Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Early postnatal nutrition and renal consequences in preterm infants

Abstract

Perinatal nutritional factors may lead to decreased nephron endowment, decreased kidney function, and long-term development of chronic kidney disease and non-communicable diseases. At the same time, optimal postnatal nutrition and catch-up growth are associated with better neurodevelopmental outcomes in preterm infants. Therefore, nutritional management of preterm infants is a major challenge for neonatologists. In this context, the Section of Nutrition, Gastroenterology and Metabolism reviewed the current knowledge on nutritional issues related to kidney function. This narrative review discusses the clinical impact of early postnatal nutrition on long-term kidney function. In preterm infants, data are largely lacking to determine the extent to which early nutrition contributes to nephrogenesis and nephron endowment. However, some nutritional principles may help clinicians better protect the developing kidney in preterm infants.

Impact

  • Clinical data show that preterm infants are an emerging population at high risk for chronic kidney disease.

  • Both undernutrition and overnutrition can alter long-term kidney function.

  • In preterm infants, data are largely lacking to determine the extent to which early postnatal nutrition contributes to nephrogenesis, nephron endowment and increased risk for chronic kidney disease.

  • Some nutritional principles may help clinicians better protect the developing kidney in preterm infants: avoiding extrauterine growth restriction; providing adequate protein and caloric intakes; limiting exposure to high and prolonged hyperglycaemia; avoiding micronutrient deficiencies and maintaining acid-base and electrolyte balance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Juvet, C. et al. Effect of early postnatal nutrition on chronic kidney disease and arterial hypertension in adulthood: a narrative review. J. Dev. Orig. Health Dis. 9, 598–614 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Luyckx, V. A. & Brenner, B. M. Birth weight, malnutrition and kidney-associated outcomes–a global concern. Nat. Rev. Nephrol. 11, 135–149 (2015).

    Article  PubMed  Google Scholar 

  3. Chehade, H., Simeoni, U., Guignard, J. P. & Boubred, F. Preterm Birth: Long Term Cardiovascular and Renal Consequences. Curr. Pediatr. Rev. 14, 219–226 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. da Silva Lopes, K. et al. Effects of nutrition interventions during pregnancy on low birth weight: an overview of systematic reviews. BMJ Glob. Health 2, e000389 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Englund-Ögge, L. et al. Maternal dietary patterns and preterm delivery: results from large prospective cohort study. BMJ 348, g1446 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Luyckx, V. A. et al. A developmental approach to the prevention of hypertension and kidney disease: a report from the Low Birth Weight and Nephron Number Working Group. Lancet 390, 424–428 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. World Health Organization. Regional Office for Europe. Good maternal nutrition: the best start in life. World Health Organization. Regional Office for Europe. https://apps.who.int/iris/handle/10665/329459, accessed 14th august 2023. (2016)

  8. Lapillonne, A. & Griffin, I. J. Feeding preterm infants today for later metabolic and cardiovascular outcomes. J. Pediatr. 162 S7–S16 (2013).

    Article  PubMed  Google Scholar 

  9. Rozé, J. C. et al. Association Between Early Amino Acid Intake and Full-Scale IQ at Age 5 Years Among Infants Born at Less Than 30 Weeks’ Gestation. JAMA Netw. Open 4, e2135452 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Faa, G. et al. Morphogenesis and molecular mechanisms involved in human kidney development. J. Cell Physiol. 227, 257–268 (2012).

    Article  Google Scholar 

  11. Saint-Faust, M., Boubred, F. & Simeoni, U. Renal development and neonatal adaptation. Am. J. Perinatol. 31, 773–780 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Hughson, M. et al. Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int. 63(6), 2113–2122 (2003).

    Article  PubMed  Google Scholar 

  13. Merlet-Bénichou, C. et al. Nephron number: variability is the rule. Causes and consequences. Lab Invest. 79, 515–527 (1999).

    PubMed  Google Scholar 

  14. Lee, Y. Q., Collins, C. E., Gordon, A., Rae, K. M. & Pringle, K. G. The relationship between maternal nutrition during pregnancy and offspring kidney structure and function in humans: a systematic review. Nutrients 10, 241 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wood-Bradley, R. J., Barrand, S., Giot, A. & Armitage, J. A. Understanding the role of maternal diet on kidney development; an opportunity to improve cardiovascular and renal health for future generations. Nutrients 7, 1881–1905 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brophy, P. D., Robillard, J. E. Functional development of the kidney in utero. (Polin and Fox ed. Fetal and neonatal physiology. 3th ed. W.B. Saunders Company, pp 1229-1239 2004).

  17. Cargill, K. et al. Von Hippel-Lindau acts as a metabolic switch controlling nephron progenitor differentiation. J. Am. Soc. Nephrol. 30, 1192–1205 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Popescu, C. R. et al. Hyperoxia exposure impairs nephrogenesis in the neonatal rat: role of HIF-1alpha’. PLoS ONE 8, e82421 (2013).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  19. Rodriguez, M. M., Gomez, A. H. & Abitbol, C. L. Histomorphometric analysis of postnatal glomerulogenesis on extremely preterm infants. Pediatr. Dev. Pathol. 7, 17–25 (2004).

    Article  PubMed  Google Scholar 

  20. Sutherland, M. R. et al. Accelerated maturation and abnormal morphology in the preterm neonatal kidney. J. Am. Soc. Nephrol. 22, 1365–1374 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gubhaju, L. et al. Is nephrogenesis affected by preterm birth? Studies in a non-human primate model. Am. J. Physiol. Ren. Physiol. 297, F1668–F1677 (2009).

    Article  CAS  Google Scholar 

  22. Sutherland, M. R. et al. Renal morphology and glomerular capillarisation in young adult sheep born moderately preterm. J. Dev. Orig. Health Dis. 12, 975–981 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Gao, Q., Lu, C., Tian, X., Zheng, J. & Ding, F. Urine podocyte mRNA loss in preterm infants and related perinatal risk factors. Pediatr. Nephrol. 38, 729–738 (2023).

    Article  PubMed  Google Scholar 

  24. Ding, F., Gao, Q., Tian, X., Mo, J. & Zheng, J. Increasing urinary podocyte mRNA excretion and progressive podocyte loss in kidney contribute to the high risk of long-term renal disease caused by preterm birth. Sci. Rep. 11, 20650 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Iacobelli, S. & Guignard, J. P. Maturation of glomerular filtration rate in neonates and infants: an overview. Pediatr. Nephrol. 36, 1439–1446 (2021).

    Article  PubMed  Google Scholar 

  26. Gubhaju, L. et al. Assessment of renal functional maturation and injury in preterm neonates during the first month of life. Am. J. Physiol. Ren. Physiol. 307, F149–F158 (2014).

    Article  CAS  Google Scholar 

  27. Iacobelli, S. & Guignard, J. P. Renal aspects of metabolic acid-base disorders in neonates. Pediatr. Nephrol. 35, 221–228 (2020).

    Article  PubMed  Google Scholar 

  28. Charlton, J. R., Harer, M. W., Swan, C. & Nielsen, R. Immature megalin expression in the preterm neonatal kidney is associated with urinary loss of vitamin carrier proteins. Pediatr. Res. 85(3), 405–411 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Schreuder, M. F., Nyengaard, J. R., Remmers, F., van Wijk, J. A. & Delemarre-van de Waal, H. A. Postnatal food restriction in the rat as a model for a low nephron endowment. Am. J. Physiol. Ren. Physiol. 291, F1104–F1107 (2006).

    Article  CAS  Google Scholar 

  30. Luzardo, R. et al. Metabolic programming during lactation stimulates renal Na+ transport in the adult offspring due to an early impact on local angiotensin II pathways. PloS one 6, e21232 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. Boubred, F. et al. Effects of early postnatal hypernutrition on nephron number and long-term renal function and structure in rats. Am. J. Physiol. Ren. Physiol. 293, F1944–F1949 (2007).

    Article  CAS  Google Scholar 

  32. Luyckx, V. A. et al. Effect of fetal and child health on kidney development and long-term risk of hypertension and kidney disease. Lancet 382, 273–283 (2013).

    Article  PubMed  Google Scholar 

  33. Boubred, F., et al. Developmental origins of chronic renal disease: an integrative hypothesis. Int. J. Nephrol. https://doi.org/10.1155/2013/346067 (2013).

  34. Wlodek, M. E. et al. Normal lactational environment restores nephron endowment and prevents hypertension after placental restriction in the rat. J. Am. Soc. Nephrol. 18, 1688–1696 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Siddique, K., Guzman, G. L., Gattineni, J. & Baum, M. Effect of postnatal maternal protein intake on prenatal programming of hypertension. Reprod. Sci. 21, 1499–1507 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ko, G. J., Rhee, C. M., Kalantar-Zadeh, K. & Joshi, S. The Effects of High-Protein Diets on Kidney Health and Longevity. J. Am. Soc. Nephrol. 31, 1667–1679 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Boubred, F. et al. High protein intake in neonatal period induces glomerular hypertrophy and sclerosis in adulthood in rats born with IUGR. Pediatr. Res. 79, 22–26 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Boubred, F. et al. Neonatal high protein intake enhances neonatal growth without significant adverse renal effects in spontaneous IUGR piglets. Physiol. Rep. 5, e13296 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Suryawan, A. et al. Activation by insulin and amino acids of signaling components leading to translation initiation in skeletal muscle of neonatal pigs is developmentally regulated. Am. J. Physiol. Endocrinol. Metab. 293, E1597–E1605 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Davis, T. A., Suryawan, A., Orellana, R. A., Nguyen, H. V. & Fiorotto, M. L. Postnatal ontogeny of skeletal muscle protein synthesis in pigs. J. Anim. Sci. 86, E13–E18 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Hokke, S. et al. Maternal fat feeding augments offspring nephron endowment in mice. PloS one 11, e0161578 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kasper, P. et al. Renal metabolic programming is linked to the dynamic regulation of a Leptin-Klf15 Axis and Akt/AMPKα signaling in male offspring of Obese Dams. Endocrinology 158, 3399–3415 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Espírito Santo, S. G., Monte, M. G., Polegato, B. F., Barbisan, L. F. & Romualdo, G. R. Protective Effects of Omega-3 Supplementation against Doxorubicin-Induced Deleterious Effects on the Liver and Kidneys of Rats. Molecules 28, 3004 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Shamseldeen, A. M. et al. Omega-3 attenuates high fat diet-induced kidney injury of female rats and renal programming of their offsprings. Arch. Physiol. Biochem 125, 367–377 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Armitage, J. A. et al. Increased blood pressure later in life may be associated with perinatal n-3 fatty acid deficiency. Lipids 38, 459–464 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Amri, K., Freund, N., Vilar, J., Merlet-Bénichou, C. & Lelièvre-Pégorier, M. Adverse effects of hyperglycemia on kidney development in rats: in vivo and in vitro studies. Diabetes 48, 2240–2245 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Kanwar, Y. S. et al. Hyperglycemia: its imminent effects on mammalian nephrogenesis. Pediatr. Nephrol. 20, 858–866 (2005).

    Article  PubMed  Google Scholar 

  48. Fuhrmann, L. et al. Effects of environmental conditions on nephron number: modeling maternal disease and epigenetic regulation in renal development. Int J. Mol. Sci. 22, 4157 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Callaway, D. A. et al. Prematurity disrupts glomeruli development, whereas prematurity and hyperglycemia lead to altered nephron maturation and increased oxidative stress in newborn baboons. Pediatr. Res. 83, 702–711 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cunha, A. R., Aguila, M. B. & Mandarim-de-Lacerda, C. A. Effects of early postnatal hyperglycaemia on renal cortex maturity, endothelial nitric oxide synthase expression and nephron deficit in mice. Int J. Exp. Pathol. 89, 284–291 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sutherland, M. R., Gubhaju, L., Yoder, B. A., Stahlman, M. T. & Black, M. J. The effects of postnatal retinoic acid administration on nephron endowment in the preterm baboon kidney. Pediatr. Res. 65, 397–402 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mendes Garrido Abregú, F., Caniffi, C., Arranz, C. T. & Tomat, A. L. Impact of Zinc Deficiency During Prenatal and/or Postnatal Life on Cardiovascular and Metabolic Diseases: Experimental and Clinical Evidence. Adv. Nutr. 13, 833–845 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Drake, K. A., Sauerbry, M. J., Blohowiak, S. E., Repyak, K. S. & Kling, P. J. Iron deficiency and renal development in the newborn rat. Pediatr. Res. 66, 619–624 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Kalhoff, H. et al. Modified cow’s milk formula with reduced renal acid load preventing incipient late metabolic acidosis in premature infants. J. Pediatr. Gastroenterol. Nutr. 25, 46–50 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Rochow, N. et al. Fortification of breast milk in VLBW infants: metabolic acidosis is linked to the composition of fortifiers and alters weight gain and bone mineralization. Clin. Nutr. 30, 99–105 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Schanler, R. J. et al. Improved Outcomes in Preterm Infants Fed a Nonacidified Liquid Human Milk Fortifier: A Prospective Randomized Clinical Trial. J. Pediatr. 202, 31–37 (2018).

    Article  PubMed  Google Scholar 

  57. Embleton, N. D. et al. Enteral Nutrition in Preterm Infants (2022). A Position Paper From the ESPGHAN Committee on Nutrition and Invited Experts. J. Pediatr. Gastroenterol. Nutr. 76, 248–268 (2023).

    Article  PubMed  Google Scholar 

  58. Al-Dahhan, J., Haycock, G. B., Nichol, B., Chantler, C. & Stimmler, L. Sodium homeostasis in term and preterm neonates. III. Effect of salt supplementation. Arch. Dis. Child 59, 945e50 (1984).

    Article  Google Scholar 

  59. Bower, T. R., Pringle, K. C. & Soper, R. T. Sodium deficit causing decreased weight gain and metabolic acidosis in infants with ileostomy. J. Pediatr. Surg. 23, 567e72 (1988).

    Article  Google Scholar 

  60. Segar, D. E. et al. Physiological Approach to Sodium Supplementation in Preterm Infants. Am. J. Perinatol. 35, 994–1000 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Späth, C., Sjöström, E. S., Ahlsson, F., Ågren, J. & Domellöf, M. Sodium supply influences plasma sodium concentration and the risks of hyper- and hyponatremia in extremely preterm infants. Pediatr. Res. 81, 455–460 (2017).

    Article  PubMed  Google Scholar 

  62. Jochum, F. et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Fluid and electrolytes. Clin. Nutr. 37, 2344–2353 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Langhendries, J. P. et al. Phosphorus intake in preterm babies and variation of tubular reabsorption for phosphate per liter glomerular filtrate. Biol. Neonate 61, 345–350 (1992).

    Article  CAS  PubMed  Google Scholar 

  64. Stritzke, A., Thomas, S., Amin, H., Fusch, C. & Lodha, A. Renal consequences of preterm birth. Mol. Cell Pediatr. 4, 2 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Dudley, J., Rogers, R. & Sealy, L. Renal consequences of parenteral nutrition. Pediatr. Nephrol. 29, 375–385 (2014).

    Article  PubMed  Google Scholar 

  66. Guellec, I. et al. Biological Impact of Recent Guidelines on Parenteral Nutrition in Preterm Infants. J. Pediatr. Gastroenterol. Nutr. 61, 605–609 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Martin, W. F., Armstrong, L. E. & Rodriguez, N. R. Dietary protein intake and renal function. Nutr. Metab. 2, 25 (2005).

    Article  Google Scholar 

  68. Brenner, B. M. Chronic renal failure: a disorder of adaptation. Perspect. Biol. Med. 32, 434–444 (1989).

    Article  CAS  PubMed  Google Scholar 

  69. Brenner, B. M., Meyer, T. W. & Hostetter, T. H. Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N. Engl. J. Med. 307, 652–659 (1982).

    Article  CAS  PubMed  Google Scholar 

  70. Tomova, A. et al. The effects of vegetarian and vegan diets on gut microbiota. Front. Nutr. 6, 47 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Herin, P. & Zetterström, R. Studies in renal response to various protein intakes in preterm infants. Acta Paediatr. Scand. 76, 447–452 (1987).

    Article  CAS  PubMed  Google Scholar 

  72. van Goudoever, J. B. et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Amino acids. Clin. Nutr. 37, 2315–2323 (2018).

    Article  PubMed  Google Scholar 

  73. Arslanoglu, S., Moro, G. E. & Ziegler, E. E. Adjustable fortification of human milk fed to preterm infants: does it make a difference? J. Perinatol. 26, 614–621 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Roggero, P. et al. Blood urea nitrogen concentrations in low-birth-weight preterm infants during parenteral and enteral nutrition. J. Pediatr. Gastroenterol. Nutr. 51, 213–215 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Mathes, M. et al. Effect of increased enteral protein intake on plasma and urinary urea concentrations in preterm infants born at < 32 weeks gestation and < 1500 g birth weight enrolled in a randomized controlled trial - a secondary analysis. BMC Pediatr. 18, 154 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Galu, S. C., Hascoet, J. M. & Vieux, R. Impact of neonatal factors and nutrition on kidney size in 5-year-old preterm-born children. Am. J. Perinatol. 32, 219–224 (2015).

    Article  PubMed  Google Scholar 

  77. Vieux, R. et al. Kidneys in 5-year-old preterm-born children: a longitudinal cohort monitoring of renal function. Pediatr. Res. 82, 979–985 (2017).

    Article  PubMed  Google Scholar 

  78. Zamir, I. et al. Postnatal nutritional intakes and hyperglycemia as determinants of blood pressure at 6.5 years of age in children born extremely preterm. Pediatr. Res. 86, 115–121 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hamayun, J. et al. Association between Neonatal Intakes and Hyperglycemia, and Left Heart and Aortic Dimensions at 6.5 Years of Age in Children Born Extremely Preterm. J. Clin. Med. 10, 2554 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bacchetta, J. et al. Both extrauterine and intrauterine growth restriction impair renal function in children born very preterm. Kidney Int. 76, 445–452 (2009).

    Article  PubMed  Google Scholar 

  81. Kwinta, P. et al. Assessment of long-term renal complications in extremely low birth weight children. Pediatr. Nephrol. 26, 1095–1103 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Singhal, A. et al. Promotion of faster weight gain in infants born small for gestational age: is there an adverse effect on later blood pressure? Circulation 115, 213–220 (2007).

    Article  PubMed  Google Scholar 

  83. Lucas, A. & Morley, R. Does early nutrition in infants born before term programme later blood pressure? BMJ 309, 304–308 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Abitbol, C. L. et al. Long-term follow-up of extremely low birth weight infants with neonatal renal failure. Pediatr. Nephrol. 18, 887–893 (2003).

    Article  PubMed  Google Scholar 

  85. Iacobelli, S. et al. Renal function in early childhood in very low birthweight infants. Am. J. Perinatol. 24, 587–592 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We dedicate this paper to our teachers. Our special thank is addressed to Professor Jean-Pierre Guignard.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

Silvia Iacobelli and Farid Boubred have equally contributed to this manuscript. Alexandre Lapillonne provided important scientific contribution. All authors and all the members of the ESPR Nutrition council reviewed or approved the final manuscript. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

Corresponding author

Correspondence to Silvia Iacobelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iacobelli, S., Lapillonne, A., Boubred, F. et al. Early postnatal nutrition and renal consequences in preterm infants. Pediatr Res (2024). https://doi.org/10.1038/s41390-024-03080-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-024-03080-z

Search

Quick links