Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Exercise and chronic kidney disease: potential mechanisms underlying the physiological benefits

Abstract

Increasing evidence indicates that exercise has beneficial effects on chronic inflammation, cardiorespiratory function, muscle and bone strength and metabolic markers in adults with chronic kidney disease (CKD), kidney failure or kidney transplants. However, the mechanisms that underlie these benefits have received little attention, and the available clinical evidence is mainly from small, short-duration (<12 weeks) exercise intervention studies. The available data, mainly from patients with CKD or on dialysis, suggest that exercise-mediated shifts towards a less inflammatory immune cell profile, enhanced activity of the NRF2 pathway and reduced monocyte infiltration into adipose tissue may underlie improvements in inflammatory biomarkers. Exercise-mediated increases in nitric oxide release and bioavailability, reduced angiotensin II accumulation in the heart, left ventricular remodelling and reductions in myocardial fibrosis may contribute to improvements in left ventricular hypertrophy. Exercise stimulates an anabolic response in skeletal muscle in CKD, but increases in mitochondrial mass and satellite cell activation seem to be impaired in this population. Exercise-mediated activation of the canonical wnt pathway may lead to bone formation and improvements in the levels of the bone-derived hormones klotho and fibroblast growth factor 23 (FGF23). Longer duration studies with larger sample sizes are needed to confirm these mechanisms in CKD, kidney failure and kidney transplant populations and provide evidence for targeted exercise interventions.

Key points

  • Shifts towards a less inflammatory monocyte and T cell profile, enhanced activity of the NRF2 pathway and reduced monocyte infiltration into adipose tissue might underlie exercise-mediated improvements in inflammatory biomarkers in people with chronic kidney disease (CKD) or on dialysis.

  • Exercise-mediated enhancements in nitric oxide release and bioavailability, reduced angiotensin II accumulation in the heart, left ventricular remodelling and reductions in myocardial fibrosis might improve left ventricular hypertrophy in CKD and kidney failure.

  • Few studies have examined the effects of exercise training on insulin resistance in people with CKD; however, early evidence suggests that a 6-month exercise intervention might have beneficial effects.

  • Exercise, particularly resistance exercise, stimulates an anabolic response in skeletal muscle in people with CKD; exercise-induced increases in mitochondrial mass and satellite cell activation seem to be impaired in this population.

  • Exercise-mediated activation of the canonical wnt pathway may lead to bone formation in CKD; reduced fibroblast growth factor-23 (FGF23) release and increased klotho release in bone might also contribute to improved bone mineral density and reduced bone loss.

  • Studies with longer durations and larger sample sizes are needed to confirm these potential mechanisms in all CKD and kidney failure populations and provide evidence to enable the development of effective targeted exercise interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Potential mechanisms that could underlie the anti-inflammatory effects of exercise in non-dialysis chronic kidney disease and haemodialysis populations.
Fig. 2: Key effects of exercise on skeletal muscle in CKD.
Fig. 3: Potential mechanisms that could underlie the physiological benefits of aerobic and resistance exercise in CKD.

Similar content being viewed by others

References

  1. Caspersen, C. J., Powell, K. E. & Christenson, G. M. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 100, 126–131 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Baker, L. A. et al. Clinical practice guideline exercise and lifestyle in chronic kidney disease. BMC Nephrol. 23, 75 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Girndt, M., Sester, U., Sester, M., Kaul, H. & Köhler, H. Impaired cellular immune function in patients with end-stage renal failure. Nephrol. Dial. Transpl. 14, 2807–2810 (1999).

    Article  CAS  Google Scholar 

  4. Pertosa, G., Grandaliano, G., Gesualdo, L. & Schena, F. P. Clinical relevance of cytokine production in hemodialysis. Kidney Int. 76, S104–S111 (2000).

    Article  CAS  Google Scholar 

  5. Stenvinkel, P. et al. IL-10, IL-6, and TNF-α: central factors in the altered cytokine network of uremia the good, the bad, and the ugly. Kidney Int. 67, 1216–1233 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Cobo, G., Lindholm, B. & Stenvinkel, P. Chronic inflammation in end-stage renal disease and dialysis. Nephrol. Dial. Transplant. 33, iii35–iii40 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gupta, J. et al. Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC. Clin. J. Am. Soc. Nephrol. 7, 1938–1946 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xiang, F. F. et al. Lymphocyte depletion and subset alteration correlate to renal function in chronic kidney disease patients. Ren. Fail. 38, 7–14 (2016).

    Article  PubMed  Google Scholar 

  9. UK Renal Registry. UK Renal Registry 24th Annual Report — data to 31/12/2020, Bristol, UK. https://ukkidney.org/audit-research/annual-report (2022).

  10. Sun, J. et al. Biomarkers of cardiovascular disease and mortality risk in patients with advanced CKD. Clin. J. Am. Soc. Nephrol. 7, 1163–1172 (2016).

    Article  Google Scholar 

  11. Viana, J. L. et al. Evidence for anti-inflammatory effects of exercise in CKD. J. Am. Soc. Nephrol. 25, 2121–2130 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hemmati, N. et al. Effects of exercise training on immunological factors in kidney transplant recipients; a randomized controlled trial. Res. Sports Med. 30, 80–91 (2022).

    Article  PubMed  Google Scholar 

  13. Meléndez Oliva, E. et al. Effect of exercise on inflammation in hemodialysis patients: a systematic review. J. Pers. Med. 12, 1188 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hale, K. H. et al. Multifunctional regulation of the biological effects of TNF by the soluble type I and type II TNF receptors. Cytokine 7, 26–38 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Dungey, M. et al. Regular exercise during haemodialysis promotes an anti-inflammatory leucocyte profile. Clin. Kidney J. 10, 813–821 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shantsila, E. et al. Immunophenotypic characterization of human monocyte subsets: possible implications for cardiovascular disease pathophysiology. J. Thromb. Haemost. 9, 1056–1066 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Rogacev, K. S. et al. CD14++ CD16+ monocytes and cardiovascular outcome in patients with chronic kidney disease. Eur. Heart J. 32, 84–92 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Heine, G. H. et al. Monocyte subpopulations and cardiovascular risk in chronic kidney disease. Nat. Rev. Nephrol. 8, 362–369 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Muras-Szwedziak, K., Masajtis-Zagajewska, A., Pawłowicz, E. & Nowicki, M. Effects of a structured physical activity program on serum adipokines and markers of inflammation and volume overload in kidney transplant recipients. Ann. Transplant. 24, 569–575 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hutchinson, G. M. et al. Effect of high intensity interval training and moderate intensity continuous training on lymphoid, myeloid and inflammatory cells in kidney transplant recipients. Exerc. Immunol. Rev. 28, 100–115 (2022).

    PubMed  Google Scholar 

  21. Abreu, C. C. et al. Does resistance exercise performed during dialysis modulate Nrf2 and NF-κB in patients with chronic kidney disease? Life Sci. 188, 192–197 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Kim, H. J. & Vaziri, N. D. Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure. Am. J. Physiol. Renal Physiol. 298, F662–F671 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Ahmed, S. M. U., Luo, L., Namani, A., Wang, X. J. & Tang, X. Nrf2 signalling pathway: pivotal roles in inflammation. Biochim. Biophys. Acta 1863, 585–597 (2017).

    Article  CAS  Google Scholar 

  24. Bishop, N. C., Wadley, A. J., Hamrouni, M. & Roberts, M. J. Inactivity and obesity: consequences for macrophage-mediated inflammation and the development of cardiometabolic disease. Proc. Nutr. Soc. https://doi.org/10.1017/S0029665122002671 (2022).

    Article  PubMed  Google Scholar 

  25. Fuhro, M. I. et al. The impact of intradialytic exercise on immune cells expressing CCR5+ in patients with chronic kidney disease: a cross-over trial. Int. J. Artif. Organs 45, 221–226 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Martinez Cantarin, M. P., Whitaker-Menezes, D., Lin, Z. & Falkner, B. Uremia induces adipose tissue inflammation and muscle mitochondrial dysfunction. Nephrol. Dial. Transpl. 32, 943–951 (2017).

    Article  Google Scholar 

  27. Chiu, Y. L. et al. A comprehensive characterization of aggravated aging-related changes in T lymphocytes and monocytes in end-stage renal disease: the iESRD study. Immun. Ageing 15, 27 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Duggal, N. A., Niemiro, G., Harridge, S. D. R., Simpson, R. J. & Lord, J. M. Can physical activity ameliorate immunosenescence and thereby reduce age-related multi-morbidity? Nat. Rev. Immunol. 19, 563–572 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Tonelli, M. et al. Chronic kidney disease and mortality risk: a systematic review. J. Am. Soc. Nephrol. 17, 2034–2047 (2006).

    Article  PubMed  Google Scholar 

  30. van der Velde, M. et al. Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int. 79, 1341–1352 (2011).

    Article  PubMed  Google Scholar 

  31. Chronic Kidney Disease Prognosis Consortium. et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375, 2073–2081 (2010).

    Article  Google Scholar 

  32. Stevens, P. E. et al. Chronic kidney disease management in the United Kingdom: NEOERICA project results. Kidney Int. 72, 92–99 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Thompson, S. et al. Cause of death in patients with reduced kidney function. J. Am. Soc. Nephrol. 26, 2504–2511 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Webster, A. C., Nagler, E. V., Morton, R. L. & Masson, P. Chronic kidney disease. Lancet 389, 1238–1252 (2017).

    Article  PubMed  Google Scholar 

  35. Cozzolino, M. et al. Cardiovascular disease in dialysis patients. Nephrol. Dial. Transplant. 3, iii28–iii34 (2018).

    Article  Google Scholar 

  36. Sarnak, M. J. et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation 108, 2154–2169 (2003).

    Article  PubMed  Google Scholar 

  37. Alexandrou, M. E. et al. Cardiorespiratory fitness assessed by cardiopulmonary exercise testing between different stages of pre-dialysis chronic kidney disease: a systematic review and meta-analysis. Nephrology 26, 972–980 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Lopes, A. A. et al. Associations of self-reported physical activity types and levels with quality of life, depression symptoms, and mortality in hemodialysis patients: the DOPPS. Clin. J. Am. Soc. Nephrol. 9, 1702–1712 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. MacKinnon, H. J. et al. The association of physical function and physical activity with all-cause mortality and adverse clinical outcomes in nondialysis chronic kidney disease: a systematic review. Ther. Adv. Chronic Dis. 9, 209–226 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tamiya, H. et al. Extended sedentary time increases the risk of all-cause death and new cardiovascular events in patients with diabetic kidney disease. Circ. J. 84, 2190–2197 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Fox, C. S. et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet 380, 1662–1673 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mahmoodi, B. K. et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without hypertension: a meta-analysis. Lancet 380, 1649–1661 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gansevoort, R. T. et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet 382, 339–352 (2013).

    Article  PubMed  Google Scholar 

  44. Foley, R. N., Curtis, B. M., Randell, E. W. & Parfrey, P. S. Left ventricular hypertrophy in new hemodialysis patients without symptomatic cardiac disease. Clin. J. Am. Soc. Nephrol. 5, 805–813 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maki, K. C., Wilcox, M. L., Dicklin, M. R., Kakkar, R. & Davidson, M. H. Left ventricular mass regression, all-cause and cardiovascular mortality in chronic kidney disease: a meta-analysis. BMC Nephrol. 23, 34 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Glassock, R. J., Pecoits-Filho, R. & Barberato, S. H. Left ventricular mass in chronic kidney disease and ESRD. Clin. J. Am. Soc. Nephrol. 4, S79–S91 (2009).

    Article  PubMed  Google Scholar 

  47. Tanaka, H. & Safar, M. E. Influence of lifestyle modification on arterial stiffness and wave reflections. Am. J. Hypertens. 18, 137–144 (2005).

    Article  PubMed  Google Scholar 

  48. Mustata, S., Chan, C., Lai, V. & Miller, J. A. Impact of an exercise program on arterial stiffness and insulin resistance in hemodialysis patients. J. Am. Soc. Nephrol. 15, 2713–2718 (2004).

    Article  PubMed  Google Scholar 

  49. Joyner, M. J. Effect of exercise on arterial compliance. Circulation 102, 1214–1215 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Toussaint, N. D., Polkinghorne, K. R. & Kerr, P. G. Impact of intradialytic exercise on arterial compliance and B-type natriuretic peptide levels in hemodialysis patients. Hemodial. Int. 12, 254–263 (2008).

    Article  PubMed  Google Scholar 

  51. Fagard, R. H. Exercise characteristics and the blood pressure response to dynamic physical training. Med. Sci. Sports Exerc. 33, S484–S492 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Gadelha, A. B. et al. Effects of pre-dialysis resistance training on sarcopenia, inflammatory profile, and anemia biomarkers in older community-dwelling patients with chronic kidney disease: a randomized controlled trial. Int. Urol. Nephrol. 53, 2137–2147 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Salhab, N. et al. Effect of intradialytic exercise on hyperphosphatemia and malnutrition. Nutrients 11, 2464 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Makhlough, A., Ilali, E., Mohseni, R. & Shahmohammadi, S. Effect of intradialytic aerobic exercise on serum electrolytes levels in hemodialysis patients. Iran. J. Kidney Dis. 6, 119–123 (2012).

    PubMed  Google Scholar 

  55. Ito, O., Nakamura, T., Yamakoshi, S., Mori, N. & Masahiro, K. Effects of exercise training on renal damage and renin-angiotensin system in rats with chronic renal failure. Ann. Phys. Rehab. Med. 61, e82 (2018).

    Article  Google Scholar 

  56. Graham-Brown, M. P. M. et al. A randomized controlled trial to investigate the effects of intra-dialytic cycling on left ventricular mass. Kidney Int. 99, 1478–1486 (2021).

    Article  PubMed  Google Scholar 

  57. Hayer, M. K. et al. Defining myocardial abnormalities across the stages of chronic kidney disease: a cardiac magnetic resonance imaging study. JACC Cardiovasc. Imaging 13, 2357–2367 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Penny, J. D. et al. Intradialytic exercise preconditioning: an exploratory study on the effect on myocardial stunning. Nephrol. Dial. Transpl. 34, 1917–1923 (2019).

    Article  Google Scholar 

  59. McGuire, S. et al. Cardiac stunning during haemodialysis: the therapeutic effect of intra-dialytic exercise. Clin. Kidney J. 14, 1335–1344 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Giallauria, F. et al. Left ventricular remodelling in patients with moderate systolic dysfunction after myocardial infarction: favourable effects of exercise training and predictive role of N-terminal pro-brain natriuretic peptide. Eur. J. Cardiovasc. Prev. Rehabil. 15, 113–118 (2008).

    Article  PubMed  Google Scholar 

  61. Small, E. M. & Olson, E. N. Pervasive roles of microRNAs in cardiovascular biology. Nature 469, 336–342 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kyselovič, J. & Varga, I. Research focused on microRNAs: a link between myocardial remodeling and growth during pathological processes and physical exercises. Ann. Transl. Med. 5, S20 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Pedersen, B. K. & Febbraio, M. A. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8, 457–465 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Li, D. et al. Serum microRNA expression patterns in subjects after the 5-km exercise are strongly associated with cardiovascular adaptation. Front. Physiol. 12, 755656 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Estébanez, B., Jiménez-Pavón, D., Huang, C. J., Cuevas, M. J. & González-Gallego, J. Effects of exercise on exosome release and cargo in in vivo and ex vivo models: a systematic review. J. Cell. Physiol. 236, 3336–3353 (2021).

    Article  PubMed  Google Scholar 

  66. Van Guilder, G. P., Preston, C. C., Munce, T. A. & Faustino, R. S. Impacts of circulating microRNAs in exercise-induced vascular remodeling. Am. J. Physiol. Heart Circ. Physiol. 320, H2401–H2415 (2021).

    Article  PubMed  Google Scholar 

  67. Hou, Z. et al. Long term exercise-derived exosomal miR-342-5p: a novel exerkine for cardioprotection. Circ. Res. 124, 1386–1400 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Van Craenenbroeck, A. H. et al. Plasma levels of microRNA in chronic kidney disease: patterns in acute and chronic exercise. Am. J. Physiol. Heart Circ. Physiol. 309, H2008–H2016 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kochan, Z., Szupryczynska, N., Malgorzewicz, S. & Karbowska, J. Dietary lipids and dyslipidaemia in chronic kidney disease. Nutrients 13, 3138 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bulbul, M. C. et al. Disorders of lipid metabolism in chronic kidney disease. Blood Purif. 46, 144–152 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Spoto, B., Pisano, A. & Zoccali, C. Insulin resistance in chronic kidney disease: a systematic review. Am. J. Physiol. Renal Physiol. 311, F1087–F1108 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Chan, D. T., Watts, G. F., Irish, A. B. & Dogra, G. K. Insulin resistance and vascular dysfunction in chronic kidney disease: mechanisms and therapeutic interventions. Nephrol. Dial. Transplant. 32, 1274–1281 (2017).

    CAS  PubMed  Google Scholar 

  73. Dave, N., Wu, J. & Thomas, S. Chronic kidney disease-induced insulin resistance: current state of the field. Curr. Diab. Rep. 18, 44 (2018).

    Article  PubMed  Google Scholar 

  74. Nakashima, A., Kato, K., Ohkido, I. & Yokoo, T. Role and treatment of insulin resistance in patients with chronic kidney disease: a review. Nutrients 13, 4349 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bailey, J. L. Insulin resistance and muscle metabolism in chronic kidney disease. ISRN Endocrinol. 2013, 329606 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Shinohara, K. et al. Insulin resistance as an independent predictor of cardiovascular mortality in patients with end-stage renal disease. J. Am. Soc. Nephrol. 13, 1894–1900 (2002).

    Article  PubMed  Google Scholar 

  77. Schrauben, S. J. et al. Insulin resistance and chronic kidney disease progression, cardiovascular events, and death: findings from the chronic renal insufficiency cohort study. BMC Nephrol. 20, 60 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kettner, A. et al. Cardiovascular and metabolic responses to submaximal exercise in haemodialysis patients. Kidney Int. 26, 66–71 (1984).

    Article  CAS  PubMed  Google Scholar 

  79. Castellino, P., Bia, M. & DeFronzo, R. A. Metabolic response to exercise in dialysis patients. Kidney Int. 32, 877–883 (1987).

    Article  CAS  PubMed  Google Scholar 

  80. Bowlby, W. et al. Physical activity and metabolic health in chronic kidney disease: a cross-sectional study. BMC Nephrol. 17, 187 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Goldberg, A. P. et al. Exercise training reduces coronary risk and effectively rehabilitates haemodialysis patients. Nephron 42, 311–316 (1986).

    Article  CAS  PubMed  Google Scholar 

  82. Barcellos, F. C., Santos, I. S., Umpierre, D., Bohlke, M. & Hallal, P. C. Effects of exercise in the whole spectrum of chronic kidney disease: a systematic review. Clin. Kidney J. 8, 753–765 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Pei, G. et al. Aerobic exercise in adults with chronic kidney disease (CKD): a meta-analysis. Int. Urol. Nephrol. 51, 1787–1795 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Yamamoto, R. et al. Efficacy of aerobic exercise on the cardiometabolic and renal outcomes in patients with chronic kidney disease: a systematic review of randomised controlled trials. J. Nephrol. 34, 155–164 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Toyama, K., Sugiyama, S., Oka, H., Sumida, H. & Ogawa, H. Exercise therapy correlates with improving renal function through modifying lipid metabolism in patients with cardiovascular disease and chronic kidney disease. J. Cardiol. 56, 142–146 (2010).

    Article  PubMed  Google Scholar 

  86. Miele, E. M. et al. High-density lipoprotein particle pattern and overall lipid responses to short-term moderate-intensity aerobic exercise training intervention in patients with chronic kidney disease. Clin. Kidney J. 10, 524–531 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Zhou, Y. et al. Twelve months of exercise training did not halt abdominal aortic calcification in patients with CKD — a sub-study of RENEXC-a randomised controlled trial. BMC Nephrol. 21, 233 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Navaneethan, S. D. et al. A trial of lifestyle modification on cardiopulmonary, inflammatory, and metabolic effects among obese with chronic kidney disease. Am. J. Nephrol. 42, 274–281 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Rosa, T. S. et al. Effects of dynamic and isometric resistance training protocols on metabolic profile in hemodialysis patients: a randomised controlled trial. Appl. Physiol. Nutr. Metab. 46, 1029–1037 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Molsted, S. et al. Improved glucose tolerance after high-load strength training in patients undergoing dialysis. Nephron. Clin. Pract. 123, 134–141 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Chen, G., Gao, L. & Li, X. Effects of exercise training on cardiovascular risk factors in kidney transplant recipients: a systematic review and meta-analysis. Ren. Fail. 41, 408–418 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. De Smet, S. & Van Craenenbroeck, A. H. Exercise training in patients after kidney transplantation. Clin. Kidney J. 14, ii15–ii24 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Michou, V., Nikodimopoulou, M., Deligiannis, A. & Kouidi, E. Metabolic and functional effects of exercise training in diabetic kidney transplant recipients. World J. Transplant. 12, 184–194 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Coletta, D. K. et al. Changes in pre- and post-exercise gene expression among patients with chronic kidney disease and kidney transplant recipients. PLoS One 11, e0160327 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Karelis, A. D., Hérbert, M. J., Rabasa-Lhoret, R. & Räkel, A. Impact of resistance training on factors involved in the development of new-onset diabetes after transplantation in renal transplant recipients: an open randomised pilot study. Can. J. Diabetes 40, 382–388 (2016).

    Article  PubMed  Google Scholar 

  96. Ponticelli, C., Favi, E. & Ferraresso, M. New-onset diabetes after kidney transplantation. Medicina 57, 250 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Wang, X. H. & Mitch, W. E. Mechanisms of muscle wasting in chronic kidney disease. Nat. Rev. Nephrol. 10, 504–516 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. John, S. G., Sigrist, M. K., Taal, M. W. & McIntyre, C. W. Natural history of skeletal muscle mass changes in chronic kidney disease stage 4 and 5 patients: an observational study. PLoS One 8, e65372 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kouidi, E. et al. The effects of exercise training on muscle atrophy in haemodialysis patients. Nephrol. Dial. Transplant. 13, 685–699 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Molsted, S., Andersen, J. L., Harrison, A. P., Eidemak, I. & Mackey, A. L. Fiber type-specific response of skeletal muscle satellite cells to high-intensity resistance training in dialysis patients. Muscle Nerve 52, 736–745 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Watson, E. L. et al. Inflammation and physical dysfunction: responses to moderate intensity exercise in chronic kidney disease. Nephrol. Dial. Transpl. 37, 860–868 (2022).

    Article  CAS  Google Scholar 

  102. Macdonald, J. H. et al. Muscle insulin-like growth factor status, body composition, and functional capacity in hemodialysis patients. J. Ren. Nutr. 14, 248–252 (2004).

    Article  PubMed  Google Scholar 

  103. Diesel, W. et al. Morphologic features of the myopathy associated with chronic renal failure. Am. J. Kidney Dis. 22, 677–684 (1993).

    Article  CAS  PubMed  Google Scholar 

  104. Watson, E. L. et al. Reductions in skeletal muscle mitochondrial mass are not restored following exercise training in patients with chronic kidney disease. FASEB J. 34, 1755–1767 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Ertuglu, L., Yildiz, A., Gamboa, J. & Ikizler, T. A. Skeletal muscle energetics in patients with moderate to advanced kidney disease. Kidney Res. Clin. Pract. 41, 14–21 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Wackerhage, H., Schoenfeld, B. J., Hamilton, D. L., Lehti, M. & Hulmi, J. J. Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. J. Appl. Physiol. 126, 30–43 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Watson, E. L. et al. Progressive resistance exercise training in CKD: a feasibility study. Am. J. Kidney Dis. 66, 249–257 (2015).

    Article  PubMed  Google Scholar 

  108. Watson, E. L. et al. The effect of resistance exercise on inflammatory and myogenic markers in patients with Chronic Kidney Disease. Front. Physiol. 8, 541 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Mayhew, D. L., Kim, J. S., Cross, J. M., Ferrando, A. A. & Bamman, M. M. Translational signaling responses preceding resistance training-mediated myofiber hypertrophy in young and old humans. J. Appl. Physiol. 107, 1655–1662 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kopple, J. D. et al. Exercise in maintenance hemodialysis patients induces transcriptional changes in genes favoring anabolic muscle. J. Am. Soc. Nephrol. 18, 2975–2986 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Kopple, J. D. et al. Effect of exercise on mRNA levels for growth factors in skeletal muscle of hemodialysis patients. J. Ren. Nutr. 16, 312–324 (2006).

    Article  PubMed  Google Scholar 

  112. Watson, E. L. et al. Combined walking exercise and alkali therapy in patients with CKD4-5 regulates intramuscular free amino acid pools and ubiquitin E3 ligase expression. Eur. J. Appl. Physiol. 113, 2111–2124 (2013).

    Article  PubMed  Google Scholar 

  113. Kosmadakis, G. C. et al. Benefits of regular walking exercise in advanced pre-dialysis chronic kidney disease. Nephrol. Dial. Transplant. 27, 997–1004 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Balakrishnan, V. S. et al. Resistance training increases muscle mitochondrial biogenesis in patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 5, 996–1002 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Beetham, K. S. et al. High-intensity interval training in chronic kidney disease: a randomized pilot study. Scand. J. Med. Sci. Sports 29, 1197–1204 (2019).

    Article  PubMed  Google Scholar 

  116. Gamboa, J. L. et al. Skeletal muscle mitochondrial dysfunction is present in patients with CKD before initiation of maintenance hemodialysis. Clin. J. Am. Soc. Nephrol. 15, 926–936 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kemp, G. J. et al. Abnormal mitochondrial function and muscle wasting, but normal contractile efficiency, in haemodialysed patients studied non-invasively in vivo. Nephrol. Dial. Transplant. 19, 1520–1527 (2004).

    Article  PubMed  Google Scholar 

  118. de Sousa, C. V. et al. The antioxidant effect of exercise: a systematic review and meta-analysis. Sports Med. 47, 277–293 (2017).

    Article  PubMed  Google Scholar 

  119. Fisher-Wellman, K. & Bloomer, R. J. Acute exercise and oxidative stress: a 30 year history. Dyn. Med. 8, 1 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  120. O’Sullivan, T. F., Smith, A. C. & Watson, E. L. Satellite cell function, intramuscular inflammation and exercise in chronic kidney disease. Clin. Kidney J. 11, 810–821 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Nishimune, H., Stanford, J. A. & Mori, Y. Role of exercise in maintaining the integrity of the neuromuscular junction. Muscle Nerve 49, 315–324 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Rudolf, R., Khan, M. M., Labeit, S. & Deschenes, M. R. Degeneration of neuromuscular junction in age and dystrophy. Front. Aging Neurosci. 6, 99 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Cannata-Andía, J. B. et al. Chronic kidney disease — mineral and bone disorders: pathogenesis and management. Calcif. Tissue Int. 108, 410–422 (2021).

    Article  PubMed  Google Scholar 

  124. Moe, S. et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int. 69, 1945–1953 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Moe, S. M. & Nickolas, T. L. Fractures in patients with CKD: time for action. Clin. J. Am. Soc. Nephrol. 11, 1929–1931 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Covic, A. et al. Systematic review of the evidence underlying the association between mineral metabolism disturbances and risk of all-cause mortality, cardiovascular mortality and cardiovascular events in chronic kidney disease. Nephrol. Dial. Transpl. 24, 1506–1523 (2009).

    Article  Google Scholar 

  127. Maïmoun, L. & Sultan, C. Effects of physical activity on bone remodeling. Metabolism 60, 373–388 (2011).

    Article  PubMed  Google Scholar 

  128. Howe, T. E. et al. Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD000333 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Beck, B. R., Daly, R. M., Singh, M. A. F. & Taaffe, D. R. Exercise and Sports Science Australia (ESSA) position statement on exercise prescription for the prevention and management of osteoporosis. J. Sci. Med. Sport 20, 438–445 (2017).

    Article  PubMed  Google Scholar 

  130. Cardoso, D. F. et al. Impact of physical activity and exercise on bone health in patients with chronic kidney disease: a systematic review of observational and experimental studies. BMC Nephrol. 21, 334 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Avin, K. G. et al. Voluntary wheel running has beneficial effects in a rat model of CKD-mineral bone disorder (CKD-MBD). J. Am. Soc. Nephrol. 30, 1898–1909 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Qin, L., Liu, W., Cao, H. & Xiao, G. Molecular mechanosensors in osteocytes. Bone Res. 8, 23 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Choi, R. B. & Robling, A. G. The Wnt pathway: an important control mechanism in bone’s response to mechanical loading. Bone 153, 116087 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Schiavi, S. C. Sclerostin and CKD-MBD. Curr. Osteoporos. Rep. 13, 159–165 (2015).

    Article  PubMed  Google Scholar 

  135. Neves, R. V. P. et al. Dynamic not isometric training blunts osteo-renal disease and improves the sclerostin/FGF23/Klotho axis in maintenance hemodialysis patients: a randomized clinical trial. J. Appl. Physiol. 130, 508–516 (2021).

    Article  CAS  PubMed  Google Scholar 

  136. Marinho, S. M. et al. In hemodialysis patients, intradialytic resistance exercise improves osteoblast function: a pilot study. J. Ren. Nutr. 26, 341–345 (2016).

    Article  PubMed  Google Scholar 

  137. Gomes, T. S. et al. Effect of aerobic exercise on markers of bone metabolism of overweight and obese patients with chronic kidney disease. J. Ren. Nutr. 27, 364–371 (2017).

    Article  CAS  PubMed  Google Scholar 

  138. Yasuda, H. Discovery of the RANKL/RANK/OPG system. J. Bone Miner. Metab. 39, 2–11 (2021).

    Article  PubMed  Google Scholar 

  139. Carrillo-López, N. et al. Role of the RANK/RANKL/OPG and Wnt/β-Catenin systems in CKD bone and cardiovascular disorders. Calcif. Tissue Int. 108, 439–451 (2021).

    Article  PubMed  Google Scholar 

  140. Tobeiha, M., Moghadasian, M. H., Amin, N. & Jafarnejad, S. RANKL/RANK/OPG pathway: a mechanism involved in exercise-induced bone remodeling. Biomed. Res. Int. 2020, 6910312 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Marinho, S. M., Eduardo, J. C. C. & Mafra, D. Effect of a resistance exercise training program on bone markers in hemodialysis patients. Sci. Sport. 32, 99–105 (2017).

    Article  Google Scholar 

  142. Muñoz-Castañeda, J. R. et al. Klotho/FGF23 and Wnt signaling as important players in the comorbidities associated with chronic kidney disease. Toxins 12, 185 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Barker, S. L. et al. The demonstration of αKlotho deficiency in human chronic kidney disease with a novel synthetic antibody. Nephrol. Dial. Transpl. 30, 223–233 (2015).

    Article  CAS  Google Scholar 

  144. Isakova, T. et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 79, 1370–1378 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Corrêa, H. L. et al. Blood flow restriction training blunts chronic kidney disease progression in humans. Med. Sci. Sports Exerc. 53, 249–257 (2020).

    Article  Google Scholar 

  146. Leal, D. V., Ferreira, A., Watson, E. L., Wilund, K. R. & Viana, J. L. Muscle-bone crosstalk in chronic kidney disease: the potential modulatory effects of exercise. Calcif. Tissue Int. 108, 461–475 (2021).

    Article  CAS  PubMed  Google Scholar 

  147. Kirk, B., Feehan, J., Lombardi, G. & Duque, G. Muscle, bone, and fat crosstalk: the biological role of myokines, osteokines, and adipokines. Curr. Osteoporos. Rep. 18, 388–400 (2020).

    Article  PubMed  Google Scholar 

  148. Chowdhury, S. et al. Muscle derived interleukin-6 increases exercise capacity by signaling in osteoblasts. J. Clin. Invest. 130, 2888–2902 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Mera, P. et al. Osteocalcin signaling in myofibers is necessary and sufficient for optimum adaptation to exercise. Cell. Metab. 23, 1078–1092 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors’ work is supported by the National Institute for Health Research (NIHR) Leicester Biomedical Research Centre. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, or the Department of Health. J.L.V’s work is supported by the Portuguese Foundation of Science and Technology (UID/04045/2020) and the Portuguese Society of Nephrology.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, wrote the article and reviewed and/or edited the manuscript before submission. N.C.B. contributed substantially to discussion of the content.

Corresponding author

Correspondence to Nicolette C. Bishop.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Naomi Clyne, Kamyar Kalantar-Zadeh and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Accelerometery

An objective measurement of movement (acceleration) that is used to quantify the volume and intensity of physical activity.

Blood flow restriction training

A technique that combines low-intensity exercise with blood flow occlusion through the application of a cuff or band with the aim of producing comparable effects with high-intensity exercise.

Dynamic resistance exercise

Effort against a constant force that involves movement of a joint through the range of motion, for example, lifting weights or press ups.

Isometric resistance exercise

Static contractions of a specific muscle or group of muscles with no resultant change in muscle length or joint movement.

Mechanotransduction

The conversion of mechanical loading into biochemical signalling.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bishop, N.C., Burton, J.O., Graham-Brown, M.P.M. et al. Exercise and chronic kidney disease: potential mechanisms underlying the physiological benefits. Nat Rev Nephrol 19, 244–256 (2023). https://doi.org/10.1038/s41581-022-00675-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-022-00675-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing