Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drosophila melanogaster: a simple genetic model of kidney structure, function and disease

A Publisher Correction to this article was published on 10 November 2023

This article has been updated

Abstract

Although the genetic basis of many kidney diseases is being rapidly elucidated, their experimental study remains problematic owing to the lack of suitable models. The fruitfly Drosophila melanogaster provides a rapid, ethical and cost-effective model system of the kidney. The unique advantages of D. melanogaster include ease and low cost of maintenance, comprehensive availability of genetic mutants and powerful transgenic technologies, and less onerous regulation, as compared with mammalian systems. Renal and excretory functions in D. melanogaster reside in three main tissues — the transporting renal (Malpighian) tubules, the reabsorptive hindgut and the endocytic nephrocytes. Tubules contain multiple cell types and regions and generate a primary urine by transcellular transport rather than filtration, which is then subjected to selective reabsorption in the hindgut. By contrast, the nephrocytes are specialized for uptake of macromolecules and equipped with a filtering slit diaphragm resembling that of podocytes. Many genes with key roles in the human kidney have D. melanogaster orthologues that are enriched and functionally relevant in fly renal tissues. This similarity has allowed investigations of epithelial transport, kidney stone formation and podocyte and proximal tubule function. Furthermore, a range of unique quantitative phenotypes are available to measure function in both wild type and disease-modelling flies.

Key points

  • The fruitfly Drosophila melanogaster has proved to be a valuable experimental model for the study of human biology and has major advantages, including low costs and a broad variety of established genetic tools and interventions.

  • The fly renal tubule — Malpighian tubule — secretes fluid faster (on a per-cell volume basis) than any other tissue, and is ideal for investigating secretory or transport phenotypes, such as nephrolithiasis.

  • Nephrocytes express many proteins that are also found in the slit diaphragm of podocytes and perform a specialized role by sequestering and breaking down filtered molecules such as proteins; the ability of nephrocytes to reabsorb filtered molecules is analogous to the reabsorptive capacity of the proximal tubule.

  • A wide range of models of kidney diseases have been developed in D. melanogaster.

  • D. melanogaster uniquely represents an organism with a recognizable renal system that is compatible with large-scale chemical or genetic screens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The D. melanogaster excretory system.
Fig. 2: Key genes and functions of the D. melanogaster renal tubule.
Fig. 3: Experimental approaches to the D. melanogaster renal system.
Fig. 4: Use of D. melanogaster to identify new treatments for nephrolithiasis.
Fig. 5: The mammalian kidney filtration apparatus and the D. melanogaster nephrocyte.

Similar content being viewed by others

Change history

References

  1. Wigglesworth, V. B. The Principles of Insect Physiology. 7th edn (Chapman & Hall, 1972).

  2. Simpson, S. J. & Douglas, A. E. (eds). The Insects: Structure and Function (Cambridge Univ, Press, 2013).

  3. Berridge, M. J. A structural analysis of intestinal absorption. Symp. Rent. Soc. Lond. 5, 135–150 (1970).

    Google Scholar 

  4. Maddrell, S. H. P. The functional design of the insect excretory system. J. Exp. Biol. 90, 1–15 (1981).

    Article  Google Scholar 

  5. Denholm, B. & Skaer, H. Bringing together components of the fly renal system. Curr. Opin. Genet. Dev. 19, 526–532 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cohen, E., Sawyer, J. K., Peterson, N. G., Dow, J. A. T. & Fox, D. T. Physiology, development, and disease modeling in the Drosophila excretory system. Genetics 214, 235–264 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

    Article  PubMed  Google Scholar 

  8. Pfeiffer, B. D. et al. Tools for neuroanatomy and neurogenetics in Drosophila. Proc. Natl Acad. Sci. USA 105, 9715–9720 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pfeiffer, B. D. et al. Refinement of tools for targeted gene expression in Drosophila. Genetics 186, 735–755 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gautam, N. K., Verma, P. & Tapadia, M. G. Drosophila Malpighian tubules: a model for understanding kidney development, function, and disease. Results Probl. Cell Differ. 60, 3–25 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Ugur, B., Chen, K. & Bellen, H. J. Drosophila tools and assays for the study of human diseases. Dis. Model. Mech. 9, 235–244 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dow, J. A. T. & Romero, M. F. Drosophila provides rapid modeling of renal development, function, and disease. Am. J. Physiol. Renal Physiol. 299, F1237–F1244 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bertoloni Meli, D. Mechanism, Experiment, Disease: Marcello Malpighi and Seventeenth-Century Anatomy. (Johns Hopkins University Press, 2011).

  14. Sözen, M. A., Armstrong, J. D., Yang, M. Y., Kaiser, K. & Dow, J. A. T. Functional domains are specified to single-cell resolution in a Drosophila epithelium. Proc. Natl Acad. Sci. USA 94, 5207–5212 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Beyenbach, K. W., Skaer, H. & Dow, J. A. T. The developmental, molecular, and transport biology of Malpighian tubules. Annu. Rev. Entomol. 55, 351–374 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. O’Donnell, M. J. & Maddrell, S. H. P. Fluid reabsorption and ion transport by the lower Malpighian tubules of adult female Drosophila. J. Exp. Biol. 198, 1647–1653 (1995).

    Article  PubMed  Google Scholar 

  17. Maddrell, S. H. P. The fastest fluid-secreting cell known: the upper Malpighian tubule cell of Rhodnius. BioEssays 13, 357–362 (1991).

    Article  Google Scholar 

  18. Hatton-Ellis, E. et al. Genetic regulation of patterned tubular branching in Drosophila. Proc. Natl Acad. Sci. USA 104, 169–174 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Skaer, H. Cell division in Malpighian tubule development in D. melanogaster is regulated by a single tip cell. Nature 342, 566–569 (1989).

    Article  Google Scholar 

  20. Sudarsan, V., Pasalodos-Sanchez, S., Wan, S., Gampel, A. & Skaer, H. A genetic hierarchy establishes mitogenic signalling and mitotic competence in the renal tubules of Drosophila. Development 129, 935–944 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Campbell, K., Knust, E. & Skaer, H. Crumbs stabilises epithelial polarity during tissue remodelling. J. Cell Sci. 122, 2604–2612 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grawe, F., Wodarz, A., Lee, B., Knust, E. & Skaer, H. The Drosophila genes crumbs and stardust are involved in the biogenesis of adherens junctions. Development 122, 951–959 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Denholm, B. et al. Dual origin of the renal tubules in Drosophila: mesodermal cells integrate and polarize to establish secretory function. Curr. Biol. 13, 1052–1057 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Davies, J. A. Mesenchyme to epithelium transition during development of the mammalian kidney tubule. Acta Anat. 156, 187–201 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Slavotinek, A. M. The family of crumbs genes and human disease. Mol. Syndromol. 7, 274–281 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Attanasio, M. et al. Loss of GLIS2 causes nephronophthisis in humans and mice by increased apoptosis and fibrosis. Nat. Genet. 39, 1018–1024 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Caubit, X. et al. Teashirt 3 is necessary for ureteral smooth muscle differentiation downstream of SHH and BMP4. Development 135, 3301–3310 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Dworak, H. A., Charles, M. A., Pellerano, L. B. & Sink, H. Characterization of Drosophila hibris, a gene related to human nephrin. Development 128, 4265–4276 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Day, J. P. et al. Identification of two partners from the bacterial Kef exchanger family for the apical plasma membrane V-ATPase of Metazoa. J. Cell Sci. 121, 2612–2619 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Chintapalli, V. R. et al. Transport proteins NHA1 and NHA2 are essential for survival, but have distinct transport modalities. Proc. Natl Acad. Sci. USA 112, 11720–11725 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cabrero, P. et al. Chloride channels in stellate cells are essential for uniquely high secretion rates in neuropeptide-stimulated Drosophila diuresis. Proc. Natl Acad. Sci. USA 111, 14301–14306 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cabrero, P. et al. Specialized stellate cells offer a privileged route for rapid water flux in Drosophila renal tubule. Proc. Natl Acad. Sci. USA 117, 1779–1787 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brown, D., Hirsch, S. & Gluck, S. Localization of a proton-pumping ATPase in rat kidney. J. Clin. Invest. 82, 2114–2126 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brown, D., Lui, B., Gluck, S. & Sabolic, I. A plasma membrane proton ATPase in specialized cells of rat epididymis. Am. J. Physiol. 263, C913–C916 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Chambrey, R. et al. Renal intercalated cells are rather energized by a proton than a sodium pump. Proc. Natl Acad. Sci. USA 110, 7928–7933 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dow, J. A. T. et al. The Malpighian tubules of Drosophila melanogaster: a novel phenotype for studies of fluid secretion and its control. J. Exp. Biol. 197, 421–428 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Traven, A., Jelicic, B. & Sopta, M. Yeast Gal4: a transcriptional paradigm revisited. EMBO Rep. 7, 496–499 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Duffy, J. B. GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis 34, 1–15 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Rosay, P. et al. Cell-type specific calcium signalling in a Drosophila epithelium. J. Cell Sci. 110, 1683–1692 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Rossano, A. J., Kato, A., Minard, K. I., Romero, M. F. & Macleod, G. T. Na+/H+ exchange via the Drosophila vesicular glutamate transporter mediates activity-induced acid efflux from presynaptic terminals. J. Physiol. 595, 805–824 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Rossano, A. J. & Romero, M. F. Optical quantification of intracellular pH in Drosophila melanogaster Malpighian tubule epithelia with a fluorescent genetically-encoded pH indicator. J. Vis. Exp. https://doi.org/10.3791/55698 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dionne, H., Hibbard, K. L., Cavallaro, A., Kao, J. C. & Rubin, G. M. Genetic reagents for making split-GAL4 lines in Drosophila. Genetics 209, 31–35 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dow, J. A. T. Drosophila as an experimental organism for functional genomics. eLS https://doi.org/10.1002/9780470015902.a0000561 (2012).

    Article  Google Scholar 

  45. Leung, B. & Waddell, S. Four-dimensional gene expression control: memories on the fly. Trends Neurosci. 27, 511–513 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Robles-Murguia, M., Hunt, L. C., Finkelstein, D., Fan, Y. & Demontis, F. Tissue-specific alteration of gene expression and function by RU486 and the GeneSwitch system. NPJ Aging Mech. Dis. 5, 6 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bassett, A. R., Tibbit, C., Ponting, C. P. & Liu, J. L. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep. 4, 220–228 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gratz, S. J. et al. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194, 1029–1035 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gratz, S. J., Harrison, M. M., Wildonger, J. & O’Connor-Giles, K. M. Precise genome editing of Drosophila with CRISPR RNA-guided Cas9. Methods Mol. Biol. 1311, 335–348 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Xu, J. et al. A toolkit of CRISPR-based genome editing systems in Drosophila. J. Genet. Genomics 42, 141–149 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Chintapalli, V. R., Wang, J. & Dow, J. A. T. Using FlyAtlas to identify better Drosophila models of human disease. Nat. Genet. 39, 715–720 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Hildebrandt, F. Genetic kidney diseases. Lancet 375, 1287–1295 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Laing, C. M. & Unwin, R. J. Renal tubular acidosis. J. Nephrol. 19(Suppl 9), S46–S52 (2006).

    CAS  PubMed  Google Scholar 

  54. Mazhab-Jafari, M. T. et al. Atomic model for the membrane-embedded VO motor of a eukaryotic V-ATPase. Nature 539, 118–122 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gogarten, J. P. et al. Evolution of the vacuolar H+-ATPase — implications for the origin of eukaryotes. PNAS 86, 6661–6665 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Blair, H. C., Teitelbaum, S. L., Ghiselli, R. & Gluck, S. Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 245, 855–857 (1989).

    Article  CAS  PubMed  Google Scholar 

  57. Alper, S. L., Brown, D., Lodish, H. F., Natale, J. & Gluck, S. Subtypes of intercalated cells in rat-kidney collecting duct defined by antibodies against erythroid band-3 and renal vacuolar H+-ATPase. Proc. Natl Acad. Sci. USA 86, 5429–5433 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. DeFranco, P. E., Haragsim, L., Schmitz, P. G., Bastani, B. & Li, J. P. Absence of vacuolar H+-ATPase pump in the collecting duct of a patient with hypokalemic distal renal tubular-acidosis and Sjögrens syndrome. J. Am. Soc. Nephrol. 6, 295–301 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Karet, F. E. et al. Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat. Genet. 21, 84–90 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Smith, A. N. et al. Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing. Nat. Genet. 26, 71–75 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Stover, E. H. et al. Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss. J. Med. Genet. 39, 796–803 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Allan, A. K., Du, J., Davies, S. A. & Dow, J. A. T. Genome-wide survey of V-ATPase genes in Drosophila reveals a conserved renal phenotype for lethal alleles. Physiol. Genomics 22, 128–138 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, J. et al. Function-informed transcriptome analysis of Drosophila renal tubule. Genome Biol. 5, R69 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Davies, S. A. et al. Analysis and inactivation of vha55, the gene encoding the vacuolar ATPase B-subunit in Drosophila melanogaster reveals a larval lethal phenotype. J. Biol. Chem. 271, 30677–30684 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Ares, G. R., Caceres, P. S. & Ortiz, P. A. Molecular regulation of NKCC2 in the thick ascending limb. Am. J. Physiol. Renal Physiol. 301, F1143–F1159 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shekarabi, M. et al. WNK kinase signaling in ion homeostasis and human disease. Cell Metab. 25, 285–299 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Wilson, F. H. et al. Human hypertension caused by mutations in WNK kinases. Science 293, 1107–1112 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Choate, K. A., Kahle, K. T., Wilson, F. H., Nelson-Williams, C. & Lifton, R. P. WNK1, a kinase mutated in inherited hypertension with hyperkalemia, localizes to diverse Cl-transporting epithelia. Proc. Natl Acad. Sci. USA 100, 663–668 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. San-Cristobal, P. et al. Angiotensin II signaling increases activity of the renal Na-Cl cotransporter through a WNK4-SPAK-dependent pathway. Proc. Natl Acad. Sci. USA 106, 4384–4389 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Welling, P. A., Chang, Y. P., Delpire, E. & Wade, J. B. Multigene kinase network, kidney transport, and salt in essential hypertension. Kidney Int. 77, 1063–1069 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Grimm, P. R., Coleman, R., Delpire, E. & Welling, P. A. Constitutively Active SPAK causes hyperkalemia by activating NCC and remodeling distal tubules. J. Am. Soc. Nephrol. 28, 2597–2606 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Grimm, P. R. et al. SPAK isoforms and OSR1 regulate sodium-chloride co-transporters in a nephron-specific manner. J. Biol. Chem. 287, 37673–37690 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lin, S. H. et al. Impaired phosphorylation of Na+-K+-2Cl cotransporter by oxidative stress-responsive kinase-1 deficiency manifests hypotension and Bartter-like syndrome. Proc. Natl Acad. Sci. USA 108, 17538–17543 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rodan, A. R. WNK-SPAK/OSR1 signaling: lessons learned from an insect renal epithelium. Am. J. Physiol. Renal Physiol. 315, F903–F907 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rodan, A. R. & Jenny, A. WNK kinases in development and disease. Curr. Top. Dev. Biol. 123, 1–47 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Wu, Y., Schellinger, J. N., Huang, C. L. & Rodan, A. R. Hypotonicity stimulates potassium flux through the WNK-SPAK/OSR1 kinase cascade and the Ncc69 sodium-potassium-2-chloride cotransporter in the Drosophila renal tubule. J. Biol. Chem. 289, 26131–26142 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wu, Y., Baum, M., Huang, C. L. & Rodan, A. R. Two inwardly rectifying potassium channels, Irk1 and Irk2, play redundant roles in Drosophila renal tubule function. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R747–R756 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ramello, A., Vitale, C. & Marangella, M. Epidemiology of nephrolithiasis. J. Nephrol. 13 (Suppl 3), S45–S50 (2000).

    PubMed  Google Scholar 

  79. Ziemba, J. B. & Matlaga, B. R. Epidemiology and economics of nephrolithiasis. Investig. Clin. Urol. 58, 299–306 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Shoag, J., Tasian, G. E., Goldfarb, D. S. & Eisner, B. H. The new epidemiology of nephrolithiasis. Adv. Chronic Kidney Dis. 22, 273–278 (2015).

    Article  PubMed  Google Scholar 

  81. Southall, T. D. et al. Novel subcellular locations and functions for secretory pathway Ca2+/Mn2+-ATPases. Physiol. Genomics 26, 35–45 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Knauf, F. & Preisig, P. A. Drosophila: a fruitful model for calcium oxalate nephrolithiasis? Kidney Int. 80, 327–329 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Amato, M., Lusini, M. L. & Nelli, F. Epidemiology of nephrolithiasis today. Urol. Int. 72 (Suppl 1), 1–5 (2004).

    Article  PubMed  Google Scholar 

  84. Hirata, T. et al. In vivo Drosophila genetic model for calcium oxalate nephrolithiasis. Am. J. Physiol. Renal Physiol. 303, F1555–F1562 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen, W. C. et al. Toward a new insight of calcium oxalate stones in Drosophila by micro-computerized tomography. Urolithiasis https://doi.org/10.1007/s00240-017-0967-0 (2017).

    Article  PubMed  Google Scholar 

  86. Khan, S. R., Glenton, P. A. & Byer, K. J. Modeling of hyperoxaluric calcium oxalate nephrolithiasis: experimental induction of hyperoxaluria by hydroxy-l-proline. Kidney Int. 70, 914–923 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Chen, Y. H. et al. Ethylene glycol induces calcium oxalate crystal deposition in Malpighian tubules: a Drosophila model for nephrolithiasis/urolithiasis. Kidney Int. 80, 369–377 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Yang, H. et al. Efficacy of Hydroxy-l-proline (HYP) analogs in the treatment of primary hyperoxaluria in Drosophila melanogaster. BMC Nephrol. 19, 167 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Chi, T. et al. A Drosophila model identifies a critical role for zinc in mineralization for kidney stone disease. PLoS One 10, e0124150 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Evan, A. P. et al. Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J. Clin. Invest. 111, 607–616 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Alford, A., Furrow, E., Borofsky, M. & Lulich, J. Animal models of naturally occurring stone disease. Nat. Rev. Urol. 17, 691–705 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Richards, C. D. & Burke, R. A fly’s eye view of zinc homeostasis: novel insights into the genetic control of zinc metabolism from Drosophila. Arch. Biochem. Biophys. 611, 142–149 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Yin, S., Qin, Q. & Zhou, B. Functional studies of Drosophila zinc transporters reveal the mechanism for zinc excretion in Malpighian tubules. BMC Biol. 15, 12 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Landry, G. M. et al. Cloning, function, and localization of human, canine and Drosophila ZIP10 (SLC39A10), a Zn2+ transporter. Am. J. Physiol. Renal Physiol. 316, F263–F273 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Dow, J. A. T., Cabrero, P., Hirata, T., Chang, M. & Romero, M. F. A simple model for nephrolithiasis: Drosophila Prestin (Slc26a5) functions as a Cl/oxalate exchanger in the gut with kinetics similar to mammalian Slc26a6. Proc. Physiol. Soc. 16, C15 (2009).

    Google Scholar 

  96. Hirata, T. et al. Ion and solute transport by Prestin in Drosophila and Anopheles. J. Insect Physiol. 58, 563–569 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Anderson, J. B., Hirata, T., Rossano, A. J., Landry, G. M. & Romero, M. F. Drosophila model indicates role of OSR1/SPAK signaling in calcium oxalate kidney stone formation via regulation of Slc26a6 mediated Cl/oxalate2 exchange. J. Am. Soc. Nephrol. 27, 465A (2016).

    Google Scholar 

  98. Landry, G. M. et al. Sulfate and thiosulfate inhibit oxalate transport via a dPrestin (Slc26a6)-dependent mechanism in an insect model of calcium oxalate nephrolithiasis. Am. J. Physiol. Renal Physiol. 310, F152–F159 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Chung, V. Y. et al. Proteomic changes in response to crystal formation in Drosophila Malpighian tubules. Fly 10, 91–100 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Chung, V. Y. & Turney, B. W. A Drosophila genetic model of nephrolithiasis: transcriptional changes in response to diet induced stone formation. BMC Urol. 17, 109 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kanlaya, R., Singhto, N. & Thongboonkerd, V. EGCG decreases binding of calcium oxalate monohydrate crystals onto renal tubular cells via decreased surface expression of alpha-enolase. J. Biol. Inorg. Chem. 21, 339–346 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Abd El-Salam, M. et al. The synthesized plant metabolite 3,4,5-Tri-O-galloylquinic acid methyl ester inhibits calcium oxalate crystal growth in a Drosophila model, downregulates renal cell surface annexin A1 expression, and decreases crystal adhesion to cells. J. Med. Chem. 61, 1609–1621 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Ali, S. N. et al. Drosophila melanogaster as a function-based high-throughput screening model for anti-nephrolithiasis agents in kidney stone patients. Dis. Model. Mech. https://doi.org/10.1242/dmm.035873 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Tadmouri, G. O. et al. Consanguinity and reproductive health among Arabs. Reprod. Health 6, 17 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kamleh, M. A., Hobani, Y., Dow, J. A. T. & Watson, D. G. Metabolomic profiling of Drosophila using liquid chromatography Fourier transform mass spectrometry. FEBS Lett. 582, 2916–2922 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Mitchell, H. K. & Glassman, E. Hypoxanthine in rosy and maroon-like mutants of Drosophila melanogaster. Science 129, 268 (1959).

    Article  CAS  PubMed  Google Scholar 

  107. Kamleh, M. A., Hobani, Y., Dow, J. A. T., Zheng, L. & Watson, D. G. Towards a platform for the metabonomic profiling of different strains of Drosophila melanogaster using liquid chromatography Fourier transform mass spectrometry. FEBS Lett. 276, 6798–6809 (2009).

    Article  CAS  Google Scholar 

  108. Al Bratty, M., Hobani, Y., Dow, J. A. T. & Watson, D. G. Metabolomic profiling of the effects of allopurinol on Drosophila melanogaster. Metabolomics https://doi.org/10.1007/s11306-011-0275-6 (2011).

    Article  Google Scholar 

  109. Harris, P. C. & Torres, V. E. Genetic mechanisms and signaling pathways in autosomal dominant polycystic kidney disease. J. Clin. Invest. 124, 2315–2324 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hughes, J. et al. The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat. Genet. 10, 151–160 (1995).

    Article  CAS  PubMed  Google Scholar 

  111. No Authors Listed. Polycystic kidney disease: the complete structure of the PKD1 gene and its protein. The International Polycystic Kidney Disease Consortium. Cell 81, 289–298 (1995).

    Article  Google Scholar 

  112. Kim, D. Y. & Park, J. H. Genetic Mechanisms of ADPKD. Adv. Exp. Med. Biol. 933, 13–22 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. Fagerberg, L. et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell Proteom. 13, 397–406 (2014).

    Article  CAS  Google Scholar 

  114. Xiao, Z. S. & Quarles, L. D. Role of the polycytin-primary cilia complex in bone development and mechanosensing. Ann. N. Y. Acad. Sci. 1192, 410–421 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Douguet, D., Patel, A. & Honore, E. Structure and function of polycystins: insights into polycystic kidney disease. Nat. Rev. Nephrol. 15, 412–422 (2019).

    Article  PubMed  Google Scholar 

  116. Dalagiorgou, G., Basdra, E. K. & Papavassiliou, A. G. Polycystin-1: function as a mechanosensor. Int. J. Biochem. Cell Biol. 42, 1610–1613 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Luyten, A. et al. Aberrant regulation of planar cell polarity in polycystic kidney disease. J. Am. Soc. Nephrol. 21, 1521–1532 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. McNeill, H. Planar cell polarity and the kidney. J. Am. Soc. Nephrol. 20, 2104–2111 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Chebib, F. T., Sussman, C. R., Wang, X., Harris, P. C. & Torres, V. E. Vasopressin and disruption of calcium signalling in polycystic kidney disease. Nat. Rev. Nephrol. 11, 451–464 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Torres, V. E. et al. Tolvaptan in later-stage autosomal dominant polycystic kidney disease. N. Engl. J. Med. 377, 1930–1942 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Watnick, T. J., Jin, Y., Matunis, E., Kernan, M. J. & Montell, C. A flagellar polycystin-2 homolog required for male fertility in Drosophila. Curr. Biol. 13, 2179–2184 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Hofherr, A. et al. The mitochondrial transporter SLC25A25 links ciliary TRPP2 signaling and cellular metabolism. PLoS Biol. 16, e2005651 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Kraus, M. R. et al. Two mutations in human BICC1 resulting in Wnt pathway hyperactivity associated with cystic renal dysplasia. Hum. Mutat. 33, 86–90 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Bouvrette, D. J., Price, S. J. & Bryda, E. C. K homology domains of the mouse polycystic kidney disease-related protein, Bicaudal-C (Bicc1), mediate RNA binding in vitro. Nephron Exp. Nephrol. 108, e27–e34 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Bouvrette, D. J., Sittaramane, V., Heidel, J. R., Chandrasekhar, A. & Bryda, E. C. Knockdown of bicaudal C in zebrafish (Danio rerio) causes cystic kidneys: a nonmammalian model of polycystic kidney disease. Comp. Med. 60, 96–106 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Cogswell, C. et al. Positional cloning of jcpk/bpk locus of the mouse. Mamm. Genome 14, 242–249 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Tran, U. et al. The RNA-binding protein bicaudal C regulates polycystin 2 in the kidney by antagonizing miR-17 activity. Development 137, 1107–1116 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gamberi, C., Hipfner, D. R., Trudel, M. & Lubell, W. D. Bicaudal C mutation causes myc and TOR pathway up-regulation and polycystic kidney disease-like phenotypes in Drosophila. PLoS Genet. 13, e1006694 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Knier, C. G., Landry, G. M. & Romero, M. F. Bicaudal-C in Drosophila as a model of polycystic kidney disease (PKD) and intersection of oxalate nephrolithiasis. FASEB J. 30(Suppl. 1), 1224.1227–1224.1227 (2016).

    Google Scholar 

  130. Tietz Bogert, P. S. et al. The zebrafish as a model to study polycystic liver disease. Zebrafish 10, 211–217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Abu-Wasel, B., Walsh, C., Keough, V. & Molinari, M. Pathophysiology, epidemiology, classification and treatment options for polycystic liver diseases. World J. Gastroenterol. 19, 5775–5786 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Gallagher, A. R. & Somlo, S. Loss of cilia does not slow liver disease progression in mouse models of autosomal recessive polycystic kidney disease. Kidney360 1, 962–968 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Kramer-Zucker, A. G. et al. Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development 132, 1907–1921 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Obara, T. et al. Polycystin-2 immunolocalization and function in zebrafish. J. Am. Soc. Nephrol. 17, 2706–2718 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Mangos, S. et al. The ADPKD genes pkd1a/b and pkd2 regulate extracellular matrix formation. Dis. Model. Mech. 3, 354–365 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zallen, J. A. & Wieschaus, E. Patterned gene expression directs bipolar planar polarity in Drosophila. Dev. Cell 6, 343–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Saxena, A. et al. Epidermal growth factor signalling controls myosin II planar polarity to orchestrate convergent extension movements during Drosophila tubulogenesis. PLoS Biol. 12, e1002013 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Johnson, K., Knust, E. & Skaer, H. bloated tubules (blot) encodes a Drosophila member of the neurotransmitter transporter family required for organisation of the apical cytocortex. Dev. Biol. 212, 440–454 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. Hadorn, E. & Schwinck, I. A mutant of Drosophila without isoxanthopterine which is non-autonomous for the red eye pigments. Nature 177, 940–941 (1956).

    Article  CAS  Google Scholar 

  140. Beyenbach, K. W. et al. The septate junction protein Tetraspanin 2A is critical to the structure and function of Malpighian tubules in Drosophila melanogaster. Am. J. Physiol. Cell Physiol. 318, C1107–C1122 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Jonusaite, S. et al. The septate junction protein Mesh is required for epithelial morphogenesis, ion transport, and paracellular permeability in the Drosophila Malpighian tubule. Am. J. Physiol. Cell Physiol. 318, C675–C694 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Dornan, A. J., Halberg, K. A., Beuter, L.-K., Davies, S. A. & Dow, J. A. T. The septate junction protein Snakeskin is critical for epithelial barrier function and tissue homeostasis in the Malpighian tubules of adult Drosophila. Preprint at bioRxiv https://doi.org/10.1101/2020.12.14.422678 (2020).

    Article  Google Scholar 

  143. Noble-Nesbitt, J. in Comparative Physiology (ed Schmidt-Nielsen, K. Maddrell, S. H. P. and Bolis, L.) 333–351 (Elsevier, 1973).

  144. Hamaguchi, T. et al. Dorsoventral patterning of the Drosophila hindgut is determined by interaction of genes under the control of two independent gene regulatory systems, the dorsal and terminal systems. Mech. Dev. 129, 236–243 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Kumichel, A. & Knust, E. Apical localisation of crumbs in the boundary cells of the Drosophila hindgut is independent of its canonical interaction partner stardust. PLoS ONE 9, e94038 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Lengyel, J. A. & Iwaki, D. D. It takes guts: the Drosophila hindgut as a model system for organogenesis. Dev. Biol. 243, 1–19 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Murakami, R. & Shiotsuki, Y. Ultrastructure of the hindgut of Drosophila larvae, with special reference to the domains identified by specific gene expression patterns. J. Morphol. 248, 144–150 (2001).

    Article  CAS  PubMed  Google Scholar 

  148. Fox, D. T. & Spradling, A. C. The Drosophila hindgut lacks constitutively active adult stem cells but proliferates in response to tissue damage. Cell Stem Cell 5, 290–297 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Takashima, S., Mkrtchyan, M., Younossi-Hartenstein, A., Merriam, J. R. & Hartenstein, V. The behaviour of Drosophila adult hindgut stem cells is controlled by Wnt and Hh signalling. Nature 454, 651–655 (2008).

    Article  CAS  PubMed  Google Scholar 

  150. Xie, T. Stem cell in the adult Drosophila hindgut: just a sleeping beauty. Cell Stem Cell 5, 227–228 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. Luan, Z., Quigley, C. & Li, H. S. The putative Na+/Cl-dependent neurotransmitter/osmolyte transporter inebriated in the Drosophila hindgut is essential for the maintenance of systemic water homeostasis. Sci. Rep. 5, 7993 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Vanderveken, M. & O’Donnell, M. J. Effects of diuretic hormone 31, drosokinin, and allatostatin A on transepithelial K+ transport and contraction frequency in the midgut and hindgut of larval Drosophila melanogaster. Arch. Insect Biochem. Physiol. 85, 76–93 (2014).

    Article  CAS  PubMed  Google Scholar 

  153. Chang, H. C. et al. Hsc70 is required for endocytosis and clathrin function in Drosophila. J. Cell Biol. 159, 477–487 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Weavers, H. et al. The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm. Nature 457, 322–326 (2009).

    Article  CAS  PubMed  Google Scholar 

  155. Zhuang, S. et al. Sns and Kirre, the Drosophila orthologs of Nephrin and Neph1, direct adhesion, fusion and formation of a slit diaphragm-like structure in insect nephrocytes. Development 136, 2335–2344 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Crossley, A. C. The ultrastructure and function of pericardial cells and other nephrocytes in an insect: Calliphora erythrocephala. Tissue Cell 4, 529–560 (1972).

    Article  CAS  PubMed  Google Scholar 

  157. Helmstadter, M. & Simons, M. Using Drosophila nephrocytes in genetic kidney disease. Cell Tissue Res. 369, 119–126 (2017).

    Article  PubMed  Google Scholar 

  158. Sorensen, K. K. et al. The scavenger endothelial cell: a new player in homeostasis and immunity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 303, R1217–R1230 (2012).

    Article  PubMed  Google Scholar 

  159. Helmstadter, M. et al. Functional study of mammalian Neph proteins in Drosophila melanogaster. PLoS One 7, e40300 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Hermle, T., Braun, D. A., Helmstadter, M., Huber, T. B. & Hildebrandt, F. Modeling monogenic human nephrotic syndrome in the Drosophila garland cell nephrocyte. J. Am. Soc. Nephrol. 28, 1521–1533 (2017).

    Article  CAS  PubMed  Google Scholar 

  161. Zhang, F., Zhao, Y., Chao, Y., Muir, K. & Han, Z. Cubilin and amnionless mediate protein reabsorption in Drosophila nephrocytes. J. Am. Soc. Nephrol. 24, 209–216 (2013).

    Article  CAS  PubMed  Google Scholar 

  162. Gleixner, E. M. et al. V-ATPase/mTOR signaling regulates Megalin-mediated apical endocytosis. Cell Rep. 8, 10–19 (2014).

    Article  CAS  PubMed  Google Scholar 

  163. Brankatschk, M., Dunst, S., Nemetschke, L. & Eaton, S. Delivery of circulating lipoproteins to specific neurons in the Drosophila brain regulates systemic insulin signaling. eLife https://doi.org/10.7554/eLife.02862 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Zheng, W., Ocorr, K. & Tatar, M. Extracellular matrix induced by steroids and aging through a G-protein-coupled receptor in a Drosophila model of renal fibrosis. Dis. Model Mech. https://doi.org/10.1242/dmm.041301 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Troha, K. et al. Nephrocytes remove microbiota-derived peptidoglycan from systemic circulation to maintain immune homeostasis. Immunity 51, 625–637 e623 (2019).

    Article  CAS  PubMed  Google Scholar 

  166. Soukup, S. F., Culi, J. & Gubb, D. Uptake of the necrotic serpin in Drosophila melanogaster via the lipophorin receptor-1. PLoS Genet. 5, e1000532 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Ivy, J. R. et al. Klf15 Is Critical for the development and differentiation of Drosophila nephrocytes. PLoS One 10, e0134620 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Mallipattu, S. K. et al. Kruppel-like factor 15 (KLF15) is a key regulator of podocyte differentiation. J. Biol. Chem. 287, 19122–19135 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hurcombe, J. A. et al. Podocyte GSK3 is an evolutionarily conserved critical regulator of kidney function. Nat. Commun. 10, 403 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Carrasco-Rando, M., Prieto-Sanchez, S., Culi, J., Tutor, A. S. & Ruiz-Gomez, M. A specific isoform of Pyd/ZO-1 mediates junctional remodeling and formation of slit diaphragms. J. Cell Biol. 218, 2294–2308 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Schnabel, E., Anderson, J. M. & Farquhar, M. G. The tight junction protein ZO-1 is concentrated along slit diaphragms of the glomerular epithelium. J. Cell Biol. 111, 1255–1263 (1990).

    Article  CAS  PubMed  Google Scholar 

  172. Kriz, W., Shirato, I., Nagata, M., LeHir, M. & Lemley, K. V. The podocyte’s response to stress: the enigma of foot process effacement. Am. J. Physiol. Renal Physiol. 304, F333–F347 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Kurihara, H., Anderson, J. M. & Farquhar, M. G. Increased Tyr phosphorylation of ZO-1 during modification of tight junctions between glomerular foot processes. Am. J. Physiol. 268, F514–F524 (1995).

    CAS  PubMed  Google Scholar 

  174. Kim, S., Kalappurakkal, J. M., Mayor, S. & Rosen, M. K. Phosphorylation of nephrin induces phase separated domains that move through actomyosin contraction. Mol. Biol. Cell 30, 2996–3012 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Beutel, O., Maraspini, R., Pombo-Garcia, K., Martin-Lemaitre, C. & Honigmann, A. Phase separation of zonula occludens proteins drives formation of tight junctions. Cell 179, 923–936 e911 (2019).

    Article  CAS  PubMed  Google Scholar 

  176. Takahisa, M. et al. The Drosophila tamou gene, a component of the activating pathway of extramacrochaetae expression, encodes a protein homologous to mammalian cell-cell junction-associated protein ZO-1. Genes Dev. 10, 1783–1795 (1996).

    Article  CAS  PubMed  Google Scholar 

  177. Na, J., Sweetwyne, M. T., Park, A. S., Susztak, K. & Cagan, R. L. Diet-induced podocyte dysfunction in Drosophila and mammals. Cell Rep. 12, 636–647 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Hartley, P. S., Motamedchaboki, K., Bodmer, R. & Ocorr, K. SPARC-dependent cardiomyopathy in Drosophila. Circ. Cardiovasc. Genet. 9, 119–129 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zhang, F., Zhao, Y. & Han, Z. An in vivo functional analysis system for renal gene discovery in Drosophila pericardial nephrocytes. J. Am. Soc. Nephrol. 24, 191–197 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Kopp, J. B. et al. Podocytopathies. Nat. Rev. Dis. Prim. 6, 68 (2020).

    Article  PubMed  Google Scholar 

  181. Boute, N. et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat. Genet. 24, 349–354 (2000).

    Article  CAS  PubMed  Google Scholar 

  182. Fu, Y. et al. A Drosophila model system to assess the function of human monogenic podocyte mutations that cause nephrotic syndrome. Hum. Mol. Genet. 26, 768–780 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Gee, H. Y. et al. KANK deficiency leads to podocyte dysfunction and nephrotic syndrome. J. Clin. Invest. 125, 2375–2384 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Gee, H. Y. et al. ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. J. Clin. Invest. 123, 3243–3253 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ashraf, S. et al. ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J. Clin. Invest. 123, 5179–5189 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kampf, L. L. et al. TBC1D8B mutations implicate RAB11-dependent vesicular trafficking in the pathogenesis of nephrotic syndrome. J. Am. Soc. Nephrol. https://doi.org/10.1681/ASN.2019040414 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Hermle, T. et al. GAPVD1 and ANKFY1 mutations implicate RAB5 regulation in nephrotic syndrome. J. Am. Soc. Nephrol. 29, 2123–2138 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Lovric, S. et al. Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency. J. Clin. Invest. 127, 912–928 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Goncalves, S. et al. A homozygous KAT2B variant modulates the clinical phenotype of ADD3 deficiency in humans and flies. PLoS Genet. 14, e1007386 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Teumer, A. et al. Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria. Nat. Commun. 10, 4130 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Marchesin, V. et al. Molecular basis for autosomal-dominant renal Fanconi syndrome caused by HNF4A. Cell Rep. 29, 4407–4421 e4405 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Fu, Y. et al. APOL1-G1 in nephrocytes induces hypertrophy and accelerates cell death. J. Am. Soc. Nephrol. 28, 1106–1116 (2017).

    Article  CAS  PubMed  Google Scholar 

  193. Kruzel-Davila, E. et al. APOL1-mediated cell injury involves disruption of conserved trafficking processes. J. Am. Soc. Nephrol. 28, 1117–1130 (2017).

    Article  CAS  PubMed  Google Scholar 

  194. Friedman, D. J. & Pollak, M. R. APOL1 and kidney disease: from genetics to biology. Annu. Rev. Physiol. 82, 323–342 (2020).

    Article  CAS  PubMed  Google Scholar 

  195. Rujano, M. A. et al. Mutations in the X-linked ATP6AP2 cause a glycosylation disorder with autophagic defects. J. Exp. Med. 214, 3707–3729 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Lee, P. T. et al. A gene-specific T2A-GAL4 library for Drosophila. eLife https://doi.org/10.7554/eLife.35574 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Yang, J. et al. A Drosophila systems approach to xenobiotic metabolism. Physiol. Genomics 30, 223–231 (2007).

    Article  CAS  PubMed  Google Scholar 

  198. McGettigan, J. et al. Insect renal tubules constitute a cell-autonomous immune system that protects the organism against bacterial infection. Insect Biochem. Mol. Biol. 35, 741–754 (2005).

    Article  CAS  PubMed  Google Scholar 

  199. Denholm, B. et al. The tiptop/teashirt genes regulate cell differentiation and renal physiology in Drosophila. Development 140, 1100–1110 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Beyenbach, K. W. Kidneys sans glomeruli. Am. J. Physiol. Renal Physiol. 286, F811–F827 (2004).

    Article  CAS  PubMed  Google Scholar 

  201. Kolb, A. R., Buck, T. M. & Brodsky, J. L. Saccharomyces cerivisiae as a model system for kidney disease: what can yeast tell us about renal function? Am. J. Physiol. Renal Physiol. 301, F1–F11 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Ganner, A. & Neumann-Haefelin, E. Genetic kidney diseases: Caenorhabditis elegans as model system. Cell Tissue Res. 369, 105–118 (2017).

    Article  CAS  PubMed  Google Scholar 

  203. Rodan, A. R. The Drosophila Malpighian tubule as a model for mammalian tubule function. Curr. Opin. Nephrol. Hypertens. 28, 455–464 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Schenk, H., Muller-Deile, J., Kinast, M. & Schiffer, M. Disease modeling in genetic kidney diseases: zebrafish. Cell Tissue Res. 369, 127–141 (2017).

    Article  CAS  PubMed  Google Scholar 

  205. Elmonem, M. A. et al. Genetic renal diseases: the emerging role of zebrafish models. Cells https://doi.org/10.3390/cells7090130 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Hofmeister, A. F., Komhoff, M., Weber, S. & Grgic, I. Disease modeling in genetic kidney diseases: mice. Cell Tissue Res. 369, 159–170 (2017).

    Article  CAS  PubMed  Google Scholar 

  207. Ruiz-Gómez, M., Coutts, N., Price, A., Taylor, M. V. & Bate, M. Drosophila dumbfounded: a myoblast attractant essential for fusion. Cell 102, 189–198 (2000).

    Article  PubMed  Google Scholar 

  208. Kestila, M. et al. Positionally cloned gene for a novel glomerular protein — nephrin — is mutated in congenital nephrotic syndrome. Mol. Cell 1, 575–582 (1998).

    Article  CAS  PubMed  Google Scholar 

  209. Bour, B. A., Chakravarti, M., West, J. M., & Abmayr, S. M. Drosophila SNS, a member of the immunoglobulin superfamily that is essential for myoblast fusion. Genes Dev. 14, 1498–1511 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Donoviel, D. B. et al. Proteinuria and perinatal lethality in mice lacking NEPH1, a novel protein with homology to NEPHRIN. Mol. Cell Biol. 21, 4829–4836 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Shih, N. Y. et al. CD2AP localizes to the slit diaphragm and binds to nephrin via a novel C-terminal domain. Am. J. Pathol. 159, 2303–2308 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Reiser, J. et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat. Genet. 37, 739–744 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Xu, J. et al. A cell atlas of the fly kidney. Preprint at bioRxiv https://doi.org/10.1101/2021.09.03.458871 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Inoue, T. et al. FAT is a component of glomerular slit diaphragms. Kidney Int. 59, 1003–1012 (2001).

    Article  CAS  PubMed  Google Scholar 

  215. Conti, S., Perico, L., Grahammer, F. & Huber, T. B. The long journey through renal filtration: new pieces in the puzzle of slit diaphragm architecture. Curr. Opin. Nephrol. Hypertens. 26, 148–153 (2017).

    Article  PubMed  Google Scholar 

  216. Leader, D. P., Krause, S. A., Pandit, A., Davies, S. A. & Dow, J. A. T. FlyAtlas 2: a new version of the Drosophila melanogaster expression atlas with RNA-Seq, miRNA-Seq and sex-specific data. Nucleic Acids Res. 46, D809–D815 (2017).

    Article  PubMed Central  Google Scholar 

  217. Chen, Z. X. et al. Comparative validation of the D. melanogaster modENCODE transcriptome annotation. Genome Res. 24, 1209–1223 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Chintapalli, V. R. et al. Functional correlates of positional and gender-specific renal asymmetry in Drosophila. PLoS One 7, e32577 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. O’Donnell, M.J. et al. J. Exp. Biol. 199, 1163-75 (1996).

  220. Terhzaz, S. et al. Mechanism and function of Drosophila capa GPCR: a desiccation stress-responsive receptor with functional homology to human neuromedinU receptor. PLoS One 7, e29897 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Wessing, A. & Eichelberg, D. in The Genetics and Biology of Drosophila Vol. 2c (eds Ashburner, A. & Wright, T. R. F.) 1–42 (Academic Press, 1978).

Download references

Acknowledgements

J.A.T.D. and M.F.R. were supported by grants from the US National Institutes of Health (NIH) R01-DK092408, U54-DK100227. M.F.R. was also supported by the Mayo Foundation, the Oxalosis & Hyperoxaluria Foundation (OHF) and NIH grants P30-DK090728 and R25-DK101405. J.A.T.D. was further supported by grants from the UK BBSRC, the European Commission Horizon 2020, and Marie Slodowska-Curie Actions. The authors thank Shireen Davies, Alan Jardine, Peter Harris, John Lieske, Steve Ekker, Nicholas LaRusso and Carli Sussman for critical reading of the manuscript before submission.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content, wrote the manuscript, and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Julian A. T. Dow.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks P. Hartley, A. Rodan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

FlyAtlas database: http://www.flyatlas.org/

FlyBase database: https://flybase.org/

NCBI Homologene database: https://www.ncbi.nlm.nih.gov/homologene

Supplementary information

Glossary

Specification

A stage in differentiation where a cell has sufficient information to differentiate in a particular way in a neutral environment; differs from the determination stage, at which a cell is committed to a specific fate.

Eversion

The out-pushing of a group of cells during the early stages of tubular epithelium formation.

Metanephric kidney

The fully differentiated mammalian kidney.

S-shaped bodies

An intermediate stage in the development of the mammalian nephron, in which proximal, medial and distal segments can already be identified.

Inward-rectifying K+ channels

K+-specific ion channels that display rectification (that is, K+ can enter the cell through the channels but cannot exit even under a favourable electrochemical gradient).

Euteleostomi

Phylogenetic group that includes nearly all living vertebrates.

Bilateria

A phylogenetic clade comprising animals with bilateral symmetry.

Morpholinos

Synthetic antisense nucleotides that interfere with complementary mRNAs (act in a similar manner to antisense RNAs or siRNAs); widely used in zebrafish studies.

Translocon

A complex of proteins that allow nascent peptides to cross a lipid bilayer, typically in the endoplasmic reticulum.

Peripheral membrane protein

A membrane-associated protein that is tethered to, but that does not cross, a plasma membrane.

Septate junction

Insect analogue of vertebrate tight junction with similarity in protein composition; these junctions appear as ladder-like septa in transmission electron microscopy.

Phase separation

The creation of two distinct phases from a homogeneous mixture.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dow, J.A.T., Simons, M. & Romero, M.F. Drosophila melanogaster: a simple genetic model of kidney structure, function and disease. Nat Rev Nephrol 18, 417–434 (2022). https://doi.org/10.1038/s41581-022-00561-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-022-00561-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing