar 

  204. Morita, K. et al. Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nat. Commun. 11, 5327 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Miles, L. A. et al. Single-cell mutation analysis of clonal evolution in myeloid malignancies. Nature 587, 477 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. van Galen, P. et al. Single-cell RNA-seq reveals AML hierarchies relevant to disease progression and immunity. Cell 176, 1265 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Paguirigan, A. L. et al. Single-cell genotyping demonstrates complex clonal diversity in acute myeloid leukemia. Sci. Transl. Med. 7, 281re2 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Im, A. P. et al. DNMT3A and IDH mutations in acute myeloid leukemia and other myeloid malignancies: associations with prognosis and potential treatment strategies. Leukemia 28, 1774–1783 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Bowman, R. L. & Levine, R. L. TET2 in normal and malignant hematopoiesis. Cold Spring Harb. Perspect. Med. 7, a026518 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Chen, J. H. et al. Myelodysplastic syndrome progression to acute myeloid leukemia at the stem cell level. Nat. Med. 25, 103 (2019).

    Article  CAS  PubMed  Google Scholar 

  211. Lindsley, R. C. et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood 125, 1367–1376 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Mitchell, E. et al. Clonal dynamics of haematopoiesis across the human lifespan. Nature 606, 343 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Steensma, D. P. et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 126, 9–16 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Khoury, J. D. et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia 36, 1703–1719 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Arber, D. A. et al. International consensus classification of myeloid neoplasms and acute leukemia: integrating morphological, clinical, and genomic data. Blood 140, 1200–1228 (2022).

    Article  CAS  PubMed  Google Scholar 

  216. Dohner, H. et al. Diagnosis and management of AML in adults: 2022 ELN recommendations from an international expert panel. Blood 140, 1345–1377 (2022).

    Article  PubMed  Google Scholar 

  217. Young, A. L., Challen, G. A., Birmann, B. M. & Druley, T. E. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat. Commun. 7, 12484 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Dunbar, A. J., Rampal, R. K. & Levine, R. Leukemia secondary to myeloproliferative neoplasms. Blood 136, 61–70 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Greenberg, P. L. et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood 120, 2454–2465 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Mateos, M. V. et al. International Myeloma Working Group risk stratification model for smoldering multiple myeloma (SMM). Blood Cancer J. 10, 102 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Odejide, O. et al. A targeted mutational landscape of angioimmunoblastic T-cell lymphoma. Blood 123, 1293–1296 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Yao, W. Q. et al. Angioimmunoblastic T-cell lymphoma contains multiple clonal T-cell populations derived from a common TET2 mutant progenitor cell. J. Pathol. 250, 346–357 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Schwartz, F. H. et al. TET2 mutations in B cells of patients affected by angioimmunoblastic T-cell lymphoma. J. Pathol. 242, 129–133 (2017).

    Article  CAS  PubMed  Google Scholar 

  224. Quivoron, C. et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 20, 25–38 (2011).

    Article  CAS  PubMed  Google Scholar 

  225. Pastoret, C. et al. Linking the KIR phenotype with STAT3 and TET2 mutations to identify chronic lymphoproliferative disorders of NK cells. Blood 137, 3237–3250 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Olson, T. L. et al. Frequent somatic TET2 mutations in chronic NK-LGL leukemia with distinct patterns of cytopenias. Blood 138, 662–673 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Bensberg, M. et al. TET2 as a tumor suppressor and therapeutic target in T-cell acute lymphoblastic leukemia. Proc. Natl Acad. Sci. USA 118, e2110758118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Aref, S., El Menshawy, N., El-Ghonemy, M. S., Abou Zeid, T. & El-Baiomy, M. A. clinicopathologic effect of DNMT3A mutation in adult T-cell acute lymphoblastic leukemia. Clin. Lymphoma Myeloma Leuk. 16, 43–48 (2016).

    Article  PubMed  Google Scholar 

  229. Bond, J. et al. DNMT3A mutation is associated with increased age and adverse outcome in adult T-cell acute lymphoblastic leukemia. Haematologica 104, 1617–1625 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Gao, L. M. et al. Somatic mutations in KMT2D and TET2 associated with worse prognosis in Epstein-Barr virus-associated T or natural killer-cell lymphoproliferative disorders. Cancer Biol. Ther. 20, 1319–1327 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Reddy, A. et al. Genetic and functional drivers of diffuse large B cell lymphoma. Cell 171, 481 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Lacy, S. E. et al. Targeted sequencing in DLBCL, molecular subtypes, and outcomes: a Haematological Malignancy Research Network report. Blood 135, 1759–1771 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Kaasinen, E. et al. Impact of constitutional TET2 haploinsufficiency on molecular and clinical phenotype in humans. Nat. Commun. 10, 1252 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Duployez, N. et al. Familial myeloid malignancies with germline TET2 mutation. Leukemia 34, 1450–1453 (2020).

    Article  PubMed  Google Scholar 

  235. Wu, X. et al. Pedigree investigation, clinical characteristics, and prognosis analysis of haematological disease patients with germline TET2 mutation. BMC Cancer 22, 262 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Russler-Germain, D. A. et al. The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers. Cancer Cell 25, 442–454 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Ferris, M. A. et al. DNMT3A overgrowth syndrome is associated with the development of hematopoietic malignancies in children and young adults. Blood 139, 461–464 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Spegarova, J. S. et al. Germline TET2 loss of function causes childhood immunodeficiency and lymphoma. Blood 136, 1055–1066 (2020).

    Article  Google Scholar 

  239. Couronne, L., Bastard, C. & Bernard, O. A. TET2 and DNMT3A mutations in human T-cell lymphoma. N. Engl. J. Med. 366, 95–96 (2012).

    Article  CAS  PubMed  Google Scholar 

  240. Tiacci, E. et al. High-risk clonal hematopoiesis as the origin of AITL and NPM1-mutated AML. N. Engl. J. Med. 379, 981–984 (2018).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Benjamin L. Ebert.

Ethics declarations

Competing interests

B.L.E. has received research funding from Celgene, Deerfield, Novartis and Calico and consulting fees from GRAIL. He is a member of the scientific advisory board of and a shareholder of Neomorph, TenSixteen Bio, Skyhawk Therapeutics and Exo Therapeutics. The other authors have no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks J. DeGregori, M. De Dominici, J. Mistry, J. Trowbridge and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belizaire, R., Wong, W.J., Robinette, M.L. et al. Clonal haematopoiesis and dysregulation of the immune system. Nat Rev Immunol 23, 595–610 (2023). https://doi.org/10.1038/s41577-023-00843-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-023-00843-3

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer