Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epidemiology and risk of cardiovascular disease in populations with chronic kidney disease

Abstract

Chronic kidney disease (CKD) is defined by a low glomerular filtration rate or high albuminuria, and affects 15–20% of adults globally. CKD increases the risk of various adverse outcomes, but cardiovascular disease (CVD) is of particular relevance because it is the leading cause of death in this clinical population. CKD is associated with several CVD outcomes, including coronary heart disease, stroke, peripheral artery disease, arrhythmias, heart failure and venous thrombosis. Notably, CKD is particularly strongly associated with severe CVD outcomes such as CVD mortality, heart failure and lower extremity amputations. This broad impact of CKD on the cardiovascular system probably reflects the involvement of several pathophysiological mechanisms that link CKD to CVD development — shared risk factors (for example, diabetes and hypertension), changes in bone mineral metabolism, anaemia, volume overload, inflammation and the presence of uraemic toxins. Understanding the status of CKD is crucial for appropriate CVD risk prediction in CKD populations. However, major clinical guidelines are not consistent in their incorporation of CKD measures for CVD risk prediction. Mitigating CVD risk in patients with CKD effectively requires multidisciplinary care that involves nephrologists, cardiologists and other health professionals, as well as further work to address current research and implementation gaps.

Key points

  • Chronic kidney disease (CKD) affects 15–20% of adults globally and increases the risk of various cardiovascular disease (CVD) outcomes (for example, coronary disease, stroke, peripheral artery disease, arrhythmias and heart failure).

  • The broad impact of CKD on the cardiovascular system reflects several pathophysiological mechanisms that link CKD to CVD — shared risk factors (for example, hypertension and diabetes), altered bone mineral metabolism, anaemia, volume overload and the presence of uraemic toxins.

  • Major clinical guidelines are inconsistent with regard to the incorporation of CKD measures for CVD risk prediction. A new approach — ‘CKD Add-on’ — enables the integration of CKD measures into major CVD prediction models.

  • A few new therapies, such as sodium–glucose co-transporter 2 inhibitors, can prevent CVD in CKD populations, but mitigating the risk of CVD in patients with CKD effectively requires multidisciplinary care involving nephrologists, cardiologists and other health care professionals.

  • Many studies have clarified different aspects of the CKD–CVD relationship, but several implementation gaps still need to be addressed, including issues related to widespread albuminuria screening, inadequate implementation of guideline-directed medical therapies, and affordable and equitable access to evidence-based medications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: KDIGO CKD stages and risk of CVD mortality.
Fig. 2: Major pathophysiological mechanisms linking CKD to CVD subtypes.

Similar content being viewed by others

References

  1. Matsushita, K. et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375, 2073–2081 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  2. GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1223–1249 (2020).

    Article  Google Scholar 

  3. United States Renal Data System. 2020 USRDS Annual Data Report: Epidemiology of Kidney Disease in the United States (National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 2020).

  4. Ronco, C., Haapio, M., House, A. A., Anavekar, N. & Bellomo, R. Cardiorenal syndrome. J. Am. Coll. Cardiol. 52, 1527–1539 (2008).

    Article  PubMed  Google Scholar 

  5. Matsushita, K. et al. Estimated glomerular filtration rate and albuminuria for prediction of cardiovascular outcomes: a collaborative meta-analysis of individual participant data. Lancet Diabetes Endocrinol. 3, 514–525 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Matsushita, K. et al. Measures of chronic kidney disease and risk of incident peripheral artery disease: a collaborative meta-analysis of individual participant data. Lancet Diabetes Endocrinol. 5, 718–728 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Matsushita, K. et al. Chronic kidney disease measures and the risk of abdominal aortic aneurysm. Atherosclerosis 279, 107–113 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mahmoodi, B. K. et al. Association of traditional cardiovascular risk factors with venous thromboembolism: an individual participant data meta-analysis of prospective studies. Circulation 135, 7–16 (2017).

    Article  PubMed  Google Scholar 

  9. Grundy, S. M. et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 139, e1082–e1143 (2019).

    PubMed  Google Scholar 

  10. Visseren, F. L. J. et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 42, 3227–3337 (2021).

    Article  PubMed  Google Scholar 

  11. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 3, 1–150 (2013).

    Google Scholar 

  12. Levey, A. S. et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO controversies conference report. Kidney Int. 80, 17–28 (2011).

    Article  PubMed  Google Scholar 

  13. Fox, C. S. et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet 380, 1662–1673 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hallan, S. I. et al. Age and association of kidney measures with mortality and end-stage renal disease. JAMA 308, 2349–2360 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mahmoodi, B. K. et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without hypertension: a meta-analysis. Lancet 380, 1649–1661 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wen, C. P. et al. Relative risks of chronic kidney disease for mortality and end-stage renal disease across races are similar. Kidney Int. 86, 819–827 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nitsch, D. et al. Associations of estimated glomerular filtration rate and albuminuria with mortality and renal failure by sex: a meta-analysis. BMJ 346, f324 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Stevens, L. A. & Levey, A. S. Measured GFR as a confirmatory test for estimated GFR. J. Am. Soc. Nephrol. 20, 2305–2313 (2009).

    Article  PubMed  Google Scholar 

  19. Porrini, E. et al. Estimated GFR: time for a critical appraisal. Nat. Rev. Nephrol. 15, 177–190 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Kwong, Y. T. et al. Imprecision of urinary iothalamate clearance as a gold-standard measure of GFR decreases the diagnostic accuracy of kidney function estimating equations. Am. J. Kidney Dis. 56, 39–49 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bjornstad, P., Karger, A. B. & Maahs, D. M. Measured GFR in routine clinical practice-the promise of dried blood spots. Adv. Chronic Kidney Dis. 25, 76–83 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Perrone, R. D., Madias, N. E. & Levey, A. S. Serum creatinine as an index of renal function: new insights into old concepts. Clin. Chem. 38, 1933–1953 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Inker, L. A. et al. New creatinine- and cystatin C-based equations to estimate GFR without race. N. Engl. J. Med. 385, 1737–1749 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Delgado, C. et al. A unifying approach for GFR estimation: recommendations of the NKF-ASN task force on reassessing the inclusion of race in diagnosing kidney disease. J. Am. Soc. Nephrol. 32, 2994–3015 (2021).

    Article  CAS  Google Scholar 

  25. Inker, L. A. et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N. Engl. J. Med. 367, 20–29 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shlipak, M. G. et al. Cystatin C versus creatinine in determining risk based on kidney function. N. Engl. J. Med. 369, 932–943 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, D. C. et al. Association of intra-individual differences in estimated GFR by creatinine versus cystatin C with incident heart failure. Am. J. Kidney Dis. https://doi.org/10.1053/j.ajkd.2022.05.011 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Stevens, L. A. et al. Factors other than glomerular filtration rate affect serum cystatin C levels. Kidney Int. 75, 652–660 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Levey, A. S., Coresh, J., Tighiouart, H., Greene, T. & Inker, L. A. Measured and estimated glomerular filtration rate: current status and future directions. Nat. Rev. Nephrol. 16, 51–64 (2020).

    Article  PubMed  Google Scholar 

  30. Sumida, K. et al. Conversion of urine protein-creatinine ratio or urine dipstick protein to urine albumin-creatinine ratio for use in chronic kidney disease screening and prognosis: an individual participant-based meta-analysis. Ann. Intern. Med. 173, 426–435 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  31. van der Velde, M. et al. Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int. 79, 1341–1352 (2011).

    Article  PubMed  Google Scholar 

  32. Astor, B. C. et al. Lower estimated glomerular filtration rate and higher albuminuria are associated with mortality and end-stage renal disease. A collaborative meta-analysis of kidney disease population cohorts. Kidney Int. 79, 1331–1340 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Arnold, A. P., Cassis, L. A., Eghbali, M., Reue, K. & Sandberg, K. Sex hormones and sex chromosomes cause sex differences in the development of cardiovascular diseases. Arterioscler. Thromb. Vasc. Biol. 37, 746–756 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. AlSiraj, Y. et al. XX sex chromosome complement promotes atherosclerosis in mice. Nat. Commun. 10, 2631 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Vashistha, V., Lee, M., Wu, Y. L., Kaur, S. & Ovbiagele, B. Low glomerular filtration rate and risk of myocardial infarction: a systematic review and meta-analysis. Int. J. Cardiol. 223, 401–409 (2016).

    Article  PubMed  Google Scholar 

  36. Lee, M. et al. Low glomerular filtration rate and risk of stroke: meta-analysis. BMJ 341, c4249 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kottgen, A. et al. Reduced kidney function as a risk factor for incident heart failure: the atherosclerosis risk in communities (ARIC) study. J. Am. Soc. Nephrol. 18, 1307–1315 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Mahmoodi, B. K. et al. Association of mild to moderate chronic kidney disease with venous thromboembolism: pooled analysis of five prospective general population cohorts. Circulation 126, 1964–1971 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Paulus, W. J. & Tschöpe, C. A novel paradigm for heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 62, 263–271 (2013).

    Article  PubMed  Google Scholar 

  40. Yang, C. et al. Retinal microvascular findings and risk of incident peripheral artery disease: an analysis from the atherosclerosis risk in communities (ARIC) study. Atherosclerosis 294, 62–71 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Beckman, J. A. et al. Microvascular disease, peripheral artery disease, and amputation. Circulation 140, 449–458 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Park, M. et al. Associations between kidney function and subclinical cardiac abnormalities in CKD. J. Am. Soc. Nephrol. 23, 1725–1734 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Matsushita, K. et al. Kidney disease measures and left ventricular structure and function: the atherosclerosis risk in communities study. J. Am. Heart Assoc. 6, e006259 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Alonso, A. et al. Chronic kidney disease is associated with the incidence of atrial fibrillation: the atherosclerosis risk in communities (ARIC) study. Circulation 123, 2946–2953 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kim, E. D., Soliman, E. Z., Coresh, J., Matsushita, K. & Chen, L. Y. Two-week burden of arrhythmias across CKD severity in a large community-based cohort: the ARIC study. J. Am. Soc. Nephrol. 32, 629–638 (2021).

    Article  PubMed  Google Scholar 

  46. Deo, R. et al. Cystatin C and sudden cardiac death risk in the elderly. Circ. Cardiovasc. Qual. Outcomes 3, 159–164 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Suzuki, T. et al. Kidney function and sudden cardiac death in the community: the atherosclerosis risk in communities (ARIC) study. Am. Heart J. 180, 46–53 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Turakhia, M. P. et al. Chronic kidney disease and arrhythmias: conclusions from a kidney disease: improving global outcomes (KDIGO) controversies conference. Eur. Heart J. 39, 2314–2325 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Eckardt, K. U. Managing a fateful alliance: anaemia and cardiovascular outcomes. Nephrol. Dial. Transpl. 20, vi16–vi20 (2005).

    Article  Google Scholar 

  50. Mace, M. L., Egstrand, S., Morevati, M., Olgaard, K. & Lewin, E. New insights to the crosstalk between vascular and bone tissue in chronic kidney disease-mineral and bone disorder. Metabolites 11, 849 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kotsis, V., Martinez, F., Trakatelli, C. & Redon, J. Impact of obesity in kidney diseases. Nutrients 13, 4482 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Valkenburg, S., Glorieux, G. & Vanholder, R. Uremic toxins and cardiovascular system. Cardiol. Clin. 39, 307–318 (2021).

    Article  PubMed  Google Scholar 

  53. Jha, V. et al. Chronic kidney disease: global dimension and perspectives. Lancet 382, 260–272 (2013).

    Article  PubMed  Google Scholar 

  54. Schlaich, M. P. et al. Sympathetic activation in chronic renal failure. J. Am. Soc. Nephrol. 20, 933–939 (2009).

    Article  PubMed  Google Scholar 

  55. Reid, I. A. Interactions between ANG II, sympathetic nervous system, and baroreceptor reflexes in regulation of blood pressure. Am. J. Physiol. 262, E763–E778 (1992).

    CAS  PubMed  Google Scholar 

  56. Ligtenberg, G. et al. Reduction of sympathetic hyperactivity by enalapril in patients with chronic renal failure. N. Engl. J. Med. 340, 1321–1328 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Kaur, J., Young, B. E. & Fadel, P. J. Sympathetic overactivity in chronic kidney disease: consequences and mechanisms. Int. J. Mol. Sci. 18, 1682 (2017).

    Article  PubMed Central  Google Scholar 

  58. Yusuf, A. A., Govender, M. A., Brandenburg, J. T. & Winkler, C. A. Kidney disease and APOL1. Hum. Mol. Genet. 30, R129–R137 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sumaili, E. K. et al. G1 is the major APOL1 risk allele for hypertension-attributed nephropathy in Central Africa. Clin. Kidney J. 12, 188–195 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Lipkowitz, M. S. et al. Apolipoprotein L1 gene variants associate with hypertension-attributed nephropathy and the rate of kidney function decline in African Americans. Kidney Int. 83, 114–120 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Appel, L. J. et al. Long-term effects of renin-angiotensin system-blocking therapy and a low blood pressure goal on progression of hypertensive chronic kidney disease in African Americans. Arch. Intern. Med. 168, 832–839 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Ito, K. et al. Increased burden of cardiovascular disease in carriers of APOL1 genetic variants. Circ. Res. 114, 845–850 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Vithian, K. & Hurel, S. Microvascular complications: pathophysiology and management. Clin. Med. 10, 505–509 (2010).

    Article  Google Scholar 

  64. Echouffo-Tcheugui, J. B. et al. Duration of diabetes and incident heart failure: the ARIC (Atherosclerosis risk in communities) study. JACC Heart Fail. 9, 594–603 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kashihara, N., Haruna, Y., Kondeti, V. K. & Kanwar, Y. S. Oxidative stress in diabetic nephropathy. Curr. Med. Chem. 17, 4256–4269 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chang, A. R. et al. Adiposity and risk of decline in glomerular filtration rate: meta-analysis of individual participant data in a global consortium. BMJ 364, k5301 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wormser, D. et al. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. Lancet 377, 1085–1095 (2011).

    Article  PubMed  Google Scholar 

  68. Fliotsos, M. et al. Body mass index from early-, mid-, and older-adulthood and risk of heart failure and atherosclerotic cardiovascular disease: MESA. J. Am. Heart Assoc. 7, e009599 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Powell-Wiley, T. M. et al. Obesity and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 143, e984–e1010 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ellulu, M. S., Patimah, I., Khaza’ai, H., Rahmat, A. & Abed, Y. Obesity and inflammation: the linking mechanism and the complications. Arch. Med. Sci. 13, 851–863 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Afshinnia, F., Wilt, T. J., Duval, S., Esmaeili, A. & Ibrahim, H. N. Weight loss and proteinuria: systematic review of clinical trials and comparative cohorts. Nephrol. Dial. Transpl. 25, 1173–1183 (2010).

    Article  Google Scholar 

  72. Lamprea-Montealegre, J. A. et al. Chronic kidney disease, plasma lipoproteins, and coronary artery calcium incidence: the Multi-Ethnic Study of Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 33, 652–658 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Zewinger, S. et al. Symmetric dimethylarginine, high-density lipoproteins and cardiovascular disease. Eur. Heart J. 38, 1597–1607 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Lamprea-Montealegre, J. A. et al. Apolipoprotein B, triglyceride-rich lipoproteins, and risk of cardiovascular events in persons with CKD. Clin. J. Am. Soc. Nephrol. 15, 47–60 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Kidney Disease: Improving Global Outcomes CKD-MBD Update Work Group. KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int. Suppl. 7, 1–59 (2017).

    Article  Google Scholar 

  76. Shantouf, R. S. et al. Total and individual coronary artery calcium scores as independent predictors of mortality in hemodialysis patients. Am. J. Nephrol. 31, 419–425 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, A. Y. et al. Cardiac valve calcification as an important predictor for all-cause mortality and cardiovascular mortality in long-term peritoneal dialysis patients: a prospective study. J. Am. Soc. Nephrol. 14, 159–168 (2003).

    Article  PubMed  Google Scholar 

  78. Shanahan, C. M. Mechanisms of vascular calcification in CKD — evidence for premature ageing? Nat. Rev. Nephrol. 9, 661–670 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Lanzer, P. et al. Medial vascular calcification revisited: review and perspectives. Eur. Heart J. 35, 1515–1525 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Cobb, A. M. et al. Runx2 (Runt-related transcription factor 2) links the DNA damage response to osteogenic reprogramming and apoptosis of vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 41, 1339–1357 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Kramer, H., Toto, R., Peshock, R., Cooper, R. & Victor, R. Association between chronic kidney disease and coronary artery calcification: the Dallas Heart Study. J. Am. Soc. Nephrol. 16, 507–513 (2005).

    Article  PubMed  Google Scholar 

  82. Shanahan, C. M., Crouthamel, M. H., Kapustin, A. & Giachelli, C. M. Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. Circ. Res. 109, 697–711 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Furmanik, M. et al. Reactive oxygen-forming Nox5 links vascular smooth muscle cell phenotypic switching and extracellular vesicle-mediated vascular calcification. Circ. Res. 127, 911–927 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Amann, K. et al. Hyperphosphatemia aggravates cardiac fibrosis and microvascular disease in experimental uremia. Kidney Int. 63, 1296–1301 (2003).

    Article  PubMed  Google Scholar 

  85. Block, G. A., Hulbert-Shearon, T. E., Levin, N. W. & Port, F. K. Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am. J. Kidney Dis. 31, 607–617 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Kestenbaum, B. et al. Serum phosphate levels and mortality risk among people with chronic kidney disease. J. Am. Soc. Nephrol. 16, 520–528 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Palmer, S. C. et al. Serum levels of phosphorus, parathyroid hormone, and calcium and risks of death and cardiovascular disease in individuals with chronic kidney disease: a systematic review and meta-analysis. JAMA 305, 1119–1127 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Dhingra, R. et al. Relations of serum phosphorus levels to echocardiographic left ventricular mass and incidence of heart failure in the community. Eur. J. Heart Fail. 12, 812–818 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lioufas, N. M. et al. Systematic review and meta-analyses of the effects of phosphate-lowering agents in nondialysis CKD. J. Am. Soc. Nephrol. 33, 59–76 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Faul, C. et al. FGF23 induces left ventricular hypertrophy. J. Clin. Invest. 121, 4393–4408 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gutierrez, O. M. et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N. Engl. J. Med. 359, 584–592 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kendrick, J. et al. FGF-23 associates with death, cardiovascular events, and initiation of chronic dialysis. J. Am. Soc. Nephrol. 22, 1913–1922 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Scialla, J. J. et al. Fibroblast growth factor-23 and cardiovascular events in CKD. J. Am. Soc. Nephrol. 25, 349–360 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Kuro-o, M. et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390, 45–51 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Koh, N. et al. Severely reduced production of klotho in human chronic renal failure kidney. Biochem. Biophys. Res. Commun. 280, 1015–1020 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Portolés, J., Martín, L., Broseta, J. J. & Cases, A. Anemia in chronic kidney disease: from pathophysiology and current treatments, to future agents. Front. Med. 8, 642296 (2021).

    Article  Google Scholar 

  97. Jankowski, J., Floege, J., Fliser, D., Böhm, M. & Marx, N. Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation 143, 1157–1172 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ishigami, J. et al. Hemoglobin, albuminuria, and kidney function in cardiovascular risk: the ARIC (Atherosclerosis risk in communities) study. J. Am. Heart Assoc. 7, e007209 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Pfeffer, M. A. et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N. Engl. J. Med. 361, 2019–2032 (2009).

    Article  PubMed  Google Scholar 

  100. Eckardt, K. U. et al. Safety and efficacy of vadadustat for anemia in patients undergoing dialysis. N. Engl. J. Med. 384, 1601–1612 (2021).

    Article  CAS  PubMed  Google Scholar 

  101. Chertow, G. M. et al. Vadadustat in patients with anemia and non-dialysis-dependent CKD. N. Engl. J. Med. 384, 1589–1600 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Adu-Amankwaah, J. et al. ADAM17, a key player of cardiac inflammation and fibrosis in heart failure development during chronic catecholamine stress. Front. Cell Dev. Biol. 9, 732952 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Moretti, L., Stalfort, J., Barker, T. H. & Abebayehu, D. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation. J. Biol. Chem. 298, 101530 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Zoccali, C. et al. The systemic nature of CKD. Nat. Rev. Nephrol. 13, 344–358 (2017).

    Article  PubMed  Google Scholar 

  105. Jager, A. et al. C-reactive protein and soluble vascular cell adhesion molecule-1 are associated with elevated urinary albumin excretion but do not explain its link with cardiovascular risk. Arterioscler. Thromb. Vasc. Biol. 22, 593–598 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Eiros, R. et al. Does chronic kidney disease facilitate malignant myocardial fibrosis in heart failure with preserved ejection fraction of hypertensive origin? J. Clin. Med. 9, 404 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  107. Alhaj, E. et al. Uremic cardiomyopathy: an underdiagnosed disease. Congest. Heart Fail. 19, E40–E45 (2013).

    Article  PubMed  Google Scholar 

  108. Wang, X. & Shapiro, J. I. Evolving concepts in the pathogenesis of uraemic cardiomyopathy. Nat. Rev. Nephrol. 15, 159–175 (2019).

    Article  PubMed  Google Scholar 

  109. Gigante, A. et al. Kidney disease and venous thromboembolism: does being woman make the difference? Eur. J. Intern. Med. 39, 18–23 (2017).

    Article  CAS  PubMed  Google Scholar 

  110. Cheung, K. L., Bouchard, B. A. & Cushman, M. Venous thromboembolism, factor VIII and chronic kidney disease. Thromb. Res. 170, 10–19 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Cai, Q. Z., Lu, X. Z., Lu, Y. & Wang, A. Y. Longitudinal changes of cardiac structure and function in CKD (CASCADE study). J. Am. Soc. Nephrol. 25, 1599–1608 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Aburto, N. J. et al. Effect of lower sodium intake on health: systematic review and meta-analyses. BMJ 346, f1326 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Strazzullo, P., D’Elia, L., Kandala, N. B. & Cappuccio, F. P. Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies. BMJ 339, b4567 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  114. He, F. J. & MacGregor, G. A. Salt reduction lowers cardiovascular risk: meta-analysis of outcome trials. Lancet 378, 380–382 (2011).

    Article  PubMed  Google Scholar 

  115. Sen, T. & Heerspink, H. J. L. A kidney perspective on the mechanism of action of sodium glucose co-transporter 2 inhibitors. Cell Metab. 33, 732–739 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Schneider, M. P. et al. Skin sodium concentration correlates with left ventricular hypertrophy in CKD. J. Am. Soc. Nephrol. 28, 1867–1876 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sahinoz, M. et al. Tissue sodium stores in peritoneal dialysis and hemodialysis patients determined by 23-sodium magnetic resonance imaging. Nephrol. Dial. Transpl. 36, 1307–1317 (2020).

    Article  Google Scholar 

  118. Yu, H. C. et al. Salt induces myocardial and renal fibrosis in normotensive and hypertensive rats. Circulation 98, 2621–2628 (1998).

    Article  CAS  PubMed  Google Scholar 

  119. Frohlich, E. D., Chien, Y., Sesoko, S. & Pegram, B. L. Relationship between dietary sodium intake, hemodynamics, and cardiac mass in SHR and WKY rats. Am. J. Physiol. 264, R30–R34 (1993).

    CAS  PubMed  Google Scholar 

  120. Neal, B. et al. Effect of salt substitution on cardiovascular events and death. N. Engl. J. Med. 385, 1067–1077 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Marklund, M. et al. Estimated population wide benefits and risks in China of lowering sodium through potassium enriched salt substitution: modelling study. BMJ 369, m824 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Ellison, D. H. & Welling, P. Insights into salt handling and blood pressure. N. Engl. J. Med. 385, 1981–1993 (2021).

    Article  CAS  PubMed  Google Scholar 

  123. Gilligan, S. & Raphael, K. L. Hyperkalemia and hypokalemia in CKD: prevalence, risk factors, and clinical outcomes. Adv. Chronic Kidney Dis. 24, 315–318 (2017).

    Article  PubMed  Google Scholar 

  124. Pun, P. H., Goldstein, B. A., Gallis, J. A., Middleton, J. P. & Svetkey, L. P. Serum potassium levels and risk of sudden cardiac death among patients with chronic kidney disease and significant coronary artery disease. Kidney Int. Rep. 2, 1122–1131 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Klein, I. H. et al. Sympathetic nerve activity is inappropriately increased in chronic renal disease. J. Am. Soc. Nephrol. 14, 3239–3244 (2003).

    Article  PubMed  Google Scholar 

  126. Converse, R. L. Jr et al. Sympathetic overactivity in patients with chronic renal failure. N. Engl. J. Med. 327, 1912–1918 (1992).

    Article  PubMed  Google Scholar 

  127. Campese, V. M. Pathophysiology of resistant hypertension in chronic kidney disease. Semin. Nephrol. 34, 571–576 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Campese, V. M. & Kogosov, E. Renal afferent denervation prevents hypertension in rats with chronic renal failure. Hypertension 25, 878–882 (1995).

    Article  CAS  PubMed  Google Scholar 

  129. Hijmering, M. L. et al. Sympathetic activation markedly reduces endothelium-dependent, flow-mediated vasodilation. J. Am. Coll. Cardiol. 39, 683–688 (2002).

    Article  PubMed  Google Scholar 

  130. Grassi, G. et al. Sympathetic neural overdrive in congestive heart failure and its correlates: systematic reviews and meta-analysis. J. Hypertens. 37, 1746–1756 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Zoccali, C. et al. Norepinephrine and concentric hypertrophy in patients with end-stage renal disease. Hypertension 40, 41–46 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Zoccali, C. et al. Plasma norepinephrine predicts survival and incident cardiovascular events in patients with end-stage renal disease. Circulation 105, 1354–1359 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Young, C. N. et al. Inhibition of nitric oxide synthase evokes central sympatho-excitation in healthy humans. J. Physiol. 587, 4977–4986 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zoccali, C. et al. Plasma concentration of asymmetrical dimethylarginine and mortality in patients with end-stage renal disease: a prospective study. Lancet 358, 2113–2117 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Young, J. M. et al. Asymmetric dimethylarginine and mortality in stages 3 to 4 chronic kidney disease. Clin. J. Am. Soc. Nephrol. 4, 1115–1120 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ravani, P. et al. Asymmetrical dimethylarginine predicts progression to dialysis and death in patients with chronic kidney disease: a competing risks modeling approach. J. Am. Soc. Nephrol. 16, 2449–2455 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Velasquez, M. T., Centron, P., Barrows, I., Dwivedi, R. & Raj, D. S. Gut microbiota and cardiovascular uremic toxicities. Toxins 10, 287 (2018).

    Article  PubMed Central  Google Scholar 

  138. Vanholder, R., Schepers, E., Pletinck, A., Nagler, E. V. & Glorieux, G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: a systematic review. J. Am. Soc. Nephrol. 25, 1897–1907 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Meijers, B. K. et al. The uremic retention solute p-cresyl sulfate and markers of endothelial damage. Am. J. Kidney Dis. 54, 891–901 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Ito, S. et al. Indoxyl sulfate induces leukocyte-endothelial interactions through up-regulation of E-selectin. J. Biol. Chem. 285, 38869–38875 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Berg, A. H., Kumar, S. & Karumanchi, S. A. Indoxyl sulfate in uremia: an old idea with updated concepts. J. Clin. Invest. 132, e155860 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Barreto, F. C. et al. Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin. J. Am. Soc. Nephrol. 4, 1551–1558 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Liabeuf, S. et al. Free p-cresylsulphate is a predictor of mortality in patients at different stages of chronic kidney disease. Nephrol. Dial. Transpl. 25, 1183–1191 (2010).

    Article  CAS  Google Scholar 

  144. Lin, C. J., Wu, V., Wu, P. C. & Wu, C. J. Meta-analysis of the associations of p-cresyl sulfate (PCS) and indoxyl sulfate (IS) with cardiovascular events and all-cause mortality in patients with chronic renal failure. PLoS One 10, e0132589 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Meijers, B. K. et al. p-Cresol and cardiovascular risk in mild-to-moderate kidney disease. Clin. J. Am. Soc. Nephrol. 5, 1182–1189 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bammens, B., Evenepoel, P., Keuleers, H., Verbeke, K. & Vanrenterghem, Y. Free serum concentrations of the protein-bound retention solute p-cresol predict mortality in hemodialysis patients. Kidney Int. 69, 1081–1087 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Tang, W. H. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368, 1575–1584 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Heianza, Y., Ma, W., Manson, J. E., Rexrode, K. M. & Qi, L. Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death: a systematic review and meta-analysis of prospective studies. J. Am. Heart Assoc. 6, e004947 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Schiattarella, G. G. et al. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: a systematic review and dose-response meta-analysis. Eur. Heart J. 38, 2948–2956 (2017).

    Article  CAS  PubMed  Google Scholar 

  150. Shafi, T. et al. Trimethylamine N-oxide and cardiovascular events in hemodialysis patients. J. Am. Soc. Nephrol. 28, 321–331 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. Stubbs, J. R. et al. Trimethylamine N-oxide and cardiovascular outcomes in patients with ESKD receiving maintenance hemodialysis. Clin. J. Am. Soc. Nephrol. 14, 261–267 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kim, R. B. et al. Advanced chronic kidney disease populations have elevated trimethylamine N-oxide levels associated with increased cardiovascular events. Kidney Int. 89, 1144–1152 (2016).

    Article  CAS  PubMed  Google Scholar 

  153. Dou, L. et al. Aryl hydrocarbon receptor is activated in patients and mice with chronic kidney disease. Kidney Int. 93, 986–999 (2018).

    Article  CAS  PubMed  Google Scholar 

  154. Gondouin, B. et al. Indolic uremic solutes increase tissue factor production in endothelial cells by the aryl hydrocarbon receptor pathway. Kidney Int. 84, 733–744 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Whelton, P. K. et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J. Am. Coll. Cardiol. 71, e127–e248 (2018).

    Article  PubMed  Google Scholar 

  156. Kidney Disease: Improving Global Outcomes (KDIGO) Lipid Work Group. . KDIGO clinical practice guideline for lipid management in chronic kidney disease. Kidney Int. Suppl. 3, 259–305 (2013).

    Google Scholar 

  157. Matsushita, K. et al. Incorporating kidney disease measures into cardiovascular risk prediction: development and validation in 9 million adults from 72 datasets. EClinicalMedicine 27, 100552 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Piepoli, M. F. et al. 2016 European guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J. 37, 2315–2381 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Emerging Risk Factors, C. et al. C-reactive protein, fibrinogen, and cardiovascular disease prediction. N. Engl. J. Med. 367, 1310–1320 (2012).

    Article  Google Scholar 

  160. Mok, Y. et al. Albuminuria and prognosis among individuals with atherosclerotic cardiovascular disease: the ARIC study. J. Am. Coll. Cardiol. 78, 87–89 (2021).

    Article  CAS  PubMed  Google Scholar 

  161. Mok, Y. et al. Albuminuria as a predictor of cardiovascular outcomes in patients with acute myocardial infarction. J. Am. Heart Assoc. 8, e010546 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Chronic kidney disease: assessment and management — National Institute for Health and Care Excellence: Guidelines (National Institute for Health and Care Excellence (NICE), 2021).

  163. de Boer, I. H. et al. Executive summary of the 2020 KDIGO diabetes management in CKD Guideline: evidence-based advances in monitoring and treatment. Kidney Int. 98, 839–848 (2020).

    Article  PubMed  Google Scholar 

  164. Gaede, P. et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N. Engl. J. Med. 348, 383–393 (2003).

    Article  PubMed  Google Scholar 

  165. Gaede, P., Lund-Andersen, H., Parving, H. H. & Pedersen, O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N. Engl. J. Med. 358, 580–591 (2008).

    Article  CAS  PubMed  Google Scholar 

  166. Gaede, P. et al. Years of life gained by multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: 21 years follow-up on the Steno-2 randomised trial. Diabetologia 59, 2298–2307 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hager, M. R., Narla, A. D. & Tannock, L. R. Dyslipidemia in patients with chronic kidney disease. Rev. Endocr. Metab. Disord. 18, 29–40 (2017).

    Article  CAS  PubMed  Google Scholar 

  168. Baigent, C. et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet 377, 2181–2192 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hou, W. et al. Effect of statin therapy on cardiovascular and renal outcomes in patients with chronic kidney disease: a systematic review and meta-analysis. Eur. Heart J. 34, 1807–1817 (2013).

    Article  CAS  PubMed  Google Scholar 

  170. Ninomiya, T. et al. Blood pressure lowering and major cardiovascular events in people with and without chronic kidney disease: meta-analysis of randomised controlled trials. BMJ 347, f5680 (2013).

    Article  CAS  PubMed  Google Scholar 

  171. Agarwal, R. et al. Chlorthalidone for hypertension in advanced chronic kidney disease. N. Engl. J. Med. 385, 2507–2519 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Malhotra, R. et al. Association between more intensive vs less intensive blood pressure lowering and risk of mortality in chronic kidney disease stages 3 to 5: a systematic review and meta-analysis. JAMA Intern. Med. 177, 1498–1505 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Wright, J. T. Jr. et al. A randomized trial of intensive versus standard blood-pressure control. N. Engl. J. Med. 373, 2103–2116 (2015).

    Article  CAS  PubMed  Google Scholar 

  174. Cheung, A. K. et al. Executive summary of the KDIGO 2021 clinical practice guideline for the management of blood pressure in chronic kidney disease. Kidney Int. 99, 559–569 (2021).

    Article  PubMed  Google Scholar 

  175. Dasgupta, I. & Zoccali, C. Is the KDIGO systolic blood pressure target <120 mm Hg for chronic kidney disease appropriate in routine clinical practice? Hypertension 79, 4–11 (2022).

    Article  CAS  PubMed  Google Scholar 

  176. Qiao, Y. et al. Discontinuation of angiotensin converting enzyme inhibitors and angiotensin receptor blockers in chronic kidney disease. Mayo Clin. Proc. 94, 2220–2229 (2019).

    Article  CAS  PubMed  Google Scholar 

  177. Qiao, Y. et al. Association between renin-angiotensin system blockade discontinuation and all-cause mortality among persons with low estimated glomerular filtration rate. JAMA Intern. Med. 180, 718–726 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Fu, E. L. et al. Stopping renin-angiotensin system inhibitors in patients with advanced CKD and risk of adverse outcomes: a nationwide study. J. Am. Soc. Nephrol. 32, 424–435 (2021).

    Article  CAS  PubMed  Google Scholar 

  179. Bolignano, D., Palmer, S. C., Navaneethan, S. D. & Strippoli, G. F. M. Aldosterone antagonists for preventing the progression of chronic kidney disease. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD007004.pub3 (2009).

    Article  Google Scholar 

  180. Bakris, G. L. et al. Design and baseline characteristics of the finerenone in reducing kidney failure and disease progression in diabetic kidney disease trial. Am. J. Nephrol. 50, 333–344 (2019).

    Article  CAS  PubMed  Google Scholar 

  181. Ruilope, L. M. et al. Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial. Am. J. Nephrol. 50, 345–356 (2019).

    Article  CAS  PubMed  Google Scholar 

  182. Agarwal, R. et al. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. Eur. Heart J. 43, 474–484 (2022).

    Article  CAS  PubMed  Google Scholar 

  183. DeFronzo, R. A., Reeves, W. B. & Awad, A. S. Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors. Nat. Rev. Nephrol. 17, 319–334 (2021).

    Article  CAS  PubMed  Google Scholar 

  184. Perkovic, V. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 380, 2295–2306 (2019).

    Article  CAS  PubMed  Google Scholar 

  185. Heerspink, H. J. L. et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 383, 1436–1446 (2020).

    Article  CAS  PubMed  Google Scholar 

  186. Alicic, R. Z., Cox, E. J., Neumiller, J. J. & Tuttle, K. R. Incretin drugs in diabetic kidney disease: biological mechanisms and clinical evidence. Nat. Rev. Nephrol. 17, 227–244 (2021).

    Article  CAS  PubMed  Google Scholar 

  187. Sattar, N. et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diab. Endocrinol. 9, 653–662 (2021).

    Article  CAS  Google Scholar 

  188. Rangaswami, J. et al. Cardiorenal protection with the newer antidiabetic agents in patients with diabetes and chronic kidney disease: a scientific statement from the American Heart Association. Circulation 142, e265–e286 (2020).

    Article  CAS  PubMed  Google Scholar 

  189. Nichols, G. A., Ustyugova, A., Deruaz-Luyet, A., O’Keeffe-Rosetti, M. & Brodovicz, K. G. Health care costs by type of expenditure across eGFR stages among patients with and without diabetes, cardiovascular disease, and heart failure. J. Am. Soc. Nephrol. 31, 1594–1601 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. McDonagh, T. A. et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 42, 3599–3726 (2021).

    Article  CAS  PubMed  Google Scholar 

  191. Yancy, C. W. et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 62, e147–e239 (2013).

    Article  PubMed  Google Scholar 

  192. Nguyen, M. et al. Management and outcomes of heart failure patients with CKD: experience from an inter-disciplinary clinic. ESC Heart Fail. 7, 3225–3230 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Díez, J. & Ortiz, A. The need for a cardionephrology subspecialty. Clin. Kidney J. 14, 1491–1494 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Tangri, N. et al. Multinational assessment of accuracy of equations for predicting risk of kidney failure: a meta-analysis. JAMA 315, 164–174 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Tangri, N. et al. A predictive model for progression of chronic kidney disease to kidney failure. JAMA 305, 1553–1559 (2011).

    Article  CAS  PubMed  Google Scholar 

  196. Stempniewicz, N. et al. Chronic kidney disease testing among primary care patients with type 2 diabetes across 24 US Health Care Organizations. Diabetes Care 44, 2000–2009 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 398, 957–980 (2021).

    Article  Google Scholar 

  198. Eberly, L. A. et al. Association of race/ethnicity, gender, and socioeconomic status with sodium-glucose cotransporter 2 inhibitor use among patients with diabetes in the US. JAMA Netw. Open 4, e216139 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  199. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05254002 (2022).

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content and wrote, drafted, reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Kunihiro Matsushita.

Ethics declarations

Competing interests

K.M. received support from NIDDK (R01DK100446) during the submitted work, personal fees and research funding from Kyowa Kirin, and personal fees from Akebia and Fukuda Denshi outside of the submitted work. R.A. reports personal fees and nonfinancial support from Bayer Healthcare Pharmaceuticals Inc., Akebia Therapeutics, Boehringer Ingelheim, Eli Lilly and Vifor Pharma; he has received personal fees from Lexicon and Reata; he is a member of data safety monitoring committees for Vertex and Chinook; a member of steering committees of randomized trials for Akebia Therapeutics, Bayer, and Relypsa; and a member of adjudication committees for Bayer; he has served as associate editor of the American Journal of Nephrology and Nephrology Dialysis Transplantation and has been an author for UpToDate; and he has received research grants from the US NIH and US Veterans Affairs. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks R. Pecoits-Filho, M. Orias, C. Romero and R. Townsend for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CKD Add-on PCE calculator: https://ckdpcrisk.org/ckdpatchpce/

Supplementary information

Glossary

Eccentric LVH

A type of LVH that is characterized by a dilatated left ventricular chamber in addition to increased left ventricular mass.

Concentric LVH

A type of LVH that is characterized by a reduced left ventricular chamber owing to increased thickness of the left ventricular wall.

Concordance statistic

An indicator of risk discrimination; corresponds to the probability that the predicted risk is higher in a case than in a non-case.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsushita, K., Ballew, S.H., Wang, A.YM. et al. Epidemiology and risk of cardiovascular disease in populations with chronic kidney disease. Nat Rev Nephrol 18, 696–707 (2022). https://doi.org/10.1038/s41581-022-00616-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-022-00616-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing