Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

TRPM channels in health and disease

Abstract

Different cell channels and transporters tightly regulate cytoplasmic levels and the intraorganelle distribution of cations. Perturbations in these processes lead to human diseases that are frequently associated with kidney impairment. The family of melastatin-related transient receptor potential (TRPM) channels, which has eight members in mammals (TRPM1–TRPM8), includes ion channels that are highly permeable to divalent cations, such as Ca2+, Mg2+ and Zn2+ (TRPM1, TRPM3, TRPM6 and TRPM7), non-selective cation channels (TRPM2 and TRPM8) and monovalent cation-selective channels (TRPM4 and TRPM5). Three family members contain an enzymatic protein moiety: TRPM6 and TRPM7 are fused to α-kinase domains, whereas TRPM2 is linked to an ADP-ribose-binding NUDT9 homology domain. TRPM channels also function as crucial cellular sensors involved in many physiological processes, including mineral homeostasis, blood pressure, cardiac rhythm and immunity, as well as photoreception, taste reception and thermoreception. TRPM channels are abundantly expressed in the kidney. Mutations in TRPM genes cause several inherited human diseases, and preclinical studies in animal models of human disease have highlighted TRPM channels as promising new therapeutic targets. Here, we provide an overview of this rapidly evolving research area and delineate the emerging role of TRPM channels in kidney pathophysiology.

Key points

  • Melastatin-like transient receptor potential (TRPM) channels are multifunctional cation channels with diverse biophysical and physiological characteristics. Eight family members have been defined (TRPM1–TRPM8).

  • TRPM1 and TRPM3 are channels permeable to Ca2+ and Zn2+ regulated by neuroactive steroids that have crucial roles in ON-bipolar neurons of the retina, dorsal root ganglia neurons and other cells.

  • TRPM6 and TRPM7 are bifunctional kinase-coupled channels that control cellular and body homeostasis of Zn2+, Mg2+ and Ca2+.

  • TRPM4 and TRPM5 are Ca2+-activated monovalent cation channels that influence the excitability of neurons and cardiomyocytes, and control the chemosensory activity of taste receptor cells and tuft cells.

  • TRPM2 and TRPM8 are non-selective cation channels. TRPM2 mediates ADP-ribose and reactive oxygen species signalling in neurons, immunocytes and kidney epithelial cells, whereas TRPM8 is a cold-sensing channel that regulates organismal thermal responses.

  • Multiple TRPM channel types are expressed in the kidney, especially TRPM6 and TRPM7. Their physiological relevance awaits clarification, but they might have a role in renal cation homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The TRPM channel family.
Fig. 2: Functional characteristics of TRPM1–TRPM8 channels, and implications in inherited human diseases.
Fig. 3: The roles of TRPM6 and TRPM7 in the epithelial transport of divalent cations in the kidney and intestine.
Fig. 4: TRPM3, TRPM5 and TRPM8 in urethral reflexes.

Similar content being viewed by others

References

  1. Cosens, D. J. & Manning, A. Abnormal electroretinogram from a Drosophila mutant. Nature 224, 285–287 (1969).

    CAS  PubMed  ADS  Google Scholar 

  2. Montell, C. & Rubin, G. M. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2, 1313–1323 (1989).

    CAS  PubMed  Google Scholar 

  3. Wong, F. et al. Proper function of the Drosophila trp gene product during pupal development is important for normal visual transduction in the adult. Neuron 3, 81–94 (1989).

    CAS  PubMed  Google Scholar 

  4. Minke, B., Wu, C. & Pak, W. L. Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature 258, 84–87 (1975).

    CAS  PubMed  ADS  Google Scholar 

  5. Montell, C. The TRP superfamily of cation channels. Sci. STKE 2005, re3 (2005).

    PubMed  Google Scholar 

  6. Clapham, D. E., Montell, C., Schultz, G. & Julius, D. International Union of Pharmacology International Union of Pharmacology. XLIII. Compendium of voltage-gated ion channels: transient receptor potential channels. Pharmacol. Rev. 55, 591–596 (2003).

    PubMed  Google Scholar 

  7. Venkatachalam, K. & Montell, C. TRP channels. Annu. Rev. Biochem. 76, 387–417 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ledford, H. & Callaway, E. Medicine Nobel goes to scientists who discovered biology of senses. Nature 598, 246 (2021).

    CAS  PubMed  ADS  Google Scholar 

  9. Koivisto, A. P., Belvisi, M. G., Gaudet, R. & Szallasi, A. Advances in TRP channel drug discovery: from target validation to clinical studies. Nat. Rev. Drug. Discov. 21, 41–59 (2022).

    CAS  PubMed  Google Scholar 

  10. Vanneste, M., Segal, A., Voets, T. & Everaerts, W. Transient receptor potential channels in sensory mechanisms of the lower urinary tract. Nat. Rev. Urol. 18, 139–159 (2021).

    PubMed  Google Scholar 

  11. Hof, T. et al. Transient receptor potential channels in cardiac health and disease. Nat. Rev. Cardiol. 16, 344–360 (2019).

    PubMed  Google Scholar 

  12. Woudenberg-Vrenken, T. E., Bindels, R. J. & Hoenderop, J. G. The role of transient receptor potential channels in kidney disease. Nat. Rev. Nephrol. 5, 441–449 (2009).

    CAS  PubMed  Google Scholar 

  13. Patel, A. & Honore, E. Polycystins and renovascular mechanosensory transduction. Nat. Rev. Nephrol. 6, 530–538 (2010).

    CAS  PubMed  Google Scholar 

  14. Duncan, L. M. et al. Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Res. 58, 1515–1520 (1998).

    CAS  PubMed  Google Scholar 

  15. Xu, X. Z., Moebius, F., Gill, D. L. & Montell, C. Regulation of melastatin, a TRP-related protein, through interaction with a cytoplasmic isoform. Proc. Natl Acad. Sci. USA 98, 10692–10697 (2001).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Wehage, E. et al. Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J. Biol. Chem. 277, 23150–23156 (2002).

    CAS  PubMed  Google Scholar 

  17. Oberwinkler, J., Lis, A., Giehl, K. M., Flockerzi, V. & Philipp, S. E. Alternative splicing switches the divalent cation selectivity of TRPM3 channels. J. Biol. Chem. 280, 22540–22548 (2005).

    CAS  PubMed  Google Scholar 

  18. Hofmann, T., Chubanov, V., Gudermann, T. & Montell, C. TRPM5 is a voltage-modulated and Ca2+-activated monovalent selective cation channel. Curr. Biol. 13, 1153–1158 (2003).

    CAS  PubMed  Google Scholar 

  19. Launay, P. et al. TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109, 397–407 (2002).

    CAS  PubMed  Google Scholar 

  20. Chubanov, V. et al. Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc. Natl Acad. Sci. USA 101, 2894–2899 (2004).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Runnels, L. W., Yue, L. & Clapham, D. E. The TRPM7 channel is inactivated by PIP2 hydrolysis. Nat. Cell Biol. 4, 329–336 (2002).

    CAS  PubMed  Google Scholar 

  22. Lambert, S. et al. Transient receptor potential melastatin 1 (TRPM1) is an ion-conducting plasma membrane channel inhibited by zinc ions. J. Biol. Chem. 286, 12221–12233 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, Z., Toth, B., Szollosi, A., Chen, J. & Csanady, L. Structure of a TRPM2 channel in complex with Ca2+ explains unique gating regulation. Elife 7, e36409 (2018).

    PubMed  PubMed Central  Google Scholar 

  24. Yin, Y. et al. Visualizing structural transitions of ligand-dependent gating of the TRPM2 channel. Nat. Commun. 10, 3740 (2019).

    PubMed  PubMed Central  ADS  Google Scholar 

  25. Huang, Y., Winkler, P. A., Sun, W., Lu, W. & Du, J. Architecture of the TRPM2 channel and its activation mechanism by ADP-ribose and calcium. Nature 562, 145–149 (2018).

    CAS  PubMed  ADS  Google Scholar 

  26. Huang, Y., Roth, B., Lu, W. & Du, J. Ligand recognition and gating mechanism through three ligand-binding sites of human TRPM2 channel. Elife 8, e50175 (2019).

    PubMed  PubMed Central  Google Scholar 

  27. Wang, L. et al. Structures and gating mechanism of human TRPM2. Science 362, eaav4809 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu, X. et al. Structural and functional basis of the selectivity filter as a gate in human TRPM2 channel. Cell Rep. 37, 110025 (2021).

    CAS  PubMed  Google Scholar 

  29. Zhao, C. & MacKinnon, R. Structural and functional analyses of a GPCR-inhibited ion channel TRPM3. Neuron 111, 81–91.e7 (2023).

    CAS  PubMed  Google Scholar 

  30. Guo, J. et al. Structures of the calcium-activated, non-selective cation channel TRPM4. Nature 552, 205–209 (2017).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. Autzen, H. E. et al. Structure of the human TRPM4 ion channel in a lipid nanodisc. Science 359, 228–232 (2018).

    CAS  PubMed  ADS  Google Scholar 

  32. Winkler, P. A., Huang, Y., Sun, W., Du, J. & Lu, W. Electron cryo-microscopy structure of a human TRPM4 channel. Nature 552, 200–204 (2017).

    CAS  PubMed  ADS  Google Scholar 

  33. Duan, J. et al. Structure of full-length human TRPM4. Proc. Natl Acad. Sci. USA 115, 2377–2382 (2018).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Ruan, Z. et al. Structures of the TRPM5 channel elucidate mechanisms of activation and inhibition. Nat. Struct. Mol. Biol. 28, 604–613 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Duan, J. et al. Structure of the mammalian TRPM7, a magnesium channel required during embryonic development. Proc. Natl Acad. Sci. USA 115, E8201–E8210 (2018).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. Nadezhdin, K. D. et al. Structural mechanisms of TRPM7 activation and inhibition. Nat. Commun. 14, 2639 (2023).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Yin, Y. et al. Structure of the cold- and menthol-sensing ion channel TRPM8. Science 359, 237–241 (2018).

    CAS  PubMed  ADS  Google Scholar 

  38. Yin, Y. et al. Structural basis of cooling agent and lipid sensing by the cold-activated TRPM8 channel. Science 363, eaav9334 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Diver, M. M., Cheng, Y. & Julius, D. Structural insights into TRPM8 inhibition and desensitization. Science 365, 1434–1440 (2019).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  40. Zhao, C. et al. Structures of a mammalian TRPM8 in closed state. Nat. Commun. 13, 3113 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. Yin, Y. et al. Activation mechanism of the mouse cold-sensing TRPM8 channel by cooling agonist and PIP2. Science 378, eadd1268 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Oancea, E. et al. TRPM1 forms ion channels associated with melanin content in melanocytes. Sci. Signal. 2, ra21 (2009).

    PubMed  PubMed Central  Google Scholar 

  43. Morgans, C. W. et al. TRPM1 is required for the depolarizing light response in retinal ON-bipolar cells. Proc. Natl Acad. Sci. USA 106, 19174–19178 (2009).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Shen, Y. et al. A transient receptor potential-like channel mediates synaptic transmission in rod bipolar cells. J. Neurosci. 29, 6088–6093 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Schneider, F. M., Mohr, F., Behrendt, M. & Oberwinkler, J. Properties and functions of TRPM1 channels in the dendritic tips of retinal ON-bipolar cells. Eur. J. Cell Biol. 94, 420–427 (2015).

    CAS  PubMed  Google Scholar 

  46. Shen, Y., Rampino, M. A., Carroll, R. C. & Nawy, S. G-protein-mediated inhibition of the Trp channel TRPM1 requires the Gβγ dimer. Proc. Natl Acad. Sci. USA 109, 8752–8757 (2012).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  47. Xu, Y. et al. The TRPM1 channel in ON-bipolar cells is gated by both the α and the βγ subunits of the G-protein Go. Sci. Rep. 6, 20940 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  48. Iosifidis, C. et al. Clinical and genetic findings in TRPM1-related congenital stationary night blindness. Acta Ophthalmol. 100, e1332–e1339 (2022).

    PubMed  Google Scholar 

  49. van Genderen, M. M. et al. Mutations in TRPM1 are a common cause of complete congenital stationary night blindness. Am. J. Hum. Genet. 85, 730–736 (2009).

    PubMed  PubMed Central  Google Scholar 

  50. Audo, I. et al. TRPM1 is mutated in patients with autosomal-recessive complete congenital stationary night blindness. Am. J. Hum. Genet. 85, 720–729 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, Z. et al. Recessive mutations of the gene TRPM1 abrogate ON bipolar cell function and cause complete congenital stationary night blindness in humans. Am. J. Hum. Genet. 85, 711–719 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wagner, T. F. et al. TRPM3 channels provide a regulated influx pathway for zinc in pancreatic beta cells. Pflugers Arch. 460, 755–765 (2010).

    CAS  PubMed  Google Scholar 

  53. Held, K. et al. Mutations in the voltage-sensing domain affect the alternative ion permeation pathway in the TRPM3 channel. J. Physiol. 596, 2413–2432 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Persoons, E., Kerselaers, S., Voets, T., Vriens, J. & Held, K. Partial agonistic actions of sex hormone steroids on TRPM3 function. Int. J. Mol. Sci. 22, 13652 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wagner, T. F. et al. Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic β cells. Nat. Cell Biol. 10, 1421–1430 (2008).

    CAS  PubMed  Google Scholar 

  56. Toth, B. I. et al. Regulation of the transient receptor potential channel TRPM3 by phosphoinositides. J. Gen. Physiol. 146, 51–63 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhao, S., Carnevale, V., Gabrielle, M., Gianti, E. & Rohacs, T. Computational and functional studies of the PI(4,5)P2 binding site of the TRPM3 ion channel reveal interactions with other regulators. J. Biol. Chem. 298, 102547 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Behrendt, M. et al. The structural basis for an on-off switch controlling Gβγ-mediated inhibition of TRPM3 channels. Proc. Natl Acad. Sci. USA 117, 29090–29100 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  59. Dembla, S. et al. Anti-nociceptive action of peripheral mu-opioid receptors by G-beta-gamma protein-mediated inhibition of TRPM3 channels. Elife 6, e26280 (2017).

    PubMed  PubMed Central  Google Scholar 

  60. Vriens, J. et al. TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 70, 482–494 (2011).

    CAS  PubMed  Google Scholar 

  61. Mulier, M. et al. Upregulation of TRPM3 in nociceptors innervating inflamed tissue. Elife 9, e61103 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Vanneste, M. et al. TRPM3 is expressed in afferent bladder neurons and is upregulated during bladder inflammation. Int. J. Mol. Sci. 23, 107 (2021).

    PubMed  PubMed Central  Google Scholar 

  63. Zhao, M. et al. Upregulation of transient receptor potential cation channel subfamily M member-3 in bladder afferents is involved in chronic pain in cyclophosphamide-induced cystitis. Pain 163, 2200–2212 (2022).

    CAS  PubMed  Google Scholar 

  64. Dyment, D. A. et al. De novo substitutions of TRPM3 cause intellectual disability and epilepsy. Eur. J. Hum. Genet. 27, 1611–1618 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Van Hoeymissen, E. et al. Gain of channel function and modified gating properties in TRPM3 mutants causing intellectual disability and epilepsy. Elife 9, e57190 (2020).

    PubMed  PubMed Central  Google Scholar 

  66. Burglen, L. et al. Gain-of-function variants in the ion channel gene TRPM3 underlie a spectrum of neurodevelopmental disorders. Elife 12, e81032 (2023).

    PubMed  PubMed Central  Google Scholar 

  67. Lines, M. A. et al. Phenotypic spectrum of the recurrent TRPM3 p.(Val837Met) substitution in seven individuals with global developmental delay and hypotonia. Am. J. Med. Genet. A 188, 1667–1675 (2022).

    CAS  PubMed  Google Scholar 

  68. Grimm, C., Kraft, R., Sauerbruch, S., Schultz, G. & Harteneck, C. Molecular and functional characterization of the melastatin-related cation channel TRPM3. J. Biol. Chem. 278, 21493–21501 (2003).

    CAS  PubMed  Google Scholar 

  69. Siroky, B. J. et al. Primary cilia regulate the osmotic stress response of renal epithelial cells through TRPM3. Am. J. Physiol. Ren. Physiol. 312, F791–F805 (2017).

    CAS  Google Scholar 

  70. Kleene, S. J. et al. The TRPP2-dependent channel of renal primary cilia also requires TRPM3. PLoS ONE 14, e0214053 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Yamaguchi, H., Matsushita, M., Nairn, A. C. & Kuriyan, J. Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity. Mol. Cell 7, 1047–1057 (2001).

    CAS  PubMed  Google Scholar 

  72. Ryazanov, A. G. et al. Identification of a new class of protein kinases represented by eukaryotic elongation factor-2 kinase. Proc. Natl Acad. Sci. USA 94, 4884–4889 (1997).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  73. Montell, C. et al. A unified nomenclature for the superfamily of TRP cation channels. Mol. Cell 9, 229–231 (2002).

    CAS  PubMed  Google Scholar 

  74. Kerschbaum, H. H. & Cahalan, M. D. Single-channel recording of a store-operated Ca2+ channel in Jurkat T lymphocytes. Science 283, 836–839 (1999).

    CAS  PubMed  ADS  Google Scholar 

  75. Prakriya, M. & Lewis, R. S. Separation and characterization of currents through store-operated CRAC channels and Mg2+-inhibited cation (MIC) channels. J. Gen. Physiol. 119, 487–507 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kozak, J. A., Kerschbaum, H. H. & Cahalan, M. D. Distinct properties of CRAC and MIC channels in RBL cells. J. Gen. Physiol. 120, 221–235 (2002).

    PubMed  PubMed Central  Google Scholar 

  77. Nadler, M. J. et al. LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 411, 590–595 (2001).

    CAS  PubMed  ADS  Google Scholar 

  78. Schmitz, C. et al. Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 114, 191–200 (2003).

    CAS  PubMed  Google Scholar 

  79. Clapham, D. E., Runnels, L. W. & Strubing, C. The TRP ion channel family. Nat. Rev. Neurosci. 2, 387–396 (2001).

    CAS  PubMed  Google Scholar 

  80. Fleig, A. & Chubanov, V. TRPM7. Handb. Exp. Pharmacol. 222, 521–546 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Mittermeier, L. et al. TRPM7 is the central gatekeeper of intestinal mineral absorption essential for postnatal survival. Proc. Natl Acad. Sci. USA 116, 4706–4715 (2019).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  82. Abiria, S. A. et al. TRPM7 senses oxidative stress to release Zn2+ from unique intracellular vesicles. Proc. Natl Acad. Sci. USA 114, E6079–E6088 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Monteilh-Zoller, M. K. et al. TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J. Gen. Physiol. 121, 49–60 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Faouzi, M., Kilch, T., Horgen, F. D., Fleig, A. & Penner, R. The TRPM7 channel kinase regulates store-operated calcium entry. J. Physiol. 595, 3165–3180 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Demeuse, P., Penner, R. & Fleig, A. TRPM7 channel is regulated by magnesium nucleotides via its kinase domain. J. Gen. Physiol. 127, 421–434 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Schmidt, E. et al. Structural mechanism of TRPM7 channel regulation by intracellular magnesium. Cell Mol. Life Sci. 79, 225 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kozak, J. A., Matsushita, M., Nairn, A. C. & Cahalan, M. D. Charge screening by internal pH and polyvalent cations as a mechanism for activation, inhibition, and rundown of TRPM7/MIC channels. J. Gen. Physiol. 126, 499–514 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Xie, J. et al. Phosphatidylinositol 4,5-bisphosphate (PIP2) controls magnesium gatekeeper TRPM6 activity. Sci. Rep. 1, 146 (2011).

    PubMed  PubMed Central  Google Scholar 

  89. Clark, K. et al. Massive autophosphorylation of the Ser/Thr-rich domain controls protein kinase activity of TRPM6 and TRPM7. PLoS ONE 3, e1876 (2008).

    PubMed  PubMed Central  ADS  Google Scholar 

  90. Matsushita, M. et al. Channel function is dissociated from the intrinsic kinase activity and autophosphorylation of TRPM7/ChaK1. J. Biol. Chem. 280, 20793–20803 (2005).

    CAS  PubMed  Google Scholar 

  91. Kollewe, A. et al. The molecular appearance of native TRPM7 channel complexes identified by high-resolution proteomics. Elife 10, e68544 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Brandao, K., Deason-Towne, F., Zhao, X., Perraud, A. L. & Schmitz, C. TRPM6 kinase activity regulates TRPM7 trafficking and inhibits cellular growth under hypomagnesic conditions. Cell Mol. Life Sci. 71, 4853–4867 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Dorovkov, M. V. & Ryazanov, A. G. Phosphorylation of annexin I by TRPM7 channel-kinase. J. Biol. Chem. 279, 50643–50646 (2004).

    CAS  PubMed  Google Scholar 

  94. Clark, K. et al. TRPM7 regulates myosin IIA filament stability and protein localization by heavy chain phosphorylation. J. Mol. Biol. 378, 790–803 (2008).

    PubMed  PubMed Central  Google Scholar 

  95. Perraud, A. L., Zhao, X., Ryazanov, A. G. & Schmitz, C. The channel-kinase TRPM7 regulates phosphorylation of the translational factor eEF2 via eEF2-k. Cell Signal. 23, 586–593 (2011).

    CAS  PubMed  Google Scholar 

  96. Dorovkov, M. V., Beznosov, S. N., Shah, S., Kotlianskaia, L. & Kostiukova, A. S. Effect of mutations imitating the phosphorylation by TRPM7 kinase on the function of the N-terminal domain of tropomodulin [Russian]. Biofizika 53, 943–949 (2008).

    CAS  PubMed  Google Scholar 

  97. Deason-Towne, F., Perraud, A. L. & Schmitz, C. Identification of Ser/Thr phosphorylation sites in the C2-domain of phospholipase C γ2 (PLCγ2) using TRPM7-kinase. Cell Signal. 24, 2070–2075 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Romagnani, A. et al. TRPM7 kinase activity is essential for T cell colonization and alloreactivity in the gut. Nat. Commun. 8, 1917 (2017).

    PubMed  PubMed Central  ADS  Google Scholar 

  99. Voringer, S. et al. Inhibition of TRPM7 blocks MRTF/SRF-dependent transcriptional and tumorigenic activity. Oncogene 39, 2328–2344 (2020).

    CAS  PubMed  Google Scholar 

  100. Ogata, K. et al. The crucial role of the TRPM7 kinase domain in the early stage of amelogenesis. Sci. Rep. 7, 18099 (2017).

    PubMed  PubMed Central  ADS  Google Scholar 

  101. Desai, B. N. et al. Cleavage of TRPM7 releases the kinase domain from the ion channel and regulates its participation in Fas-induced apoptosis. Dev. Cell 22, 1149–1162 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Krapivinsky, G., Krapivinsky, L., Manasian, Y. & Clapham, D. E. The TRPM7 chanzyme is cleaved to release a chromatin-modifying kinase. Cell 157, 1061–1072 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Bai, Z. et al. CNNM proteins selectively bind to the TRPM7 channel to stimulate divalent cation entry into cells. PLoS Biol. 19, e3001496 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Runnels, L. W., Yue, L. & Clapham, D. E. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291, 1043–1047 (2001).

    CAS  PubMed  ADS  Google Scholar 

  105. Schappe, M. S. et al. Efferocytosis requires periphagosomal Ca2+-signaling and TRPM7-mediated electrical activity. Nat. Commun. 13, 3230 (2022).

    PubMed  PubMed Central  ADS  Google Scholar 

  106. Schappe, M. S. et al. Chanzyme TRPM7 mediates the Ca2+ influx essential for lipopolysaccharide-induced toll-like receptor 4 endocytosis and macrophage activation. Immunity 48, 59–74.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Mendu, S. K. et al. Targeting the ion channel TRPM7 promotes the thymic development of regulatory T cells by promoting IL-2 signaling. Sci. Signal. 13, eaab0619 (2020).

    Google Scholar 

  108. Jin, J. et al. Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science 322, 756–760 (2008).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  109. Sah, R. et al. Ion channel-kinase TRPM7 is required for maintaining cardiac automaticity. Proc. Natl Acad. Sci. USA 110, E3037–E3046 (2013).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  110. Ryazanova, L. V. et al. Elucidating the role of the TRPM7 alpha-kinase: TRPM7 kinase inactivation leads to magnesium deprivation resistance phenotype in mice. Sci. Rep. 4, 7599 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Chubanov, V. & Gudermann, T. Mapping TRPM7 function by NS8593. Int. J. Mol. Sci. 21, 7017 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Bates-Withers, C., Sah, R. & Clapham, D. E. TRPM7, the Mg2+ inhibited channel and kinase. Adv. Exp. Med. Biol. 704, 173–183 (2011).

    CAS  PubMed  Google Scholar 

  113. Ryazanova, L. V. et al. TRPM7 is essential for Mg2+ homeostasis in mammals. Nat. Commun. 1, 109 (2010).

    PubMed  ADS  Google Scholar 

  114. Schutz, A. et al. Trophectoderm cell failure leads to peri-implantation lethality in Trpm7-deficient mouse embryos. Cell Rep. 37, 109851 (2021).

    PubMed  Google Scholar 

  115. Jin, J. et al. The channel kinase, TRPM7, is required for early embryonic development. Proc. Natl Acad. Sci. USA 109, E225–E233 (2012).

    CAS  PubMed  Google Scholar 

  116. Sah, R. et al. The timing of myocardial Trpm7 deletion during cardiogenesis variably disrupts adult ventricular function, conduction and repolarization. Circulation 128, 101–114 (2013).

    CAS  PubMed  Google Scholar 

  117. Rios, F. J. et al. Chanzyme TRPM7 protects against cardiovascular inflammation and fibrosis. Cardiovasc. Res. 116, 721–735 (2020).

    CAS  PubMed  Google Scholar 

  118. Zou, Z. G., Rios, F. J., Montezano, A. C. & Touyz, R. M. TRPM7, magnesium, and signaling. Int. J. Mol. Sci. 20, 1877 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Antunes, T. T. et al. Transient receptor potential melastatin 7 cation channel kinase: new player in angiotensin II-induced hypertension. Hypertension 67, 763–773 (2016).

    CAS  PubMed  Google Scholar 

  120. Rios, F. J. et al. TRPM7 deficiency exacerbates cardiovascular and renal damage induced by aldosterone-salt. Commun. Biol. 5, 746 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Zierler, S. et al. TRPM7 kinase activity regulates murine mast cell degranulation. J. Physiol. 594, 2957–2970 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Suzuki, S., Penner, R. & Fleig, A. TRPM7 contributes to progressive nephropathy. Sci. Rep. 10, 2333 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  123. Suzuki, S., Fleig, A. & Penner, R. CBGA ameliorates inflammation and fibrosis in nephropathy. Sci. Rep. 13, 6341 (2023).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  124. Stritt, S. et al. Defects in TRPM7 channel function deregulate thrombopoiesis through altered cellular Mg2+ homeostasis and cytoskeletal architecture. Nat. Commun. 7, 11097 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  125. Gualdani, R. et al. A TRPM7 mutation linked to familial trigeminal neuralgia: omega current and hyperexcitability of trigeminal ganglion neurons. Proc. Natl Acad. Sci. USA 119, e2119630119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Voets, T. et al. TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J. Biol. Chem. 279, 19–25 (2004).

    CAS  PubMed  Google Scholar 

  127. Zhang, Z. et al. The TRPM6 kinase domain determines the Mg.ATP sensitivity of TRPM7/M6 heteromeric ion channels. J. Biol. Chem. 289, 5217–5227 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Ferioli, S. et al. TRPM6 and TRPM7 differentially contribute to the relief of heteromeric TRPM6/7 channels from inhibition by cytosolic Mg2+ and Mg·ATP. Sci. Rep. 7, 8806 (2017).

    PubMed  PubMed Central  ADS  Google Scholar 

  129. Chubanov, V. et al. Epithelial magnesium transport by TRPM6 is essential for prenatal development and adult survival. Elife 5, e20914 (2016).

    PubMed  PubMed Central  Google Scholar 

  130. Zhang, Z. et al. N-Myc-induced up-regulation of TRPM6/TRPM7 channels promotes neuroblastoma cell proliferation. Oncotarget 5, 7625–7634 (2014).

    PubMed  PubMed Central  Google Scholar 

  131. Chubanov, V., Gudermann, T. & Schlingmann, K. P. Essential role for TRPM6 in epithelial magnesium transport and body magnesium homeostasis. Pflugers Arch. 451, 228–234 (2005).

    CAS  PubMed  Google Scholar 

  132. Krapivinsky, G. et al. Histone phosphorylation by TRPM6’s cleaved kinase attenuates adjacent arginine methylation to regulate gene expression. Proc. Natl Acad. Sci. USA 114, E7092–E7100 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Cao, G. et al. Methionine sulfoxide reductase B1 (MsrB1) recovers TRPM6 channel activity during oxidative stress. J. Biol. Chem. 285, 26081–26087 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Cao, G. et al. Regulation of the epithelial Mg2+ channel TRPM6 by estrogen and the associated repressor protein of estrogen receptor activity (REA). J. Biol. Chem. 284, 14788–14795 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Cao, G. et al. RACK1 inhibits TRPM6 activity via phosphorylation of the fused α-kinase domain. Curr. Biol. 18, 168–176 (2008).

    CAS  PubMed  Google Scholar 

  136. Walder, R. Y. et al. Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat. Genet. 31, 171–174 (2002).

    CAS  PubMed  Google Scholar 

  137. Schlingmann, K. P. et al. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat. Genet. 31, 166–170 (2002).

    CAS  PubMed  Google Scholar 

  138. Friedman, M., Hatcher, G. & Watson, L. Primary hypomagnesaemia with secondary hypocalcaemia in an infant. Lancet 1, 703–705 (1967).

    CAS  PubMed  Google Scholar 

  139. Vargas-Poussou, R. et al. Possible role for rare TRPM7 variants in patients with hypomagnesemia with secondary hypocalcemia. Nephrol. Dial. Transpl. 38, 679–690 (2022).

    Google Scholar 

  140. Konrad, M., Schlingmann, K. P. & Gudermann, T. Insights into the molecular nature of magnesium homeostasis. Am. J. Physiol. Ren. Physiol. 286, F599–F605 (2004).

    CAS  Google Scholar 

  141. Walder, R. Y. et al. Mice defective in Trpm6 show embryonic mortality and neural tube defects. Hum. Mol. Genet. 18, 4367–4375 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Funato, Y., Yamazaki, D., Okuzaki, D., Yamamoto, N. & Miki, H. Importance of the renal ion channel TRPM6 in the circadian secretion of renin to raise blood pressure. Nat. Commun. 12, 3683 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  143. Perraud, A. L. et al. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411, 595–599 (2001).

    CAS  PubMed  ADS  Google Scholar 

  144. Shen, B. W., Perraud, A. L., Scharenberg, A. & Stoddard, B. L. The crystal structure and mutational analysis of human NUDT9. J. Mol. Biol. 332, 385–398 (2003).

    CAS  PubMed  Google Scholar 

  145. Sano, Y. et al. Immunocyte Ca2+ influx system mediated by LTRPC2. Science 293, 1327–1330 (2001).

    CAS  PubMed  ADS  Google Scholar 

  146. Kolisek, M., Beck, A., Fleig, A. & Penner, R. Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels. Mol. Cell 18, 61–69 (2005).

    CAS  PubMed  Google Scholar 

  147. Hara, Y. et al. LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol. Cell 9, 163–173 (2002).

    CAS  PubMed  Google Scholar 

  148. Perraud, A. L. et al. Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels. J. Biol. Chem. 280, 6138–6148 (2005).

    CAS  PubMed  Google Scholar 

  149. Toth, B. & Csanady, L. Identification of direct and indirect effectors of the transient receptor potential melastatin 2 (TRPM2) cation channel. J. Biol. Chem. 285, 30091–30102 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. McHugh, D., Flemming, R., Xu, S. Z., Perraud, A. L. & Beech, D. J. Critical intracellular Ca2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation. J. Biol. Chem. 278, 11002–11006 (2003).

    CAS  PubMed  Google Scholar 

  151. Toth, B. & Csanady, L. Pore collapse underlies irreversible inactivation of TRPM2 cation channel currents. Proc. Natl Acad. Sci. USA 109, 13440–13445 (2012).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  152. Song, K. et al. The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. Science 353, 1393–1398 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  153. Tan, C. H. & McNaughton, P. A. The TRPM2 ion channel is required for sensitivity to warmth. Nature 536, 460–463 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  154. Yamamoto, S. et al. TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat. Med. 14, 738–747 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Di, A. et al. The redox-sensitive cation channel TRPM2 modulates phagocyte ROS production and inflammation. Nat. Immunol. 13, 29–34 (2011).

    PubMed  PubMed Central  Google Scholar 

  156. Uchida, K. et al. Lack of TRPM2 impaired insulin secretion and glucose metabolisms in mice. Diabetes 60, 119–126 (2011).

    CAS  PubMed  Google Scholar 

  157. Haraguchi, K. et al. TRPM2 contributes to inflammatory and neuropathic pain through the aggravation of pronociceptive inflammatory responses in mice. J. Neurosci. 32, 3931–3941 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Wang, G. et al. Oxidant sensing by TRPM2 inhibits neutrophil migration and mitigates inflammation. Dev. Cell 38, 453–462 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Miller, B. A. et al. The second member of transient receptor potential-melastatin channel family protects hearts from ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 304, H1010–H1022 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Alim, I., Teves, L., Li, R., Mori, Y. & Tymianski, M. Modulation of NMDAR subunit expression by TRPM2 channels regulates neuronal vulnerability to ischemic cell death. J. Neurosci. 33, 17264–17277 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Ostapchenko, V. G. et al. The transient receptor potential melastatin 2 (TRPM2) channel contributes to β-amyloid oligomer-related neurotoxicity and memory impairment. J. Neurosci. 35, 15157–15169 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Gao, G. et al. TRPM2 mediates ischemic kidney injury and oxidant stress through RAC1. J. Clin. Invest. 124, 4989–5001 (2014).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  163. Eraslan, E., Tanyeli, A., Polat, E. & Polat, E. 8-Br-cADPR, a TRPM2 ion channel antagonist, inhibits renal ischemia-reperfusion injury. J. Cell Physiol. 234, 4572–4581 (2019).

    CAS  PubMed  Google Scholar 

  164. Tsavaler, L., Shapero, M. H., Morkowski, S. & Laus, R. Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res. 61, 3760–3769 (2001).

    CAS  PubMed  Google Scholar 

  165. McKemy, D. D., Neuhausser, W. M. & Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416, 52–58 (2002).

    CAS  PubMed  ADS  Google Scholar 

  166. Peier, A. M. et al. A TRP channel that senses cold stimuli and menthol. Cell 108, 705–715 (2002).

    CAS  PubMed  Google Scholar 

  167. Voets, T. et al. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430, 748–754 (2004).

    CAS  PubMed  ADS  Google Scholar 

  168. Rohacs, T., Lopes, C. M., Michailidis, I. & Logothetis, D. E. PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat. Neurosci. 8, 626–634 (2005).

    CAS  PubMed  Google Scholar 

  169. Mohandass, A. et al. TRPM8 as the rapid testosterone signaling receptor: implications in the regulation of dimorphic sexual and social behaviors. FASEB J. 34, 10887–10906 (2020).

    CAS  PubMed  Google Scholar 

  170. Knowlton, W. M., Bifolck-Fisher, A., Bautista, D. M. & McKemy, D. D. TRPM8, but not TRPA1, is required for neural and behavioral responses to acute noxious cold temperatures and cold-mimetics in vivo. Pain 150, 340–350 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Bautista, D. M. et al. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448, 204–208 (2007).

    CAS  PubMed  ADS  Google Scholar 

  172. Dhaka, A. et al. TRPM8 is required for cold sensation in mice. Neuron 54, 371–378 (2007).

    CAS  PubMed  Google Scholar 

  173. Colburn, R. W. et al. Attenuated cold sensitivity in TRPM8 null mice. Neuron 54, 379–386 (2007).

    CAS  PubMed  Google Scholar 

  174. Liu, B. et al. TRPM8 is the principal mediator of menthol-induced analgesia of acute and inflammatory pain. Pain 154, 2169–2177 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Parra, A. et al. Ocular surface wetness is regulated by TRPM8-dependent cold thermoreceptors of the cornea. Nat. Med. 16, 1396–1399 (2010).

    CAS  PubMed  Google Scholar 

  176. Ramachandran, R. et al. TRPM8 activation attenuates inflammatory responses in mouse models of colitis. Proc. Natl Acad. Sci. USA 110, 7476–7481 (2013).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  177. Uvin, P. et al. Essential role of transient receptor potential M8 (TRPM8) in a model of acute cold-induced urinary urgency. Eur. Urol. 68, 655–661 (2015).

    CAS  PubMed  Google Scholar 

  178. Anand, U., Korchev, Y. & Anand, P. The role of urea in neuronal degeneration and sensitization: an in vitro model of uremic neuropathy. Mol. Pain. 15, 1744806919881038 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Prawitt, D. et al. TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i. Proc. Natl Acad. Sci. USA 100, 15166–15171 (2003).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  180. Liu, D. & Liman, E. R. Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc. Natl Acad. Sci. USA 100, 15160–15165 (2003).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  181. Nilius, B. et al. Voltage dependence of the Ca2+-activated cation channel TRPM4. J. Biol. Chem. 278, 30813–30820 (2003).

    CAS  PubMed  Google Scholar 

  182. Zhang, Z., Okawa, H., Wang, Y. & Liman, E. R. Phosphatidylinositol 4,5-bisphosphate rescues TRPM4 channels from desensitization. J. Biol. Chem. 280, 39185–39192 (2005).

    CAS  PubMed  Google Scholar 

  183. Talavera, K. et al. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438, 1022–1025 (2005).

    CAS  PubMed  ADS  Google Scholar 

  184. Ullrich, N. D. et al. Comparison of functional properties of the Ca2+-activated cation channels TRPM4 and TRPM5 from mice. Cell Calcium 37, 267–278 (2005).

    CAS  PubMed  Google Scholar 

  185. Colquhoun, D., Neher, E., Reuter, H. & Stevens, C. F. Inward current channels activated by intracellular Ca in cultured cardiac cells. Nature 294, 752–754 (1981).

    CAS  PubMed  ADS  Google Scholar 

  186. Vennekens, R. et al. Increased IgE-dependent mast cell activation and anaphylactic responses in mice lacking the calcium-activated nonselective cation channel TRPM4. Nat. Immunol. 8, 312–320 (2007).

    CAS  PubMed  Google Scholar 

  187. Mathar, I. et al. Increased catecholamine secretion contributes to hypertension in TRPM4-deficient mice. J. Clin. Invest. 120, 3267–3279 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Schattling, B. et al. TRPM4 cation channel mediates axonal and neuronal degeneration in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat. Med. 18, 1805–1811 (2012).

    CAS  PubMed  Google Scholar 

  189. Launay, P. et al. TRPM4 regulates calcium oscillations after T cell activation. Science 306, 1374–1377 (2004).

    CAS  PubMed  ADS  Google Scholar 

  190. Barbet, G. et al. The calcium-activated nonselective cation channel TRPM4 is essential for the migration but not the maturation of dendritic cells. Nat. Immunol. 9, 1148–1156 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Gerzanich, V. et al. De novo expression of Trpm4 initiates secondary hemorrhage in spinal cord injury. Nat. Med. 15, 185–191 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Kruse, M. et al. Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I. J. Clin. Invest. 119, 2737–2744 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Stallmeyer, B. et al. Mutational spectrum in the Ca2+-activated cation channel gene TRPM4 in patients with cardiac conductance disturbances. Hum. Mutat. 33, 109–117 (2012).

    CAS  PubMed  Google Scholar 

  194. Liu, H. et al. Molecular genetics and functional anomalies in a series of 248 Brugada cases with 11 mutations in the TRPM4 channel. PLoS ONE 8, e54131 (2013).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  195. Guinamard, R., Paulais, M., Lourdel, S. & Teulon, J. A calcium-permeable non-selective cation channel in the thick ascending limb apical membrane of the mouse kidney. Biochim. Biophys. Acta 1818, 1135–1141 (2012).

    CAS  PubMed  Google Scholar 

  196. Flannery, R. J., Kleene, N. K. & Kleene, S. J. A TRPM4-dependent current in murine renal primary cilia. Am. J. Physiol. Ren. Physiol. 309, F697–F707 (2015).

    CAS  Google Scholar 

  197. Bergmann, C. et al. Polycystic kidney disease. Nat. Rev. Dis. Prim. 4, 50 (2018).

    PubMed  Google Scholar 

  198. Prawitt, D. et al. Identification and characterization of MTR1, a novel gene with homology to melastatin (MLSN1) and the trp gene family located in the BWS-WT2 critical region on chromosome 11p15.5 and showing allele-specific expression. Hum. Mol. Genet. 9, 203–216 (2000).

    CAS  PubMed  Google Scholar 

  199. Zhang, Y. et al. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112, 293–301 (2003).

    CAS  PubMed  Google Scholar 

  200. Perez, C. A. et al. A transient receptor potential channel expressed in taste receptor cells. Nat. Neurosci. 5, 1169–1176 (2002).

    CAS  PubMed  Google Scholar 

  201. Colsoul, B. et al. Loss of high-frequency glucose-induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in Trpm5−/− mice. Proc. Natl Acad. Sci. USA 107, 5208–5213 (2010).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  202. Kaske, S. et al. TRPM5, a taste-signaling transient receptor potential ion-channel, is a ubiquitous signaling component in chemosensory cells. BMC Neurosci. 8, 49 (2007).

    PubMed  PubMed Central  Google Scholar 

  203. Deckmann, K. et al. Cholinergic urethral brush cells are widespread throughout placental mammals. Int. Immunopharmacol. 29, 51–56 (2015).

    CAS  PubMed  Google Scholar 

  204. Kotas, M. E., O’Leary, C. E. & Locksley, R. M. Tuft cells: context- and tissue-specific programming for a conserved cell lineage. Annu. Rev. Pathol. 18, 311–335 (2023).

    CAS  PubMed  Google Scholar 

  205. Schneider, C., O’Leary, C. E. & Locksley, R. M. Regulation of immune responses by tuft cells. Nat. Rev. Immunol. 19, 584–593 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Deckmann, K. et al. Bitter triggers acetylcholine release from polymodal urethral chemosensory cells and bladder reflexes. Proc. Natl Acad. Sci. USA 111, 8287–8292 (2014).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  207. Schreibing, F. & Kramann, R. Mapping the human kidney using single-cell genomics. Nat. Rev. Nephrol. 18, 347–360 (2022).

    PubMed  Google Scholar 

Download references

Acknowledgements

V.C., M.K. and T.G. were supported by the Deutsche Forschungsgemeinschaft (DFG), TRR 152 (project ID 239283807, DFG). T.G. was supported by Research Training Group 2338 (DFG). M.K. was supported by SFB1453 (project ID 431984000, DFG) and Germany’s Excellence Strategy (project ID 390939984, CIBSS EXC-2189). R.M.T. was supported by The Canada Research Chair Program (Canadian Institutes of Health Research) and the Dr Phil Gold Chair in Medicine (McGill University, Montreal).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content and wrote, reviewed or edited the manuscript before submission.

Corresponding authors

Correspondence to Vladimir Chubanov or Thomas Gudermann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Y. Mori, T. Voets and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

ON-bipolar neurons

Retinal metabotropic neurons with two processes, which transfer information from the photoreceptor cells (rods and cones) to ganglion cells.

ORAI channels

Pore-forming membrane proteins that function as store-operated Ca2+ entry (SOCE) channels, which are also termed Ca2+ release-activated calcium (CRAC) channels.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chubanov, V., Köttgen, M., Touyz, R.M. et al. TRPM channels in health and disease. Nat Rev Nephrol 20, 175–187 (2024). https://doi.org/10.1038/s41581-023-00777-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-023-00777-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing