Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Kidney lipid dysmetabolism and lipid droplet accumulation in chronic kidney disease

Abstract

Chronic kidney disease (CKD) is a global health problem with rising incidence and prevalence. Among several pathogenetic mechanisms responsible for disease progression, lipid accumulation in the kidney parenchyma might drive inflammation and fibrosis, as has been described in fatty liver diseases. Lipids and their metabolites have several important structural and functional roles, as they are constituents of cell and organelle membranes, serve as signalling molecules and are used for energy production. However, although lipids can be stored in lipid droplets to maintain lipid homeostasis, lipid accumulation can become pathogenic. Understanding the mechanisms linking kidney parenchymal lipid accumulation to CKD of metabolic or non-metabolic origin is challenging, owing to the tremendous variety of lipid species and their functional diversity across different parenchymal cells. Nonetheless, multiple research reports have begun to emphasize the effect of dysregulated kidney lipid metabolism in CKD progression. For example, altered cholesterol and fatty acid metabolism contribute to glomerular and tubular cell injury. Newly developed lipid-targeting agents are being tested in clinical trials in CKD, raising expectations for further therapeutic development in this field.

Key points

  • Lipids and lipid-related enzymes have a major role in modulating the function of glomerular and tubular cells, and can drive chronic kidney disease (CKD) irrespective of circulating lipid levels.

  • The mechanisms that initiate the accumulation of kidney lipids might differ between CKD of different aetiologies. Thus, the accumulation of kidney lipids in diabetic kidney disease is driven by increased glucose and fatty acids levels owing to insulin resistance, whereas in glomerulonephritis, inflammation can disrupt normal kidney lipid metabolism.

  • Several lipid species, such as cholesterol, triglycerides, fatty acids and phospholipids, are dysregulated in podocytes, endothelial and tubular cells, and contribute to CKD progression.

  • Accumulation of kidney parenchymal cholesterol occurs in association with impaired reverse cholesterol transport in diseases of both metabolic and non-metabolic origin, and contributes to CKD progression.

  • Accumulation of fatty acids triggers mitochondrial and kidney cell damage by promoting inflammation, including cellular sterile inflammation, via innate immune system activation and fibrosis; lipophagy has a protective effect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Main mechanisms of fatty acid dysregulation in health and CKD.
Fig. 2: Main mechanism of cholesterol dysregulation in health and CKD.

Similar content being viewed by others

References

  1. Webster, A. C., Nagler, E. V., Morton, R. L. & Masson, P. Chronic kidney disease. Lancet 389, 1238–1252 (2017).

    PubMed  Google Scholar 

  2. Shankland, S. J., Freedman, B. S. & Pippin, J. W. Can podocytes be regenerated in adults? Curr. Opin. Nephrol. Hypertens. 26, 154–164 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lasagni, L. et al. Podocyte regeneration driven by renal progenitors determines glomerular disease remission and can be pharmacologically enhanced. Stem Cell Rep. 5, 248–263 (2015).

    CAS  Google Scholar 

  4. Kaverina, N. V., Eng, D. G., Schneider, R. R., Pippin, J. W. & Shankland, S. J. Partial podocyte replenishment in experimental FSGS derives from nonpodocyte sources. Am. J. Physiol. Renal Physiol. 310, F1397–F1413 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hackl, M. J. et al. Tracking the fate of glomerular epithelial cells in vivo using serial multiphoton imaging in new mouse models with fluorescent lineage tags. Nat. Med. 19, 1661–1666 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Humphreys, B. D. Mechanisms of renal fibrosis. Annu. Rev. Physiol. 80, 309–326 (2018).

    CAS  PubMed  Google Scholar 

  7. Emanuelsson, F., Nordestgaard, B. G. & Benn, M. Familial hypercholesterolemia and risk of peripheral arterial disease and chronic kidney disease. J. Clin. Endocrinol. Metab. 103, 4491–4500 (2018).

    PubMed  Google Scholar 

  8. Weldegiorgis, M. & Woodward, M. Elevated triglycerides and reduced high-density lipoprotein cholesterol are independently associated with the onset of advanced chronic kidney disease: a cohort study of 911,360 individuals from the United Kingdom. BMC Nephrol. 23, 312 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Pauley, M. E. et al. Triglyceride content of lipoprotein subclasses and kidney hemodynamic function and injury in adolescents with type 1 diabetes. J. Diabetes Complicat. 37, 108384 (2023).

    CAS  Google Scholar 

  10. Rubinow, K. B. et al. Kidney function is associated with an altered protein composition of high-density lipoprotein. Kidney Int. 92, 1526–1535 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Herman-Edelstein, M., Scherzer, P., Tobar, A., Levi, M. & Gafter, U. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J. Lipid Res. 55, 561–572 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Merscher-Gomez, S. et al. Cyclodextrin protects podocytes in diabetic kidney disease. Diabetes 62, 3817–3827 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ducasa, G. M. et al. ATP-binding cassette A1 deficiency causes cardiolipin-driven mitochondrial dysfunction in podocytes. J. Clin. Invest. 129, 3387–3400 (2019).

    PubMed  PubMed Central  Google Scholar 

  14. Proctor, G. et al. Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis in akita and OVE26 mice with type 1 diabetes. Diabetes 55, 2502–2509 (2006).

    CAS  PubMed  Google Scholar 

  15. Meyrier, A. Nephrosclerosis: a term in quest of a disease. Nephron 129, 276–282 (2015).

    CAS  PubMed  Google Scholar 

  16. Haruyama, N. et al. Subclinical nephrosclerosis is linked to left ventricular hypertrophy independent of classical atherogenic factors. Hypertens. Res. 37, 472–477 (2014).

    PubMed  Google Scholar 

  17. Lovric, S. et al. Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency. J. Clin. Invest. 127, 912–928 (2017).

    PubMed  PubMed Central  Google Scholar 

  18. Prasad, R. et al. Sphingosine-1-phosphate lyase mutations cause primary adrenal insufficiency and steroid-resistant nephrotic syndrome. J. Clin. Invest. 127, 942–953 (2017).

    PubMed  PubMed Central  Google Scholar 

  19. Müller-Deile, J. et al. Novel diagnostic and therapeutic techniques reveal changed metabolic profiles in recurrent focal segmental glomerulosclerosis. Sci. Rep. 11, 4577 (2021).

    PubMed  PubMed Central  Google Scholar 

  20. Vivarelli, M., Massella, L., Ruggiero, B. & Emma, F. Minimal change disease. Clin. J. Am. Soc. Nephrol. 12, 332–345 (2017).

    CAS  PubMed  Google Scholar 

  21. Mitrofanova, A. et al. Hydroxypropyl-β-cyclodextrin protects from kidney disease in experimental Alport syndrome and focal segmental glomerulosclerosis. Kidney Int. 94, 1151–1159 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, X. et al. Sterol-O-acyltransferase-1 has a role in kidney disease associated with diabetes and Alport syndrome. Kidney Int. 98, 1275–1285 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ding, W. et al. Osteopontin deficiency ameliorates Alport pathology by preventing tubular metabolic deficits. JCI Insight 3, e94818 (2018).

    PubMed  PubMed Central  Google Scholar 

  24. Su, X. et al. Effect of statins on kidney disease outcomes: a systematic review and meta-analysis. Am. J. Kidney Dis. 67, 881–892 (2016).

    CAS  PubMed  Google Scholar 

  25. Shamburek, R. D. et al. Familial lecithin:cholesterol acyltransferase deficiency: first-in-human treatment with enzyme replacement. J. Clin. Lipidol. 10, 356–367 (2016).

    PubMed  Google Scholar 

  26. Rickards, E. Remarks on the fatty transformation of the kidney. Br. Med. J. 2, 2–3 (1883).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Minami, S. et al. Lipophagy maintains energy homeostasis in the kidney proximal tubule during prolonged starvation. Autophagy 13, 1629–1647 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao, C. et al. PACS-2 deficiency in tubular cells aggravates lipid-related kidney injury in diabetic kidney disease. Mol. Med. 28, 117 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Csaki, L. S. et al. Lipin-1 and lipin-3 together determine adiposity in vivo. Mol. Metab. 3, 145–154 (2014).

    CAS  PubMed  Google Scholar 

  30. Liu, X., Du, H., Sun, Y. & Shao, L. Role of abnormal energy metabolism in the progression of chronic kidney disease and drug intervention. Ren. Fail. 44, 790–805 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Czajka, A. & Malik, A. N. Hyperglycemia induced damage to mitochondrial respiration in renal mesangial and tubular cells: Implications for diabetic nephropathy. Redox Biol. 10, 100–107 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Forbes, J. M. & Thorburn, D. R. Mitochondrial dysfunction in diabetic kidney disease. Nat. Rev. Nephrol. 14, 291–312 (2018).

    CAS  PubMed  Google Scholar 

  33. Khan, S. et al. Fatty acid transport protein-2 regulates glycemic control and diabetic kidney disease progression. JCI Insight 5, e136845 (2020).

    PubMed  PubMed Central  Google Scholar 

  34. Tsai, I. T. et al. FABP1 and FABP2 as markers of diabetic nephropathy. Int. J. Med. Sci. 17, 2338–2345 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yokoi, H. & Yanagita, M. Targeting the fatty acid transport protein CD36, a class B scavenger receptor, in the treatment of renal disease. Kidney Int. 89, 740–742 (2016).

    CAS  PubMed  Google Scholar 

  36. Alkhatatbeh, M. J., Enjeti, A. K., Acharya, S., Thorne, R. F. & Lincz, L. F. The origin of circulating CD36 in type 2 diabetes. Nutr. Diabetes 3, e59–e59 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim, H. J. et al. A novel index using soluble CD36 is associated with the prevalence of type 2 diabetes mellitus: comparison study with triglyceride-glucose index. Endocrinol. Metab. 32, 375–382 (2017).

    CAS  Google Scholar 

  38. Shiju, T. M., Mohan, V., Balasubramanyam, M. & Viswanathan, P. Soluble CD36 in plasma and urine: a plausible prognostic marker for diabetic nephropathy. J. Diabetes Complicat. 29, 400–406 (2015).

    Google Scholar 

  39. Ekici, M., Kisa, U., Arikan Durmaz, S., Ugur, E. & Nergiz-Unal, R. Fatty acid transport receptor soluble CD36 and dietary fatty acid pattern in type 2 diabetic patients: a comparative study. Br. J. Nutr. 119, 153–162 (2018).

    CAS  PubMed  Google Scholar 

  40. Castelblanco, E. et al. Circulating soluble CD36 is similar in type 1 and type 2 diabetes mellitus versus non-diabetic subjects. J. Clin. Med. 8, 710 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Thi, T. N. D., Gia, B. N., Thi, H. L. L., Thi, T. N. C. & Thanh, H. P. Evaluation of urinary L-FABP as an early marker for diabetic nephropathy in type 2 diabetic patients. J. Med. Biochem. 39, 224–230 (2020).

    PubMed  PubMed Central  Google Scholar 

  42. Ito, H. et al. Current metabolic status affects urinary liver-type fatty-acid binding protein in normoalbuminuric patients with type 2 diabetes. J. Clin. Med. Res. 9, 366–373 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tanaka, M. et al. Significance of urinary fatty acid-binding protein 4 level as a possible biomarker for the identification of minimal change disease in patents with nephrotic-range proteinuria. BMC Nephrol. 21, 459 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Su, H.-Y., Hsu, B.-G., Lin, Y.-L., Wang, C.-H. & Lai, Y.-H. Serum adipocyte fatty acid-binding protein level is positively associated with aortic stiffness in nondialysis chronic kidney disease patients: a cross-sectional study. Medicine 101, e29558 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Houten, S. M., Wanders, R. J. A. & Ranea-Robles, P. Metabolic interactions between peroxisomes and mitochondria with a special focus on acylcarnitine metabolism. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165720 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Violante, S. et al. Peroxisomes can oxidize medium- and long-chain fatty acids through a pathway involving ABCD3 and HSD17B4. FASEB J. 33, 4355–4364 (2019).

    CAS  PubMed  Google Scholar 

  47. Nakagawa, S. et al. Molecular markers of tubulointerstitial fibrosis and tubular cell damage in patients with chronic kidney disease. PLoS One 10, e0136994 (2015).

    PubMed  PubMed Central  Google Scholar 

  48. Woroniecka, K. I. et al. Transcriptome analysis of human diabetic kidney disease. Diabetes 60, 2354–2369 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Sun, H., Yuan, Y. & Sun, Z. L. Cholesterol contributes to diabetic nephropathy through SCAP-SREBP-2 pathway. Int. J. Endocrinol. 2013, 592576 (2013).

    PubMed  PubMed Central  Google Scholar 

  50. Yang, X. et al. CD36 in chronic kidney disease: novel insights and therapeutic opportunities. Nat. Rev. Nephrol. 13, 769–781 (2017).

    CAS  PubMed  Google Scholar 

  51. Yang, X. et al. CD36 promotes podocyte apoptosis by activating the pyrin domain-containing-3 (NLRP3) inflammasome in primary nephrotic syndrome. Med. Sci. Monit. 24, 6832–6839 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim, J. J. et al. Discoidin domain receptor 1 activation links extracellular matrix to podocyte lipotoxicity in Alport syndrome. EBioMedicine 63, 103162 (2021).

    CAS  PubMed  Google Scholar 

  53. Wei Hua, L. P. et al. CD36-mediated podocyte lipotoxicity promotes foot process effacement. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-2454690/v1 (2023).

    Article  PubMed  Google Scholar 

  54. Gao, Q. et al. Overexpression of heart-type fatty acid binding protein enhances fatty acid-induced podocyte injury. Exp. Ther. Med. 15, 2054–2061 (2018).

    CAS  PubMed  Google Scholar 

  55. Chen, H. M., Zheng, C. X., Gao, Q., Ge, Y. C. & Liu, Z. H. Heart-type fatty acid binding protein is associated with proteinuria in obesity. PLoS One 7, e45691 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Falkevall, A. et al. Reducing VEGF-B signaling ameliorates renal lipotoxicity and protects against diabetic kidney disease. Cell Metab. 25, 713–726 (2017).

    CAS  PubMed  Google Scholar 

  57. Bobulescu, I. A. Renal lipid metabolism and lipotoxicity. Curr. Opin. Nephrol. Hypertens. 19, 393–402 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Rahman, M. et al. Relation of serum lipids and lipoproteins with progression of CKD: the CRIC study. Clin. J. Am. Soc. Nephrol. 9, 1190–1198 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Feng, L., Gu, C., Li, Y. & Huang, J. High glucose promotes CD36 expression by upregulating peroxisome proliferator-activated receptor γ levels to exacerbate lipid deposition in renal tubular cells. Biomed. Res. Int. 2017, 1414070 (2017).

    PubMed  PubMed Central  Google Scholar 

  60. Kennedy, D. J. et al. CD36 and Na/K-ATPase-α1 form a proinflammatory signaling loop in kidney. Hypertension 61, 216–224 (2013).

    CAS  PubMed  Google Scholar 

  61. Kang, H. M. et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 21, 37–46 (2015).

    CAS  PubMed  Google Scholar 

  62. Khan, S. et al. Kidney proximal tubule lipoapoptosis is regulated by fatty acid transporter-2 (FATP2). J. Am. Soc. Nephrol. 29, 81–91 (2018).

    CAS  PubMed  Google Scholar 

  63. Chen, Y. et al. Involvement of FATP2-mediated tubular lipid metabolic reprogramming in renal fibrogenesis. Cell Death Dis. 11, 994 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Cheng, L. et al. Zoledronate dysregulates fatty acid metabolism in renal tubular epithelial cells to induce nephrotoxicity. Arch. Toxicol. 92, 469–485 (2018).

    CAS  PubMed  Google Scholar 

  65. Bryant, C. et al. Alternatively spliced landscape of PPARγ mRNA in podocytes is distinct from adipose tissue. Cells 11, 3455 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Pistrosch, F. et al. Rosiglitazone improves glomerular hyperfiltration, renal endothelial dysfunction, and microalbuminuria of incipient diabetic nephropathy in patients. Diabetes 54, 2206–2211 (2005).

    CAS  PubMed  Google Scholar 

  67. Agarwal, R. et al. A pilot randomized controlled trial of renal protection with pioglitazone in diabetic nephropathy. Kidney Int. 68, 285–292 (2005).

    CAS  PubMed  Google Scholar 

  68. Park, C. W. et al. Accelerated diabetic nephropathy in mice lacking the peroxisome proliferator-activated receptor alpha. Diabetes 55, 885–893 (2006).

    CAS  PubMed  Google Scholar 

  69. Matsushita, Y. et al. Activation of peroxisome proliferator-activated receptor delta inhibits streptozotocin-induced diabetic nephropathy through anti-inflammatory mechanisms in mice. Diabetes 60, 960–968 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Declèves, A. E. et al. Regulation of lipid accumulation by AMP-activated kinase [corrected] in high fat diet-induced kidney injury. Kidney Int. 85, 611–623 (2014).

    PubMed  Google Scholar 

  71. Hong, Q. et al. Increased podocyte Sirtuin-1 function attenuates diabetic kidney injury. Kidney Int. 93, 1330–1343 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, Q. et al. Faster lipid β-oxidation rate by acetyl-CoA carboxylase 2 inhibition alleviates high-glucose-induced insulin resistance via SIRT1/PGC-1α in human podocytes. J. Biochem. Mol. Toxicol. 35, e22797 (2021).

    CAS  PubMed  Google Scholar 

  73. Woo, C. Y. et al. Inhibition of ceramide accumulation in podocytes by myriocin prevents diabetic nephropathy. Diabetes Metab. J. 44, 581–591 (2020).

    PubMed  Google Scholar 

  74. Fucho, R., Casals, N., Serra, D. & Herrero, L. Ceramides and mitochondrial fatty acid oxidation in obesity. FASEB J. 31, 1263–1272 (2017).

    CAS  PubMed  Google Scholar 

  75. Chen, Y. et al. The inhibition of Nrf2 accelerates renal lipid deposition through suppressing the ACSL1 expression in obesity-related nephropathy. Ren. Fail. 41, 821–831 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Maeda, S. et al. A single nucleotide polymorphism within the acetyl-coenzyme A carboxylase beta gene is associated with proteinuria in patients with type 2 diabetes. PLoS Genet. 6, e1000842 (2010).

    PubMed  PubMed Central  Google Scholar 

  77. Shah, V. N. et al. ACACβ gene (rs2268388) and AGTR1 gene (rs5186) polymorphism and the risk of nephropathy in Asian Indian patients with type 2 diabetes. Mol. Cell Biochem. 372, 191–198 (2013).

    CAS  PubMed  Google Scholar 

  78. Kayampilly, P., Roeser, N., Rajendiran, T. M., Pennathur, S. & Afshinnia, F. Acetyl Co-A carboxylase inhibition halts hyperglycemia induced upregulation of de novo lipogenesis in podocytes and proximal tubular cells. Metabolites 12, 940 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lee, M. et al. Phosphorylation of acetyl-CoA carboxylase by AMPK reduces renal fibrosis and is essential for the anti-fibrotic effect of metformin. J. Am. Soc. Nephrol. 29, 2326–2336 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Dhillon, P. et al. The nuclear receptor ESRRA protects from kidney disease by coupling metabolism and differentiation. Cell Metab. 33, 379–394.e378 (2021).

    CAS  PubMed  Google Scholar 

  81. Iwaki, T. et al. PPARα contributes to protection against metabolic and inflammatory derangements associated with acute kidney injury in experimental sepsis. Physiol. Rep. 7, e14078 (2019).

    PubMed  PubMed Central  Google Scholar 

  82. Jang, H. S. et al. Proximal tubule cyclophilin D regulates fatty acid oxidation in cisplatin-induced acute kidney injury. Kidney Int. 97, 327–339 (2020).

    CAS  PubMed  Google Scholar 

  83. Chung, K. W. et al. Impairment of PPARα and the fatty acid oxidation pathway aggravates renal fibrosis during aging. J. Am. Soc. Nephrol. 29, 1223–1237 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Li, J. et al. STAT6 contributes to renal fibrosis by modulating PPARα-mediated tubular fatty acid oxidation. Cell Death Dis. 13, 66 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Jao, T. M. et al. ATF6α downregulation of PPARα promotes lipotoxicity-induced tubulointerstitial fibrosis. Kidney Int. 95, 577–589 (2019).

    CAS  PubMed  Google Scholar 

  86. Darshi, M. et al. Crabtree effect in kidney proximal tubule cells via late-stage glycolytic intermediates. iScience 26, 106462 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Song, J., Yang, X. & Yan, L. J. Role of pseudohypoxia in the pathogenesis of type 2 diabetes. Hypoxia 7, 33–40 (2019).

    PubMed  PubMed Central  Google Scholar 

  88. Menezes, L. F., Lin, C. C., Zhou, F. & Germino, G. G. Fatty acid oxidation is impaired in an orthologous mouse model of autosomal dominant polycystic kidney disease. EBioMedicine 5, 183–192 (2016).

    PubMed  PubMed Central  Google Scholar 

  89. Lakhia, R. et al. PPARα agonist fenofibrate enhances fatty acid β-oxidation and attenuates polycystic kidney and liver disease in mice. Am. J. Physiol. Renal Physiol. 314, F122–F131 (2018).

    PubMed  Google Scholar 

  90. Jiang, T., Liebman, S. E., Lucia, M. S., Li, J. & Levi, M. Role of altered renal lipid metabolism and the sterol regulatory element binding proteins in the pathogenesis of age-related renal disease. Kidney Int. 68, 2608–2620 (2005).

    CAS  PubMed  Google Scholar 

  91. Chung, K. W. et al. PPARα/β activation alleviates age-associated renal fibrosis in Sprague Dawley rats. J. Gerontol. A Biol. Sci. Med. Sci. 75, 452–458 (2020).

    CAS  PubMed  Google Scholar 

  92. Miguel, V. et al. Renal tubule Cpt1a overexpression protects from kidney fibrosis by restoring mitochondrial homeostasis. J. Clin. Invest, 131, e140695 (2021).

    CAS  PubMed  Google Scholar 

  93. Piret, S. E. et al. Loss of proximal tubular transcription factor Krüppel-like factor 15 exacerbates kidney injury through loss of fatty acid oxidation. Kidney Int. 100, 1250–1267 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Chung, K. W. et al. Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis. Cell Metab. 30, 784–799.e785 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Hashimoto, T. Peroxisomal β-oxidation: enzymology and molecular biology. Ann. N. Y. Acad. Sci. 804, 86–98 (1996).

    CAS  PubMed  Google Scholar 

  96. Chang, C. L. et al. Spastin tethers lipid droplets to peroxisomes and directs fatty acid trafficking through ESCRT-III. J. Cell Biol. 218, 2583–2599 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Ding, L. et al. Peroxisomal β-oxidation acts as a sensor for intracellular fatty acids and regulates lipolysis. Nat. Metab. 3, 1648–1661 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Gulati, S. et al. Ischemia-reperfusion injury: biochemical alterations in peroxisomes of rat kidney. Arch. Biochem. Biophys. 295, 90–100 (1992).

    CAS  PubMed  Google Scholar 

  99. Ibrahim, I. Y., Elbassuoni, E. A., Ragy, M. M. & Habeeb, W. N. Gender difference in the development of cardiac lesions following acute ischemic-reperfusion renal injury in albino rats. Gen. Physiol. Biophys. 32, 421–428 (2013).

    CAS  PubMed  Google Scholar 

  100. Negishi, K. et al. A role of liver fatty acid-binding protein in cisplatin-induced acute renal failure. Kidney Int. 72, 348–358 (2007).

    CAS  PubMed  Google Scholar 

  101. Wang, Y. et al. Peroxisome-generated succinate induces lipid accumulation and oxidative stress in the kidneys of diabetic mice. J. Biol. Chem. 298, 101660 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Dhaunsi, G. S. & Bitar, M. S. Antioxidants attenuate diabetes-induced activation of peroxisomal functions in the rat kidney. J. Biomed. Sci. 11, 566–570 (2004).

    CAS  PubMed  Google Scholar 

  103. Hwang, I. et al. Catalase deficiency accelerates diabetic renal injury through peroxisomal dysfunction. Diabetes 61, 728–738 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Sas, K. M. et al. Tissue-specific metabolic reprogramming drives nutrient flux in diabetic complications. JCI Insight 1, e86976 (2016).

    PubMed  PubMed Central  Google Scholar 

  105. Baek, J. et al. The deacylase sirtuin 5 reduces malonylation in nonmitochondrial metabolic pathways in diabetic kidney disease. J. Biol. Chem. 299, 102960 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Joven, J. et al. Abnormalities of lipoprotein metabolism in patients with the nephrotic syndrome. N. Engl. J. Med. 323, 579–584 (1990).

    CAS  PubMed  Google Scholar 

  107. Valdete, T.-S. & Valdete, H. in Cellular Metabolism and Related Disorders Ch. 9 (eds Khan, J. & Hsieh, P.-S.) (IntechOpen, 2019).

  108. Vaziri, N. D., Sato, T. & Liang, K. Molecular mechanisms of altered cholesterol metabolism in rats with spontaneous focal glomerulosclerosis. Kidney Int. 63, 1756–1763 (2003).

    CAS  PubMed  Google Scholar 

  109. Baigent, C. et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet 377, 2181–2192 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Jiang, T. et al. Farnesoid X receptor modulates renal lipid metabolism, fibrosis, and diabetic nephropathy. Diabetes 56, 2485–2493 (2007).

    CAS  PubMed  Google Scholar 

  111. Wang, X. X. et al. The farnesoid X receptor modulates renal lipid metabolism and diet-induced renal inflammation, fibrosis, and proteinuria. Am. J. Physiol. Renal Physiol. 297, F1587–F1596 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang, X. X. et al. FXR/TGR5 Dual agonist prevents progression of nephropathy in diabetes and obesity. J. Am. Soc. Nephrol. 29, 118–137 (2018).

    CAS  PubMed  Google Scholar 

  113. Levy, E. et al. Intestinal cholesterol transport proteins: an update and beyond. Curr. Opin. Lipidol. 18, 310–318 (2007).

    CAS  PubMed  Google Scholar 

  114. Caldas, Y. A. et al. Liver X receptor-activating ligands modulate renal and intestinal sodium-phosphate transporters. Kidney Int. 80, 535–544 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Liu, P. et al. Association between LXR-α and ABCA1 gene polymorphisms and the risk of diabetic kidney disease in patients with type 2 diabetes mellitus in a Chinese Han population. J. Diabetes Res. 2020, 8721536 (2020).

    PubMed  PubMed Central  Google Scholar 

  116. Pedigo, C. E. et al. Local TNF causes NFATc1-dependent cholesterol-mediated podocyte injury. J. Clin. Invest. 126, 3336–3350 (2016).

    PubMed  PubMed Central  Google Scholar 

  117. Wright, M. B. et al. Compounds targeting OSBPL7 increase ABCA1-dependent cholesterol efflux preserving kidney function in two models of kidney disease. Nat. Commun. 12, 4662 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Byun, J. H. et al. Inhibitory antibodies against PCSK9 reduce surface CD36 and mitigate diet-induced renal lipotoxicity. Kidney360 3, 1394–1410 (2022).

    PubMed  PubMed Central  Google Scholar 

  119. Haas, M. E. The role of proprotein convertase subtilisin/kexin type 9 in nephrotic syndrome-associated hypercholesterolemia. Circulation 134, 61–72 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Buraczynska, M., Jacob, J., Gwiazda-Tyndel, K. & Ksiazek, A. LDLR gene polymorphism (rs688) affects susceptibility to cardiovascular disease in end-stage kidney disease patients. BMC Nephrol. 22, 316 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Guo, Q., Feng, X. & Zhou, Y. PCSK9 variants in familial hypercholesterolemia: a comprehensive synopsis. Front. Genet. 11, 1020 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Yang, Q. et al. Sirt6 deficiency aggravates angiotensin II-induced cholesterol accumulation and injury in podocytes. Theranostics 10, 7465–7479 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Fu, Y. et al. Elevation of JAML promotes diabetic kidney disease by modulating podocyte lipid metabolism. Cell Metab. 32, 1052–1062.e1058 (2020).

    CAS  PubMed  Google Scholar 

  124. Vaziri, N. D., Kim, C. H., Phan, D., Kim, S. & Liang, K. Up-regulation of hepatic Acyl CoA: diacylglycerol acyltransferase-1 (DGAT-1) expression in nephrotic syndrome. Kidney Int. 66, 262–267 (2004).

    CAS  PubMed  Google Scholar 

  125. Zhong, F. et al. ANGPTL3 impacts proteinuria and hyperlipidemia in primary nephrotic syndrome. Lipids Health Dis. 21, 38 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Liu, J. et al. A novel role of angiopoietin-like-3 associated with podocyte injury. Pediatr. Res. 77, 732–739 (2015).

    CAS  PubMed  Google Scholar 

  127. Chen, W. et al. Atgl deficiency induces podocyte apoptosis and leads to glomerular filtration barrier damage. FEBS J. 284, 1070–1081 (2017).

    CAS  PubMed  Google Scholar 

  128. Freedman, B. I., Limou, S., Ma, L. & Kopp, J. B. APOL1-associated nephropathy: a key contributor to racial disparities in CKD. Am. J. Kidney Dis. 72, S8–s16 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Ge, M. et al. APOL1 risk variants affect podocyte lipid homeostasis and energy production in focal segmental glomerulosclerosis. Hum. Mol. Genet. 30, 182–197 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Chun, J. et al. Recruitment of APOL1 kidney disease risk variants to lipid droplets attenuates cell toxicity. Proc. Natl Acad. Sci. USA 116, 3712–3721 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhao, K. et al. Activation of FXR protects against renal fibrosis via suppressing Smad3 expression. Sci. Rep. 6, 37234 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kim, D. H. et al. Src-mediated crosstalk between FXR and YAP protects against renal fibrosis. FASEB J. 33, 11109–11122 (2019).

    CAS  PubMed  Google Scholar 

  133. Zhou, W. & Anakk, S. Enterohepatic and non-canonical roles of farnesoid X receptor in controlling lipid and glucose metabolism. Mol. Cell. Endocrinol. 549, 111616 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Kim, D.-H. et al. The role of the farnesoid X receptor in kidney health and disease: a potential therapeutic target in kidney diseases. Exp. Mol. Med. 55, 304–312 (2023).

    PubMed  PubMed Central  Google Scholar 

  135. Zhou, B. et al. Activation of farnesoid X receptor downregulates visfatin and attenuates diabetic nephropathy. Mol. Cell Endocrinol. 419, 72–82 (2016).

    CAS  PubMed  Google Scholar 

  136. Wu, D. et al. Vaccine against PCSK9 improved renal fibrosis by regulating fatty acid β‐oxidation. J. Am. Heart Assoc. 9, e014358 (2020).

    CAS  PubMed  Google Scholar 

  137. Wu, M. M. et al. Lovastatin attenuates hypertension induced by renal tubule-specific knockout of ATP-binding cassette transporter A1, by inhibiting epithelial sodium channels. Br. J. Pharmacol. 176, 3695–3711 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Tsun, J. G. et al. Cellular cholesterol transport proteins in diabetic nephropathy. PLoS One 9, e105787 (2014).

    PubMed  PubMed Central  Google Scholar 

  139. Baumer, Y., McCurdy, S. G. & Boisvert, W. A. Formation and cellular impact of cholesterol crystals in health and disease. Adv. Biol. 5, 2100638 (2021).

    CAS  Google Scholar 

  140. Del Sordo, R. et al. Cholesterol crystals tubulointerstitial injury during nephrotic syndrome; can be classified as tubular crystallopathy? J. Nephropathol. 10, e20–e20 (2021).

    Google Scholar 

  141. Olzmann, J. A. & Carvalho, P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 20, 137–155 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Cui, L. & Liu, P. Two types of contact between lipid droplets and mitochondria. Front. Cell Dev. Biol. 8, 618322 (2020).

    PubMed  PubMed Central  Google Scholar 

  143. Yang, W. et al. Ectopic lipid accumulation: potential role in tubular injury and inflammation in diabetic kidney disease. Clin. Sci. 132, 2407–2422 (2018).

    CAS  Google Scholar 

  144. Kume, S. et al. Role of altered renal lipid metabolism in the development of renal injury induced by a high-fat diet. J. Am. Soc. Nephrol. 18, 2715–2723 (2007).

    CAS  PubMed  Google Scholar 

  145. Saito, K. et al. Lipid accumulation and transforming growth factor-β upregulation in the kidneys of rats administered angiotensin II. Hypertension 46, 1180–1185 (2005).

    CAS  PubMed  Google Scholar 

  146. Kiss, E. et al. Lipid droplet accumulation is associated with an increase in hyperglycemia-induced renal damage: prevention by liver X receptors. Am. J. Pathol. 182, 727–741 (2013).

    CAS  PubMed  Google Scholar 

  147. Pérez-Martí, A. et al. Reducing lipid bilayer stress by monounsaturated fatty acids protects renal proximal tubules in diabetes. eLife 11, e74391 (2022).

    PubMed  PubMed Central  Google Scholar 

  148. Xie, Y. H. et al. Role of the CTRP6/AMPK pathway in kidney fibrosis through the promotion of fatty acid oxidation. Eur. J. Pharmacol. 892, 173755 (2021).

    CAS  PubMed  Google Scholar 

  149. Liu, L. et al. Twist1 downregulation of PGC-1α decreases fatty acid oxidation in tubular epithelial cells, leading to kidney fibrosis. Theranostics 12, 3758–3775 (2022).

    PubMed  PubMed Central  Google Scholar 

  150. Chen, Z. et al. Oxidative stress and lipid dysregulation in lipid droplets: a connection to chronic kidney disease revealed in human kidney cells. Antioxidants 11, 1387 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Lubojemska, A. et al. Adipose triglyceride lipase protects renal cell endocytosis in a Drosophila dietary model of chronic kidney disease. PLoS Biol. 19, e3001230 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Chen, R.-X. et al. The renal manifestations of type 4 familial partial lipodystrophy: a case report and review of literature. BMC Nephrol. 19, 111 (2018).

    PubMed  PubMed Central  Google Scholar 

  153. Wang, Y. et al. Perilipin expression in human adipose tissues: effects of severe obesity, gender, and depot. Obes. Res. 11, 930–936 (2003).

    CAS  PubMed  Google Scholar 

  154. Ju, L. et al. Obesity-associated inflammation triggers an autophagy–lysosomal response in adipocytes and causes degradation of perilipin 1. Cell Death Dis. 10, 121 (2019).

    PubMed  PubMed Central  Google Scholar 

  155. Jun, H. et al. In vivo and in vitro effects of SREBP-1 on diabetic renal tubular lipid accumulation and RNAi-mediated gene silencing study. Histochem. Cell Biol. 131, 327–345 (2009).

    PubMed  Google Scholar 

  156. Kim, J. J. et al. British Society for Matrix Biology spring 2022 meeting. Int. J. Exp. Pathol. 103, A1–A8 (2022).

    Google Scholar 

  157. Mallela, S. K. et al. Sphingomyelin phosphodiesterase acid like 3B (SMPDL3b) regulates Perilipin5 (PLIN5) expression and mediates lipid droplet formation. Genes Dis. 9, 1397–1400 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Mitrofanova, A. et al. SMPDL3b modulates insulin receptor signaling in diabetic kidney disease. Nat. Commun. 10, 2692 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Mallela, S. K., Mitrofanova, A., Merscher, S. & Fornoni, A. Regulation of the amount of ceramide-1-phosphate synthesized in differentiated human podocytes. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864, 158517 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Feng, J. et al. Perilipin 5 ameliorates high-glucose-induced podocyte injury via Akt/GSK-3β/Nrf2-mediated suppression of apoptosis, oxidative stress, and inflammation. Biochem. Biophys. Res. Commun. 544, 22–30 (2021).

    CAS  PubMed  Google Scholar 

  161. Yoshioka, K. et al. Lysophosphatidylcholine mediates fast decline in kidney function in diabetic kidney disease. Kidney Int. 101, 510–526 (2022).

    CAS  PubMed  Google Scholar 

  162. Li, H., Dixon, E. E., Wu, H. & Humphreys, B. D. Comprehensive single-cell transcriptional profiling defines shared and unique epithelial injury responses during kidney fibrosis. Cell Metab. 34, 1977–1998.e1979 (2022).

    CAS  PubMed  Google Scholar 

  163. Sørensen, I. M. et al. Apolipoprotein M in patients with chronic kidney disease. Atherosclerosis 275, 304–311 (2018).

    PubMed  Google Scholar 

  164. Drexler, Y. et al. Identification of glomerular and plasma apolipoprotein M as novel biomarkers in glomerular disease. Kidney Int. Rep. 8, 884–897 (2023).

    PubMed  PubMed Central  Google Scholar 

  165. Ferrans, V. J. & Fredrickson, D. S. The pathology of Tangier disease. A light and electron microscopic study. Am. J. Pathol. 78, 101–158 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Mende, C. & Einhorn, D. Fatty kidney disease: the importance of ectopic fat deposition and the potential value of imaging. J. Diabetes 14, 73–78 (2022).

    PubMed  Google Scholar 

  167. Jiang, Z. et al. Obesity and chronic kidney disease. Am. J. Physiol. Endocrinol. Metab. 324, E24–E41 (2023).

    CAS  PubMed  Google Scholar 

  168. Chughtai, H. L. et al. Renal sinus fat and poor blood pressure control in middle-aged and elderly individuals at risk for cardiovascular events. Hypertension 56, 901–906 (2010).

    CAS  PubMed  Google Scholar 

  169. Wagner, R. et al. The protective effect of human renal sinus fat on glomerular cells is reversed by the hepatokine fetuin-A. Sci. Rep. 7, 2261 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Wagner, R. et al. Exercise-induced albuminuria is associated with perivascular renal sinus fat in individuals at increased risk of type 2 diabetes. Diabetologia 55, 2054–2058 (2012).

    CAS  PubMed  Google Scholar 

  171. Shen, Y. et al. Renal fat fraction is significantly associated with the risk of chronic kidney disease in patients with type 2 diabetes. Front. Endocrinol. 13, 995028 (2022).

    Google Scholar 

  172. Spit, K. A. et al. Renal sinus fat and renal hemodynamics: a cross-sectional analysis. MAGMA 33, 73–80 (2020).

    PubMed  Google Scholar 

  173. Krievina, G. et al. Ectopic adipose tissue storage in the left and the right renal sinus is asymmetric and associated with serum kidney injury molecule-1 and fibroblast growth factor-21 levels increase. EBioMedicine 13, 274–283 (2016).

    PubMed  PubMed Central  Google Scholar 

  174. Zelicha, H. et al. Changes of renal sinus fat and renal parenchymal fat during an 18-month randomized weight loss trial. Clin. Nutr. 37, 1145–1153 (2018).

    PubMed  Google Scholar 

  175. Schaub, J. A. et al. SGLT2 inhibitors mitigate kidney tubular metabolic and mTORC1 perturbations in youth onset type 2 diabetes. J. Clin. Invest. 133, e164486 (2023).

    PubMed  PubMed Central  Google Scholar 

  176. Marzolla, V. et al. The novel non-steroidal MR antagonist finerenone improves metabolic parameters in high-fat diet-fed mice and activates brown adipose tissue via AMPK-ATGL pathway. FASEB J. 34, 12450–12465 (2020).

    CAS  PubMed  Google Scholar 

  177. Ge, M. et al. Empagliflozin reduces podocyte lipotoxicity in experimental Alport syndrome. eLife 12, e83353 (2023).

    PubMed  PubMed Central  Google Scholar 

  178. Hayder, Z. S. & Kareem, Z. S. Resistin hormone in diabetic kidney disease and its relation to iron status and hepcidin. Int. Urol. Nephrol. 52, 749–756 (2020).

    CAS  PubMed  Google Scholar 

  179. Ng, X.-N., Tang, C.-C., Wang, C.-H., Tsai, J.-P. & Hsu, B.-G. Positive correlation of serum resistin level with peripheral artery disease in patients with chronic kidney disease stage 3 to 5. Int. J. Environ. Res. Public. Health 18, 12746 (2021).

    PubMed  PubMed Central  Google Scholar 

  180. Li, H.-F., Liu, H.-T., Chen, P.-Y., Lin, H. & Tseng, T.-L. Role of PVAT in obesity-related cardiovascular disease through the buffering activity of ATF3. iScience 25, 105631 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Agabiti-Rosei, C. et al. Anticontractile activity of perivascular fat in obese mice and the effect of long-term treatment with melatonin. J. Hypertens. 32, 1264–1274 (2014).

    CAS  PubMed  Google Scholar 

  182. Wang, M. et al. Deletion of seipin attenuates vascular function and the anticontractile effect of perivascular adipose tissue. Front. Cardiovasc. Med. 8, 706924 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Zou, L. et al. Spontaneous hypertension occurs with adipose tissue dysfunction in perilipin-1 null mice. Biochim. Biophys. Acta 1862, 182–191 (2016).

    CAS  PubMed  Google Scholar 

  184. Qi, X. Y. et al. Perivascular adipose tissue (PVAT) in atherosclerosis: a double-edged sword. Cardiovasc. Diabetol. 17, 134 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Ouyang, A., Olver, T. D., Emter, C. A. & Fleenor, B. S. Chronic exercise training prevents coronary artery stiffening in aortic-banded miniswine: Role of perivascular adipose-derived advanced glycation end products. J. Appl. Physiol. 127, 816–827 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Chen, X. et al. GLP-1 alleviates NLRP3 inflammasome-dependent inflammation in perivascular adipose tissue by inhibiting the NF-κB signalling pathway. J. Int. Med. Res. 49, 300060521992981 (2021).

    CAS  PubMed  Google Scholar 

  187. Hildebrand, S., Stümer, J. & Pfeifer, A. PVAT and its relation to brown, beige, and white adipose tissue in development and function. Front. Physiol. 9, 70 (2018).

    PubMed  PubMed Central  Google Scholar 

  188. Kim, S. J., Choi, Y., Choi, Y. H. & Park, T. Obesity activates toll-like receptor-mediated proinflammatory signaling cascades in the adipose tissue of mice. J. Nutr. Biochem. 23, 113–122 (2012).

    CAS  PubMed  Google Scholar 

  189. Song, M. J., Kim, K. H., Yoon, J. M. & Kim, J. B. Activation of Toll-like receptor 4 is associated with insulin resistance in adipocytes. Biochem. Biophys. Res. Commun. 346, 739–745 (2006).

    CAS  PubMed  Google Scholar 

  190. Kiernan, R. N., Maddie, N. & Carrillo-Sepulveda, M. A. Western diet-induced hypertension involves HMGB1/TLR4 signaling in perivascular adipose tissue of female rats. FASEB J. 34, 1–1 (2020).

    Google Scholar 

  191. Mao, Y. et al. STING-IRF3 triggers endothelial inflammation in response to free fatty acid-induced mitochondrial damage in diet-induced obesity. Arterioscler. Thromb. Vasc. Biol. 37, 920–929 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Wu, J. et al. The key role of NLRP3 and STING in APOL1-associated podocytopathy. J. Clin. Invest. 131, e136329 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Yu, B. C. et al. Minimal change disease is associated with mitochondrial injury and STING pathway activation. J. Clin. Med. 11, 577 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Mitrofanova, A. et al. Activation of stimulator of IFN genes (STING) causes proteinuria and contributes to glomerular diseases. J. Am. Soc. Nephrol. 33, 2153–2173 (2022).

    CAS  PubMed  Google Scholar 

  195. Climent, E., Benaiges, D. & Pedro-Botet, J. Hydrophilic or lipophilic statins. Front. Cardiovasc. Med. 8, 687585 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Wanner, C., Tonelli, M. & Kidney Disease: Improving Global Outcomes Lipid Guideline Development Work Group Members. KDIGO clinical practice guideline for lipid management in CKD: Summary of recommendation statements and clinical approach to the patient. Kidney Int. 85, 1303–1309 (2014).

    CAS  PubMed  Google Scholar 

  197. Jin Kang, H. et al. Effects of low-dose niacin on dyslipidemia and serum phosphorus in patients with chronic kidney disease. Kidney Res. Clin. Pract. 32, 21–26 (2013).

    PubMed  Google Scholar 

  198. Pham, K. O. et al. Association between vitamin intake and chronic kidney disease according to a variant located upstream of the PTGS1 gene: a cross-sectional analysis of Shika study. Nutrients 14, 2082 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Robins, S. J. et al. Relation of gemfibrozil treatment and lipid levels with major coronary events: VA-HIT: a randomized controlled trial. J. Am. Med. Assoc. 285, 1585–1591 (2001).

    CAS  Google Scholar 

  200. Imai, E. & Imai, A. Effect of pemafibrate on serum creatinine in patients with chronic kidney disease. JMA J. 5, 328–333 (2022).

    PubMed  PubMed Central  Google Scholar 

  201. Hadjivasilis, A., Kouis, P., Kousios, A. & Panayiotou, A. The effect of fibrates on kidney function and chronic kidney disease progression: a systematic review and meta-analysis of randomised studies. J. Clin. Med. 11, 768 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Hakimizadeh, E. et al. Gemfibrozil, a lipid-lowering drug, improves hepatorenal damages in a mouse model of aging. Fundam. Clin. Pharmacol. 37, 599–605 (2023).

    CAS  PubMed  Google Scholar 

  203. Aomura, D. et al. Pemafibrate protects against fatty acid-induced nephropathy by maintaining renal fatty acid metabolism. Metabolites 11, 372 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Zheng, F. et al. Upregulation of type I collagen by TGF-β in mesangial cells is blocked by PPARγ activation. Am. J. Physiol. Renal Physiol. 282, F639–F648 (2002).

    CAS  PubMed  Google Scholar 

  205. Isshiki, K. et al. Thiazolidinedione compounds ameliorate glomerular dysfunction independent of their insulin-sensitizing action in diabetic rats. Diabetes 49, 1022–1032 (2000).

    CAS  PubMed  Google Scholar 

  206. Okada, T. et al. Thiazolidinediones ameliorate diabetic nephropathy via cell cycle-dependent mechanisms. Diabetes 55, 1666–1677 (2006).

    CAS  PubMed  Google Scholar 

  207. Ruan, X. Z. et al. PPAR agonists protect mesangial cells from interleukin 1β-induced intracellular lipid accumulation by activating the ABCA1 cholesterol efflux pathway. J. Am. Soc. Nephrol. 14, 593–600 (2003).

    CAS  PubMed  Google Scholar 

  208. Zhu, X. et al. Increased cellular free cholesterol in macrophage-specific Abca1 knock-out mice enhances pro-inflammatory response of macrophages. J. Biol. Chem. 283, 22930–22941 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Cid-Samamed, A., Rakmai, J., Mejuto, J. C., Simal-Gandara, J. & Astray, G. Cyclodextrins inclusion complex: preparation methods, analytical techniques and food industry applications. Food Chem. 384, 132467 (2022).

    CAS  PubMed  Google Scholar 

  210. Lewandowski, C. T. et al. Metabolomic analysis of a selective ABCA1 inducer in obesogenic challenge provides a rationale for therapeutic development. EBioMedicine 66, 103287 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Yin, Q. H. et al. Exendin-4 ameliorates lipotoxicity-induced glomerular endothelial cell injury by improving ABC transporter A1-mediated cholesterol efflux in diabetic apoE knockout mice. J. Biol. Chem. 291, 26487–26501 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Schlackow, I. et al. Cost-effectiveness of lipid lowering with statins and ezetimibe in chronic kidney disease. Kidney Int. 96, 170–179 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Heinrich, N. S. et al. Evaluation of the effects of ezetimibe on albuminuria and kidney fat in individuals with type 2 diabetes and chronic kidney disease. Diabetes Obes. Metab. https://doi.org/10.1111/dom.15146 (2023).

    Article  PubMed  Google Scholar 

  214. Hua, W. et al. CD36 mediated fatty acid-induced podocyte apoptosis via oxidative stress. PLoS One 10, e0127507 (2015).

    PubMed  PubMed Central  Google Scholar 

  215. Souza, A. C. P. et al. Antagonism of scavenger receptor CD36 by 5A peptide prevents chronic kidney disease progression in mice independent of blood pressure regulation. Kidney Int. 89, 809–822 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Hou, Y. et al. The antioxidant peptide SS31 prevents oxidative stress, downregulates CD36 and improves renal function in diabetic nephropathy. Nephrol. Dial. Transplant. 33, 1908–1918 (2018).

    CAS  PubMed  Google Scholar 

  217. Toth, P. P. et al. Efficacy and safety of lipid lowering by alirocumab in chronic kidney disease. Kidney Int. 93, 1397–1408 (2018).

    CAS  PubMed  Google Scholar 

  218. Charytan, D. M. et al. Efficacy and safety of evolocumab in chronic kidney disease in the FOURIER trial. J. Am. Coll. Cardiol. 73, 2961–2970 (2019).

    CAS  PubMed  Google Scholar 

  219. Warden, B. A. & Duell, P. B. Inclisiran: a novel agent for lowering apolipoprotein B-containing lipoproteins. J. Cardiovasc. Pharmacol. 78, e157–e174 (2021).

    CAS  PubMed  Google Scholar 

  220. Sakurai, M., Muso, E., Matushima, H., Ono, T. & Sasayama, S. Rapid normalization of interleukin-8 production after low-density lipoprotein apheresis in steroid-resistant nephrotic syndrome. Kidney Int. Suppl. 71, S210–S212 (1999).

    CAS  PubMed  Google Scholar 

  221. Wang, A. et al. Systematic review of low‐density lipoprotein cholesterol apheresis for the treatment of familial hypercholesterolemia. J. Am. Heart Assoc. 5, e003294 (2016).

    PubMed  PubMed Central  Google Scholar 

  222. Ai, J. Y., Zhao, P. C., Zhang, W. & Rao, G. W. Research progress in the clinical treatment of familial hypercholesterolemia. Curr. Med. Chem. https://doi.org/10.2174/0929867330666230202111849 (2023).

    Article  PubMed  Google Scholar 

  223. Al-Mousily, M., Nicoara, O., Selewski, D. T. & Twombley, K. Liposorber® LA-15 system for LDL apheresis in resistant nephrotic syndrome patients. Pediatr. Nephrol. 37, 585–592 (2022).

    PubMed  Google Scholar 

  224. Muso, E. et al. Favorable therapeutic efficacy of low-density lipoprotein apheresis for nephrotic syndrome with impaired renal function. Ther. Apher. Dial. 26, 220–228 (2022).

    CAS  PubMed  Google Scholar 

  225. Wang, X. X. et al. SGLT2 protein expression is increased in human diabetic nephropathy: SGLT2 protein inhibition decreases renal lipid accumulation, inflammation, and the development of nephropathy in diabetic mice. J. Biol. Chem. 292, 5335–5348 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Sun, H., Chen, J., Hua, Y., Zhang, Y. & Liu, Z. New insights into the role of empagliflozin on diabetic renal tubular lipid accumulation. Diabetol. Metab. Syndr. 14, 121 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Wanner, C. et al. Consistent effects of empagliflozin on cardiovascular and kidney outcomes irrespective of diabetic kidney disease categories: Insights from the EMPA-REG OUTCOME trial. Diabetes Obes. Metab. 22, 2335–2347 (2020).

    CAS  PubMed  Google Scholar 

  228. Wanner, C. et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N. Engl. J. Med. 375, 323–334 (2016).

    CAS  PubMed  Google Scholar 

  229. Perkovic, V. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 380, 2295–2306 (2019).

    CAS  PubMed  Google Scholar 

  230. The EMPA-KIDNEY Collaborative Group et al. Empagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 388, 117–127 (2023).

    Google Scholar 

  231. Heerspink, H. J. L. et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 383, 1436–1446 (2020).

    CAS  PubMed  Google Scholar 

  232. Kwon, S. et al. The long-term effects of metformin on patients with type 2 diabetic kidney disease. Diabetes Care 43, 948–955 (2020).

    CAS  PubMed  Google Scholar 

  233. Lin, C.-X. et al. Metformin attenuates cyclosporine A-induced renal fibrosis in rats. Transplantation 103, e285–e296 (2019).

    CAS  PubMed  Google Scholar 

  234. Satriano, J., Sharma, K., Blantz, R. C. & Deng, A. Induction of AMPK activity corrects early pathophysiological alterations in the subtotal nephrectomy model of chronic kidney disease. Am. J. Physiol. Renal Physiol. 305, F727–F733 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Neven, E. et al. Metformin prevents the development of severe chronic kidney disease and its associated mineral and bone disorder. Kidney Int. 94, 102–113 (2018).

    CAS  PubMed  Google Scholar 

  236. Abe, M., Okada, K. & Soma, M. Antidiabetic agents in patients with chronic kidney disease and end-stage renal disease on dialysis: metabolism and clinical practice. Curr. Drug. Metab. 12, 57–69 (2011).

    CAS  PubMed  Google Scholar 

  237. Roumie, C. L. et al. Association of treatment with metformin vs sulfonylurea with major adverse cardiovascular events among patients with diabetes and reduced kidney function. J. Am. Med. Assoc. 322, 1167–1177 (2019).

    CAS  Google Scholar 

  238. Marso, S. P. et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 375, 1834–1844 (2016).

    CAS  PubMed  Google Scholar 

  239. Hahr, A. J. & Molitch, M. E. Management of diabetes mellitus in patients with CKD: core curriculum 2022. Am. J. Kidney Dis. 79, 728–736 (2022).

    PubMed  Google Scholar 

  240. Eom, M., Hudkins, K. L. & Alpers, C. E. Foam cells and the pathogenesis of kidney disease. Curr. Opin. Nephrol. Hypertens. 24, 245–251 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Kaseda, R. et al. Chronic kidney disease alters lipid trafficking and inflammatory responses in macrophages: effects of liver X receptor agonism. BMC Nephrol. 19, 17 (2018).

    PubMed  PubMed Central  Google Scholar 

  242. Yan, P. et al. Association of remnant cholesterol with chronic kidney disease in middle-aged and elderly Chinese: a population-based study. Acta Diabetol. 58, 1615–1625 (2021).

    CAS  PubMed  Google Scholar 

  243. Nam, K. H. et al. Association between serum high‐density lipoprotein cholesterol levels and progression of chronic kidney disease: results from the KNOW‐CKD. J. Am. Heart Assoc. 8, e011162 (2019).

    PubMed  PubMed Central  Google Scholar 

  244. Pavanello, C. et al. Progression of chronic kidney disease in familial LCAT deficiency: a follow-up of the Italian cohort. J. Lipid Res. 61, 1784–1788 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Tsuruya, K. et al. Impact of the triglycerides to high-density lipoprotein cholesterol ratio on the incidence and progression of CKD: a longitudinal study in a large Japanese population. Am. J. Kidney Dis. 66, 972–983 (2015).

    CAS  PubMed  Google Scholar 

  246. Kim, J. et al. The ratio of triglycerides to high-density lipoprotein cholesterol is associated with the risk of chronic kidney disease in Korean men. Lipids 56, 475–483 (2021).

    CAS  PubMed  Google Scholar 

  247. Kim, Y. et al. Predictive value of triglyceride/high-density lipoprotein cholesterol for major clinical outcomes in advanced chronic kidney disease: a nationwide population-based study. Clin. Kidney J. 14, 1961–1968 (2020).

    PubMed  PubMed Central  Google Scholar 

  248. Itabe, H., Yamaguchi, T., Nimura, S. & Sasabe, N. Perilipins: a diversity of intracellular lipid droplet proteins. Lipids Health Dis. 16, 83 (2017).

    PubMed  PubMed Central  Google Scholar 

  249. Schroeder, B. et al. The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology 61, 1896–1907 (2015).

    CAS  PubMed  Google Scholar 

  250. Kaushik, S. & Cuervo, A. M. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat. Cell Biol. 17, 759–770 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Kaushik, S. & Cuervo, A. M. AMPK-dependent phosphorylation of lipid droplet protein PLIN2 triggers its degradation by CMA. Autophagy 12, 432–438 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Shin, D. W. Lipophagy: molecular mechanisms and implications in metabolic disorders. Mol. Cell 43, 686–693 (2020).

    CAS  Google Scholar 

  253. Li, Y. et al. CD36 plays a negative role in the regulation of lipophagy in hepatocytes through an AMPK-dependent pathway. J. Lipid Res. 60, 844–855 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Zhang, H. et al. Dynamic MTORC1-TFEB feedback signaling regulates hepatic autophagy, steatosis and liver injury in long-term nutrient oversupply. Autophagy 14, 1779–1795 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Zhang, Z. et al. Lipophagy and liver disease: new perspectives to better understanding and therapy. Biomed. Pharmacother. 97, 339–348 (2018).

    CAS  PubMed  Google Scholar 

  256. Han, Y. et al. Lipophagy deficiency exacerbates ectopic lipid accumulation and tubular cells injury in diabetic nephropathy. Cell Death Dis. 12, 1031 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Jung, H. S. et al. Loss of autophagy diminishes pancreatic β cell mass and function with resultant hyperglycemia. Cell Metab. 8, 318–324 (2008).

    CAS  PubMed  Google Scholar 

  258. Zhao, Y. et al. High dose Vitamin E attenuates diabetic nephropathy via alleviation of autophagic stress. Front. Physiol. 9, 1939 (2018).

    PubMed  Google Scholar 

  259. Liu, W. J. et al. Autophagy-lysosome pathway in renal tubular epithelial cells is disrupted by advanced glycation end products in diabetic nephropathy. J. Biol. Chem. 290, 20499–20510 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Merrick, D. et al. Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science 364, eaav2501 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Shao, M. et al. Cellular origins of beige fat cells revisited. Diabetes 68, 1874–1885 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  262. Cattaneo, P. et al. Parallel lineage-tracing studies establish fibroblasts as the prevailing in vivo adipocyte progenitor. Cell Rep. 30, 571–582.e572 (2020).

    CAS  PubMed  Google Scholar 

  263. Grigoraș, A. et al. Perirenal adipose tissue-current knowledge and future opportunities. J. Clin. Med. 10, 1291 (2021).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We give special thanks to the Katz family for their continuous support.

Author information

Authors and Affiliations

Authors

Contributions

A.M. researched data for the article, made substantial contributions to discussions of the content and wrote the manuscript. S.M. and A.F. reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Alessia Fornoni.

Ethics declarations

Competing interests

A.F. and S.M. are inventors on pending or issued patents (US10.183.038, US10.052.345) aimed at diagnosing or treating proteinuric kidney diseases and therefore stand to gain royalties from their future commercialization. A.F. is Chief Scientific Officer of L&F Health LLC, holds equity interests in L&F Research and is the inventor of assets developed by ZyVersa Therapeutics. ZyVersa has licensed worldwide rights to develop and commercialize hydroxypropyl-β-cyclodextrin for the treatment of kidney disease from L&F Research. A.F. also holds equity in River 3 Renal Corporation. S.M. holds equity interest in L&F Research. A.M. declares no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks R. Inagi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitrofanova, A., Merscher, S. & Fornoni, A. Kidney lipid dysmetabolism and lipid droplet accumulation in chronic kidney disease. Nat Rev Nephrol 19, 629–645 (2023). https://doi.org/10.1038/s41581-023-00741-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-023-00741-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing