Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biomimetic models of the glomerulus

Abstract

The use of biomimetic models of the glomerulus has the potential to improve our understanding of the pathogenesis of kidney diseases and to enable progress in therapeutics. Current in vitro models comprise organ-on-a-chip, scaffold-based and organoid approaches. Glomerulus-on-a-chip designs mimic components of glomerular microfluidic flow but lack the inherent complexity of the glomerular filtration barrier. Scaffold-based 3D culture systems and organoids provide greater microenvironmental complexity but do not replicate fluid flows and dynamic responses to fluidic stimuli. As the available models do not accurately model the structure or filtration function of the glomerulus, their applications are limited. An optimal approach to glomerular modelling is yet to be developed, but the field will probably benefit from advances in biofabrication techniques. In particular, 3D bioprinting technologies could enable the fabrication of constructs that recapitulate the complex structure of the glomerulus and the glomerular filtration barrier. The next generation of in vitro glomerular models must be suitable for high(er)-content or/and high(er)-throughput screening to enable continuous and systematic monitoring. Moreover, coupling of glomerular or kidney models with those of other organs is a promising approach to enable modelling of partial or full-body responses to drugs and prediction of therapeutic outcomes.

Key points

  • The prevalence of kidney failure is increasing worldwide, and glomerulopathy is often a causal or contributing factor.

  • The available in vitro models of the glomerulus are suboptimal, which limits their use for interrogation of pathological mechanisms and testing of drugs.

  • The complexity of the renal corpuscle results in a fragile balance of constituents that can be easily disturbed in pathological situations, leading to irreparable damage.

  • Initiatives for improving current in vitro biomimetic models of the glomerulus focus on replication of the 3D microenvironment using on-a-chip technology, scaffolds and organoids containing glomerular tissue.

  • The suitability of emerging biofabrication techniques, such as 3D bioprinting, for glomerular modelling is yet to be fully assessed.

  • Larger-scale applications of glomerular models will rely on their standardization and effective utility for high(er)-throughput and/or high(er)-content screening.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The glomerulus in health and disease.
Fig. 2: On a chip models of the glomerulus.
Fig. 3: Membranes and 3D scaffolds for glomerular modelling.
Fig. 4: Glomerular tissue organoids with improved maturation and vascularization.
Fig. 5: 3D bioprinting and multi-photon ablation techniques that could be used to build glomerular models.

Similar content being viewed by others

References

  1. Kambham, N., Markowitz, G. S., Valeri, A. M., Lin, J. & D’Agati, V. D. Obesity-related glomerulopathy: an emerging epidemic. Kidney Int. 59, 1498–1509 (2001).

    CAS  PubMed  Google Scholar 

  2. Saran, R. et al. US Renal Data System 2018 annual data report: epidemiology of kidney disease in the United States. Am. J. Kidney Dis. 73, A7–A8 (2019).

    PubMed  PubMed Central  Google Scholar 

  3. Naqvi, R. Glomerulonephritis contributing to chronic kidney disease. Urol. Nephrol. Open Access. J. 5(4), 00179 (2017).

    Google Scholar 

  4. Ziółkowska, H., Adamczuk, D., Leszczyńska, B. & Roszkowska-Blaim, M. Glomerulopathies as causes of end-stage renal disease in children [Polish]. Pol. Merkur. Lekarski. 26, 301–305 (2009).

    PubMed  Google Scholar 

  5. Moxey-Mims, M. M. et al. Glomerular diseases: registries and clinical trials. Clin. J. Am. Soc. Nephrol. 11, 2234–2243 (2016).

    PubMed  PubMed Central  Google Scholar 

  6. Petrosyan, A. et al. A glomerulus-on-a-chip to recapitulate the human glomerular filtration barrier. Nat. Commun. 10, 3656 (2019).

    PubMed  PubMed Central  Google Scholar 

  7. Bonventre, J. V., Vaidya, V. S., Schmouder, R., Feig, P. & Dieterle, F. Next-generation biomarkers for detecting kidney toxicity. Nat. Biotechnol. 28, 436–440 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cieslinski, D. A. & David Humes, H. Tissue engineering of a bioartificial kidney. Biotechnol. Bioeng. 43, 678–681 (1994).

    CAS  PubMed  Google Scholar 

  9. Musah, S., Dimitrakakis, N., Camacho, D. M., Church, G. M. & Ingber, D. E. Directed differentiation of human induced pluripotent stem cells into mature kidney podocytes and establishment of a glomerulus chip. Nat. Protoc. 13, 1662–1685 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sánchez-Romero, N., Schophuizen, C. M. S., Giménez, I. & Masereeuw, R. In vitro systems to study nephropharmacology: 2D versus 3D models. Eur. J. Pharmacol. 790, 36–45 (2016).

    PubMed  Google Scholar 

  11. Vimtrup, B. On the number, shape, structure, and surface area of the glomeruli in the kidneys of man and mammals. Am. J. Anat. 41, 123–151 (1928).

    Google Scholar 

  12. D’Amico, G. & Bazzi, C. Pathophysiology of proteinuria. Kidney Int. 63, 809–825 (2003).

    PubMed  Google Scholar 

  13. Neal, C. R. et al. Novel hemodynamic structures in the human glomerulus. Am. J. Physiol. -Ren. Physiol. 315, F1370–F1384 (2018).

    Google Scholar 

  14. Capasso, G., Trepiccione, F. & Zacchia, M. in Critical Care Nephrology 3rd edn Ch. 8 (eds Ronco, C., Bellomo, R., Kellum, J. A. & Ricci, Z.) 42–48.e1 (Elsevier, 2019).

  15. Arendshorst, W. J. & Bello-Reuss, E. in Handbook of Cell Signaling 2nd edn Ch. 318 (eds Bradshaw, R. A. & Dennis, E. A.) 2707–2731 (Academic, 2010).

  16. Maezawa, Y., Cina, D. & Quaggin, S. E. in Seldin and Giebisch’s The Kidney 5th edn Ch. 22 (eds Alpern, R. J., Moe, O. W. & Caplan, M.) 721–755 (Academic, 2013).

  17. Miner, J. H. Renal basement membrane components. Kidney Int. 56, 2016–2024 (1999).

    CAS  PubMed  Google Scholar 

  18. Rabelink, T. J., Heerspink, H. J. L. & de Zeeuw, D. in Chronic Renal Disease Ch. 9 (eds Kimmel, P. L. & Rosenberg, M. E.) 92–105 (Academic, 2015).

  19. Chung, J. J. et al. Single-cell transcriptome profiling of the kidney glomerulus identifies key cell types and reactions to injury. J. Am. Soc. Nephrol. 31, 2341–2354 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Karaiskos, N. et al. A single-cell transcriptome atlas of the mouse glomerulus. J. Am. Soc. Nephrol. 29, 2060–2068 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Arar, M. et al. Platelet-derived growth factor receptor β regulates migration and DNA synthesis in metanephric mesenchymal cells. J. Biol. Chem. 275, 9527–9533 (2000).

    CAS  PubMed  Google Scholar 

  22. Kamel, K. S. & Halperin, M. L. in Fluid, Electrolyte and Acid-Base Physiology 5th edn Ch. 9 (eds Kamel, K. S. & Halperin, M. L.) 215–263 (Elsevier, 2017).

  23. Iversen, B. M. & Ofstad, J. The effect of hypertension on glomerular structures and capillary permeability in passive Heymann glomerulonephritis. Microvascular Res. 34, 137–151 (1987).

    CAS  Google Scholar 

  24. Briggs, J. P., Kriz, W. & Schnermann, J. B. in National Kidney Foundation’s Primer on Kidney Diseases 6th edn (eds Gilbert, S. J., Weiner, D. E., Gipson, D. S., Perazella, M. A. & Tonelli, M.) 2–18 (Elsevier, 2014).

  25. Satchell, S. C. & Braet, F. Glomerular endothelial cell fenestrations: an integral component of the glomerular filtration barrier. Am. J. Physiol. Ren. Physiol. 296, F947–F956 (2009).

    CAS  Google Scholar 

  26. Haraldsson, B. & Nyström, J. The glomerular endothelium: new insights on function and structure. Curr. Opin. Nephrol. Hypertens. 21, 258–263 (2012).

    CAS  PubMed  Google Scholar 

  27. Dean, D. F. & Molitoris, B. A. in Critical Care Nephrology 3rd edn Ch. 7 (eds Ronco, C., Bellomo, R., Kellum, J. A. & Ricci, Z.) 35–42.e2 (Elsevier, 2019).

  28. Pollak, M. R., Quaggin, S. E., Hoenig, M. P. & Dworkin, L. D. The glomerulus: the sphere of influence. Clin. J. Am. Soc. Nephrol. 9, 1461–1469 (2014).

    PubMed  PubMed Central  Google Scholar 

  29. Abrahamson, D. R., st. John, P. L., Stroganova, L., Zelenchuk, A. & Steenhard, B. M. Laminin and type IV collagen isoform substitutions occur in temporally and spatially distinct patterns in developing kidney glomerular basement membranes. J. Histochem. Cytochem. 61, 706–718 (2013).

    PubMed  PubMed Central  Google Scholar 

  30. Feher, J. Quantitative Human Physiology 2nd edn 705–714 (Academic, 2017).

  31. Garg, P. A review of podocyte biology. Am. J. Nephrol. 47, 3–13 (2018).

    CAS  PubMed  Google Scholar 

  32. Oddsson, Á., Patrakka, J. & Tryggvason, K. Glomerular filtration barrier: From Molecular Biology to Regulation Mechanisms. Reference Module in Biomedical Sciences (Elsevier, 2014).

  33. Garg, P. & Rabelink, T. Glomerular proteinuria: a complex interplay between unique players. Adv. Chronic Kidney Dis. 18, 233–242 (2011).

    PubMed  PubMed Central  Google Scholar 

  34. Moorthy, A. V. & Blichfeldt, T. C. in Pathophysiology of Kidney Disease and Hypertension (ed. Moorthy, A. V.) 1–15 (Saunders, 2009).

  35. Reiser, J. & Altintas, M. M. Podocytes. F1000Res. 5, 114 (2016).

    Google Scholar 

  36. Kriz, W. & Elger, M. in Comprehensive Clinical Nephrology 4th edn Ch. 1 (eds Floege, J., Johnson, R. J. & Feehally, J.) 3–14 (Mosby, 2010).

  37. Nikolic, M., Sustersic, T. & Filipovic, N. In vitro models and on-chip systems: biomaterial interaction studies with tissues generated using lung epithelial and liver metabolic cell lines. Front. Bioeng. Biotechnol. 6, 120 (2018).

    PubMed  PubMed Central  Google Scholar 

  38. Wang, K., Shindoh, H., Inoue, T. & Horii, I. Advantages of in vitro cytotoxicity testing by using primary rat hepatocytes in comparison with established cell lines. J. Toxicol. Sci. 27, 229–237 (2002).

    CAS  PubMed  Google Scholar 

  39. Wragg, N. M., Burke, L. & Wilson, S. L. A critical review of current progress in 3D kidney biomanufacturing: advances, challenges, and recommendations. Ren. Replace. Ther. 5, 18 (2019).

    Google Scholar 

  40. Ali, M. et al. A photo-crosslinkable kidney ECM-derived bioink accelerates renal tissue formation. Adv. Healthc. Mater. 8, e1800992 (2019).

    PubMed  PubMed Central  Google Scholar 

  41. Slater, S. C. et al. An in vitro model of the glomerular capillary wall using electrospun collagen nanofibres in a bioartificial composite basement membrane. PLoS ONE 6, e20802 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, Z. et al. Solution fibre spinning technique for the fabrication of tuneable decellularised matrix-laden fibres and fibrous micromembranes. Acta Biomater. 78, 111–122 (2018).

    CAS  PubMed  Google Scholar 

  43. Tuffin, J. et al. A composite hydrogel scaffold permits self-organization and matrix deposition by cocultured human glomerular cells. Adv. Healthc. Mater. 8, 1900698 (2019).

    Google Scholar 

  44. Waters, J. P. et al. A 3D tri-culture system reveals that activin receptor-like kinase 5 and connective tissue growth factor drive human glomerulosclerosis. J. Pathol. 243, 390–400 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Musah, S. et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat. Biomed. Eng. 1, 0069 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Becker, G. J. & Hewitson, T. D. Animal models of chronic kidney disease: useful but not perfect. Nephrol. Dial. Transplant. 28, 2432–2438 (2013).

    PubMed  Google Scholar 

  47. Hewitson, T. D., Ono, T. & Becker, G. J. Small animal models of kidney disease: a review. Methods Mol. Biol. 466, 41–57 (2009).

    CAS  PubMed  Google Scholar 

  48. Shankland, S. J. The podocyte’s response to injury: role in proteinuria and glomerulosclerosis. Kidney Int. 69, 2131–2147 (2006).

    CAS  PubMed  Google Scholar 

  49. Shankland, S. J., Pippin, J. W., Reiser, J. & Mundel, P. Podocytes in culture: past, present, and future. Kidney Int. 72, 26–36 (2007).

    CAS  PubMed  Google Scholar 

  50. Yoshimura, Y. et al. Manipulation of nephron-patterning signals enables selective induction of podocytes from human pluripotent stem cells. J. Am. Soc. Nephrol. 30, 304–321 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hale, L. J. et al. 3D organoid-derived human glomeruli for personalised podocyte disease modelling and drug screening. Nat. Commun. 9, 5167 (2018).

    PubMed  PubMed Central  Google Scholar 

  52. Higgins, J. W. et al. Bioprinted pluripotent stem cell-derived kidney organoids provide opportunities for high content screening. Preprint at bioRxiv https://doi.org/10.1101/505396 (2018).

    Article  Google Scholar 

  53. Edmondson, R., Broglie, J. J., Adcock, A. F. & Yang, L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay. Drug Dev. Technol. 12, 207–218 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chaicharoenaudomrung, N., Kunhorm, P. & Noisa, P. Three-dimensional cell culture systems as an in vitro platform for cancer and stem cell modeling. World J. Stem Cell 11, 1065–1083 (2019).

    Google Scholar 

  55. Schmid, J. et al. A perfusion bioreactor system for cell seeding and oxygen-controlled cultivation of three-dimensional cell cultures. Tissue Eng. Part C. Methods 24, 585–595 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lovett, M., Lee, K., Edwards, A. & Kaplan, D. L. Vascularization strategies for tissue engineering. Tissue Eng. Part B Rev. 15, 353–370 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wu, H. & Humphreys, B. D. Single cell sequencing and kidney organoids generated from pluripotent stem cells. Clin. J. Am. Soc. Nephrol. 15, 550–556 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Pebworth, M.-P., Cismas, S. A. & Asuri, P. A novel 2.5D culture platform to investigate the role of stiffness gradients on adhesion-independent cell migration. PLoS ONE 9, e110453 (2014).

    PubMed  PubMed Central  Google Scholar 

  59. Langhans, S. A. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front. Pharmacol. 9, 6 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. Reiser, J. & Sever, S. Podocyte biology and pathogenesis of kidney disease. Annu. Rev. Med. 64, 357–366 (2013).

    CAS  PubMed  Google Scholar 

  61. Jang, K. J. & Suh, K. Y. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab. Chip 10, 36–42 (2010).

    CAS  PubMed  Google Scholar 

  62. Friedrich, C., Endlich, N., Kriz, W. & Endlich, K. Podocytes are sensitive to fluid shear stress in vitro. Am. J. Physiol. Ren. Physiol. 291, F856–F865 (2006).

    CAS  Google Scholar 

  63. Wang, L. et al. A disease model of diabetic nephropathy in a glomerulus-on-a-chip microdevice. Lab. Chip 17, 1749–1760 (2017).

    CAS  PubMed  Google Scholar 

  64. Xie, R. et al. h-FIBER: microfluidic topographical hollow fiber for studies of glomerular filtration barrier. ACS Cent. Sci. 6, 903–912 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhou, M. et al. Development of a functional glomerulus at the organ level on a chip to mimic hypertensive nephropathy. Sci. Rep. 6, 31771 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Wilmer, M. J. et al. Kidney-on-a-chip technology for drug-induced nephrotoxicity screening. Trends Biotechnol. 34, 156–170 (2016).

    CAS  PubMed  Google Scholar 

  67. Toda, N. et al. Crucial role of mesangial cell-derived connective tissue growth factor in a mouse model of anti-glomerular basement membrane glomerulonephritis. Sci. Rep. 7, 42114 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Tung, C.-W., Hsu, Y.-C., Shih, Y.-H., Chang, P.-J. & Lin, C.-L. Glomerular mesangial cell and podocyte injuries in diabetic nephropathy. Nephrology 23, 32–37 (2018).

    CAS  PubMed  Google Scholar 

  69. Homan, K. A. et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat. Methods 16, 255–262 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ashammakhi, N., Wesseling-Perry, K., Hasan, A., Elkhammas, E. & Zhang, Y. S. Kidney-on-a-chip: untapped opportunities. Kidney Int. 94, 1073–1086 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Tanyeri, M. & Tay, S. Viable cell culture in PDMS-based microfluidic devices. Methods Cell Biol. 148, 3–33 (2018).

    CAS  PubMed  Google Scholar 

  72. Gokaltun, A., Yarmush, M. L., Asatekin, A. & Usta, O. B. Recent advances in nonbiofouling PDMS surface modification strategies applicable to microfluidic technology. Technology 5, 1–12 (2017).

    PubMed  PubMed Central  Google Scholar 

  73. Pourmand, A. et al. Fabrication of whole-thermoplastic normally closed microvalve, micro check valve, and micropump. Sens. Actuators B Chem. 262, 625–636 (2018).

    CAS  Google Scholar 

  74. Novak, R. et al. Robotic fluidic coupling and interrogation of multiple vascularized organ chips. Nat. Biomed. Eng. 4, 407–420 (2020).

    PubMed  PubMed Central  Google Scholar 

  75. Shaegh, S. A. M. et al. Rapid prototyping of whole-thermoplastic microfluidics with built-in microvalves using laser ablation and thermal fusion bonding. Sens. Actuators B Chem. 255, 100–109 (2018).

    CAS  Google Scholar 

  76. Gomez-Sjoberg, R., Leyrat, A. A., Houseman, B. T., Shokat, K. & Quake, S. R. Biocompatibility and reduced drug absorption of sol-gel-treated poly(dimethyl siloxane) for microfluidic cell culture applications. Anal. Chem. 82, 8954–8960 (2010).

    CAS  PubMed  Google Scholar 

  77. Paoli, R. & Samitier, J. Mimicking the kidney: a key role in organ-on-chip development. Micromachines 7, 126 (2016).

    PubMed Central  Google Scholar 

  78. Bhattacharjee, N., Parra-Cabrera, C., Kim, Y. T., Kuo, A. P. & Folch, A. Desktop-stereolithography 3D-printing of a polydimethylsiloxane)-based material with Sylgard-184 properties. Adv. Mater. 30, e1800001 (2018).

    PubMed  PubMed Central  Google Scholar 

  79. Zhang, Y. S. & Khademhosseini, A. Advances in engineering hydrogels. Science 356, eaaf3627 (2017).

    PubMed  PubMed Central  Google Scholar 

  80. Lü, S. H. et al. Self-assembly of renal cells into engineered renal tissues in collagen/matrigel scaffold in vitro. J. Tissue Eng. Regen. Med. 6, 786–792 (2012).

    PubMed  Google Scholar 

  81. Wang, P. C. Reconstruction of renal glomerular tissue using collagen vitrigel scaffold. J. Biosci. Bioeng. 99, 529–540 (2005).

    CAS  PubMed  Google Scholar 

  82. Pullela, S. R. et al. Permselectivity replication of artificial glomerular basement membranes in nanoporous collagen multilayers. J. Phys. Chem. Lett. 2, 2067–2072 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Finesilver, G., Bailly, J., Kahana, M. & Mitrani, E. Kidney derived micro-scaffolds enable HK-2 cells to develop more in-vivo like properties. Exp. Cell Res. 322, 71–80 (2014).

    CAS  PubMed  Google Scholar 

  84. Du, C. et al. Functional kidney bioengineering with pluripotent stem-cell-derived renal progenitor cells and decellularized kidney scaffolds. Adv. Healthc. Mater. 5, 2080–2091 (2016).

    CAS  PubMed  Google Scholar 

  85. Singh, N. K. et al. Three-dimensional cell-printing of advanced renal tubular tissue analogue. Biomaterials 232, 119734 (2020).

    CAS  PubMed  Google Scholar 

  86. Yin, X. et al. Engineering stem cell organoids. Cell Stem Cell 18, 25–38 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Freedman, B. S. et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat. Commun. 6, 8715 (2015).

    CAS  PubMed  Google Scholar 

  88. Morizane, R. et al. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat. Biotechnol. 33, 1193–1200 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526, 564–568 (2015).

    CAS  PubMed  Google Scholar 

  90. Taguchi, A. et al. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14, 53–67 (2014).

    CAS  PubMed  Google Scholar 

  91. Bantounas, I. et al. Generation of functioning nephrons by implanting human pluripotent stem cell-derived kidney progenitors. Stem Cell Rep. 10, 766–779 (2018).

    Google Scholar 

  92. Kim, Y. K. et al. Gene-edited human kidney organoids reveal mechanisms of disease in podocyte development. Stem Cell 35, 2366–2378 (2017).

    CAS  Google Scholar 

  93. Sharmin, S. et al. Human induced pluripotent stem cell-derived podocytes mature into vascularized glomeruli upon experimental transplantation. J. Am. Soc. Nephrol. 27, 1778–1791 (2016).

    CAS  PubMed  Google Scholar 

  94. van den Berg, C. W. et al. Renal subcapsular transplantation of PSC-derived kidney organoids induces neo-vasculogenesis and significant glomerular and tubular maturation in vivo. Stem Cell Rep. 10, 751–765 (2018).

    Google Scholar 

  95. Geuens, T., van Blitterswijk, C. A. & LaPointe, V. L. S. Overcoming kidney organoid challenges for regenerative medicine. NPJ Regen. Med. 5, 8 (2020).

    PubMed  PubMed Central  Google Scholar 

  96. Combes, A. N., Zappia, L., Er, P. X., Oshlack, A. & Little, M. H. Single-cell analysis reveals congruence between kidney organoids and human fetal kidney. Genome Med. 11, 3 (2019).

    PubMed  PubMed Central  Google Scholar 

  97. Garreta, E. et al. Fine tuning the extracellular environment accelerates the derivation of kidney organoids from human pluripotent stem cells. Nat. Mater. 18, 397–405 (2019).

    CAS  PubMed  Google Scholar 

  98. Czerniecki, S. M. et al. High-throughput screening enhances kidney organoid differentiation from human pluripotent stem cells and enables automated multidimensional phenotyping. Cell Stem Cell 22, 929–940.e4 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Low, J. H. et al. Generation of human PSC-derived kidney organoids with patterned nephron segments and a de novo vascular network. Cell Stem Cell 25, 373–387.e9 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Serluca, F. C., Drummond, I. A. & Fishman, M. C. Endothelial signaling in kidney morphogenesis: a role for hemodynamic forces. Curr. Biol. 12, 492–497 (2002).

    CAS  PubMed  Google Scholar 

  101. Morizane, R. & Bonventre, J. V. Generation of nephron progenitor cells and kidney organoids from human pluripotent stem cells. Nat. Protoc. 12, 195–207 (2017).

    CAS  PubMed  Google Scholar 

  102. Tanigawa, S. et al. Organoids from nephrotic disease-derived iPSCs identify impaired NEPHRIN localization and slit diaphragm formation in kidney podocytes. Stem Cell Rep. 11, 727–740 (2018).

    CAS  Google Scholar 

  103. Morizane, R. & Bonventre, J. V. Kidney organoids: a translational journey. Trends Mol. Med. 23, 246–263 (2017).

    PubMed  PubMed Central  Google Scholar 

  104. Kim, J., Koo, B.-K. & Knoblich, J. A. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21, 571–584 (2020).

    CAS  PubMed  Google Scholar 

  105. McGuigan, A. P. & Sefton, M. V. Vascularized organoid engineered by modular assembly enables blood perfusion. Proc. Natl Acad. Sci. USA 103, 11461–11466 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. van den Berg, C. W., Koudijs, A., Ritsma, L. & Rabelink, T. J. In vivo assessment of size-selective glomerular sieving in transplanted human induced pluripotent stem cell-derived kidney organoids. J. Am. Soc. Nephrol. 31, 921–929 (2020).

    PubMed  PubMed Central  Google Scholar 

  107. Ye, S. et al. A chemically defined hydrogel for human liver organoid culture. Adv. Funct. Mater. 30, 2000893 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Curvello, R., Alves, D., Abud, H. E. & Garnier, G. A thermo-responsive collagen-nanocellulose hydrogel for the growth of intestinal organoids. Mater. Sci. Eng. C. 124, 112051 (2021).

    CAS  Google Scholar 

  109. Agarwal, T., Celikkin, N., Costantini, M., Maiti, T. K. & Makvandi, P. Recent advances in chemically defined and tunable hydrogel platforms for organoid culture. Bio-Des. Manuf. 4, 641–674 (2021).

    Google Scholar 

  110. Hynds, R. E., Bonfanti, P. & Janes, S. M. Regenerating human epithelia with cultured stem cells: feeder cells, organoids and beyond. EMBO Mol. Med. 10, 139–150 (2018).

    CAS  PubMed  Google Scholar 

  111. Nicodemus, G. D. & Bryant, S. J. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng. Part B Rev. 14, 149–165 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Murphy, S. V. & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773–785 (2014).

    CAS  PubMed  Google Scholar 

  113. Zhang, Y. S. et al. 3D bioprinting for tissue and organ fabrication. Ann. Biomed. Eng. 45, 148–163 (2017).

    CAS  PubMed  Google Scholar 

  114. Gungor-Ozkerim, P. S., Inci, I., Zhang, Y. S., Khademhosseini, A. & Dokmeci, M. R. Bioinks for 3D bioprinting: an overview. Biomater. Sci. 6, 915–946 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Homan, K. A. et al. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci. Rep. 6, 34845 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Grigoryan, B. et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364, 458–464 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Mandrycky, C., Wang, Z., Kim, K. & Kim, D. H. 3D bioprinting for engineering complex tissues. Biotechnol. Adv. 34, 422–434 (2016).

    CAS  PubMed  Google Scholar 

  118. Lawlor, K. T. et al. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation. Nat. Mater. 20, 260–271 (2020).

    PubMed  PubMed Central  Google Scholar 

  119. Miri, A. K. et al. Effective bioprinting resolution in tissue model fabrication. Lab. Chip 19, 2019–2037 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Heinrich, M. A. et al. 3D bioprinting: from benches to translational applications. Small 15, e1805510 (2019).

    PubMed  PubMed Central  Google Scholar 

  121. Moroni, L. et al. Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat. Rev. Mater. 3, 21–37 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Li, W. et al. Recent advances in formulating and processing biomaterial inks for vat polymerization-based 3D printing. Adv. Healthc. Mater. 9, 2000156 (2020).

    CAS  Google Scholar 

  123. Zhu, Z., Ng, D. W. H., Park, H. S. & McAlpine, M. C. 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies. Nat. Rev. Mater. 6, 27–47 (2020).

    Google Scholar 

  124. Xie, L. et al. Micro-CT imaging and structural analysis of glomeruli in a model of adriamycin-induced nephropathy. Am. J. Physiol. Ren. Physiol. 316, F76–F89 (2019).

    CAS  Google Scholar 

  125. Zhang, K. et al. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: an in vitro evaluation of biomimetic mechanical property and cell growth environment. Acta Biomater. 50, 154–164 (2017).

    CAS  PubMed  Google Scholar 

  126. Zhang, Y. S. et al. 3D extrusion bioprinting methods. Nat. Rev. Methods Primers 1, 75 (2021).

    CAS  Google Scholar 

  127. Li, X. et al. Inkjet bioprinting of biomaterials. Chem. Rev. 120, 10793–10833 (2020).

    CAS  PubMed  Google Scholar 

  128. Bishop, E. S. et al. 3-D bioprinting technologies in tissue engineering and regenerative medicine: current and future trends. Genes Dis. 4, 185–195 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Ravanbakhsh, H. et al. Emerging technologies in multi-material bioprinting. Adv. Mater. 33, 2104730 (2021).

    CAS  Google Scholar 

  130. Liu.W. et al. Rapid continuous multimaterial extrusion bioprinting. Adv. Mater. 29(3), 1604630 (2017).

  131. Kolesky, D. B. et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 26, 3124–3130 (2014).

    CAS  PubMed  Google Scholar 

  132. Xu, T. et al. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials 34, 130–139 (2013).

    PubMed  Google Scholar 

  133. Miri, A. K. et al. Microfluidics-enabled multimaterial maskless stereolithographic bioprinting. Adv. Mater. 30, e1800242 (2018).

    PubMed  Google Scholar 

  134. Ma, X. et al. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc. Natl Acad. Sci. USA 113, 2206–2211 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhu, W. et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials 124, 106–115 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Gong, J. et al. Complexation-induced resolution enhancement of 3D-printed hydrogel constructs. Nat. Commun. 11, 1267 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Lee, J. M. & Yeong, W. Y. Design and printing strategies in 3D bioprinting of cell-hydrogels: a review. Adv. Healthc. Mater. 5, 2856–2865 (2016).

    CAS  PubMed  Google Scholar 

  138. Duan, B. State-of-the-art review of 3D bioprinting for cardiovascular tissue engineering. Ann. Biomed. Eng. 45, 195–209 (2017).

    PubMed  Google Scholar 

  139. Fogo, A. B. & Kon, V. The glomerulus–a view from the inside–the endothelial cell. Int. J. Biochem. Cell Biol. 42, 1388–1397 (2010).

    CAS  PubMed  Google Scholar 

  140. Aguado, B. A., Mulyasasmita, W., Su, J., Lampe, K. J. & Heilshorn, S. C. Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng. Part A 18, 806–815 (2012).

    CAS  PubMed  Google Scholar 

  141. Rayner, S. G. et al. Multiphoton-guided creation of complex organ-specific microvasculature. Adv. Healthc. Mater. 10, e2100031 (2021).

    PubMed  Google Scholar 

  142. Brassard, J. A., Nikolaev, M., Hübscher, T., Hofer, M. & Lutolf, M. P. Recapitulating macro-scale tissue self-organization through organoid bioprinting. Nat. Mater. 20, 22–29 (2021).

    CAS  PubMed  Google Scholar 

  143. Zanella, F., Lorens, J. B. & Link, W. High content screening: seeing is believing. Trends Biotechnol. 28, 237–245 (2010).

    CAS  PubMed  Google Scholar 

  144. Li, S. & Xia, M. Review of high-content screening applications in toxicology. Arch. Toxicol. 93, 3387–3396 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Boreström, C. et al. A CRISP(e)R view on kidney organoids allows generation of an induced pluripotent stem cell-derived kidney model for drug discovery. Kidney Int. 94, 1099–1110 (2018).

    PubMed  Google Scholar 

  146. Zhang, Y. S. et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc. Natl Acad. Sci. USA 114, E2293–E2302 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Aleman, J., Kilic, T., Mille, L. S., Shin, S. R. & Zhang, Y. S. Microfluidic integration of regeneratable electrochemical affinity-based biosensors for continual monitoring of organ-on-a-chip devices. Nat. Protoc. 16, 2564–2593 (2021).

    CAS  PubMed  Google Scholar 

  148. Abdallah, M. et al. Influence of hydrolyzed polyacrylamide hydrogel stiffness on podocyte morphology, phenotype, and mechanical properties. ACS Appl. Mater. Interfaces 11, 32623–32632 (2019).

    CAS  PubMed  Google Scholar 

  149. Nakao, Y., Kimura, H., Sakai, Y. & Fujii, T. Bile canaliculi formation by aligning rat primary hepatocytes in a microfluidic device. Biomicrofluidics 5, 022212 (2011).

    PubMed Central  Google Scholar 

  150. Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Tran, T. et al. In vivo developmental trajectories of human podocyte inform in vitro differentiation of pluripotent stem cell-derived podocytes. Dev. Cell 50, 102–116.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Ng, C. P., Zhuang, Y., Lin, A. W. H. & Teo, J. C. M. A fibrin-based tissue-engineered renal proximal tubule for bioartificial kidney devices: development, characterization and in vitro transport study. Int. J. Tissue Eng. 2013, 319476 (2013).

    Google Scholar 

  153. Chevtchik, N. V. et al. Upscaling of a living membrane for bioartificial kidney device. Eur. J. Pharmacol. 790, 28–35 (2016).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge research funding from the National Institutes of Health (R00CA201603, R21EB025270, R21EB026175, R21EB030257, R01EB028143, R01HL153857, R01DK72381, R03EB027984, R37DK39773 and UH3TR002155), the National Science Foundation (CBET-EBMS-1936105), the Brigham Research Institute, the Hofvijverkring Visiting Scientist Program, the Dutch Kidney Foundation (18KVP01), Utrecht Institute for Pharmaceutical Sciences and European Union’s Horizon 2020 research and innovation programme WIDESPREAD-05-2018-TWINNING Remodel.

Author information

Authors and Affiliations

Authors

Contributions

M.G.V. and L.S.M. researched the data and wrote most of the text. K.P.F., E.C. and V.Y.L. researched the data and contributed to discussion of the content. M.G.V., L.S.M. and K.P.F. created the submitted figures. J.V.B., R.M. and Y.S.Z. contributed substantially to discussion of the content throughout. Y.S.Z. participated in researching the data and writing of the initial draft. M.G.V., L.S.M., J.V.B., R.M. and Y.S.Z. reviewed/edited the manuscript.

Corresponding authors

Correspondence to Joseph V. Bonventre, Rosalinde Masereeuw or Yu Shrike Zhang.

Ethics declarations

Competing interests

Y.S.Z. sits on the Advisory Board of Allevi, Inc., which however, did not support this work. J.V.B. is co-founder and holds equity in Goldfinch Bio. The interests of Y.S.Z. and J.V.B. were reviewed and are managed by Brigham and Women’s Hospital and Mass General Brigham in accordance with their conflict of interest policies. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Nephrology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Drug disposition

In pharmacology, drug disposition refers to the processes of drug distribution and elimination of a drug once it has entered the body.

Microfluidics

The technology used to manufacture devices containing chambers and tunnels in the microscale through which fluids flow or are confined. These devices, commonly known as microfluidic chips, permit fluids to be precisely directed, mixed, separated or manipulated to attain multiplexing, automation and high-throughput systems.

Oxygen plasma treatment

A surface treatment in which oxygen plasma is used to remove impurities and contaminants, as well as to create functional groups to increase hydrophilicity and enhance bonding properties.

Thermoplastics

A group of polymers that melt at high temperatures and harden upon cooling. They can be melted and recast almost indefinitely so are highly recyclable.

Soft lithography

A group of techniques that use elastomeric stamps and moulds to shape materials with micrometre or nanometre resolution.

Vat polymerization 3D printing

A 3D printing technique in which each layer of the construct is created by projecting a different image onto a liquid resin contained in a vat to start the crosslinking reaction.

Hydrogel

Highly crosslinked hydrophilic polymer network that is heavily swollen with water and can be used as a dynamic, tunable, degradable material for growing cells and tissues.

Electrospinning

A manufacturing technique based on the creation of small diameter fibres (nanometres to micrometres) by exposing a polymeric solution to a high-power electric field during its ejection.

Bioinks

Solutions of natural and/or synthetic biomaterials used to create tissue constructs by bioprinting; bioinks usually encapsulate cells.

Extrusion bioprinting

A technique used to create organized tissue constructs by continuously dispensing or extruding a bioink through a nozzle, resulting in 3D structures.

Inkjet bioprinting

A technique used to create organized tissue constructs by rapidly dispensing small droplets in the picolitre volume range.

Feature resolution

The smallest feature size upon which a structure can be built.

Two-photon lithography

A light-assisted bioprinting technique in which excitation for the polymerization of the material is achieved by a femtosecond pulsed near-infrared laser. This technology typically creates high-resolution features with sizes of ~50–100 nm.

Breadboard

In the microfluidic context, a breadboard is a piece of hardware containing built-in microfluidic channels and valves that enable modular assembly of microfluidic chips and fluid routing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valverde, M.G., Mille, L.S., Figler, K.P. et al. Biomimetic models of the glomerulus. Nat Rev Nephrol 18, 241–257 (2022). https://doi.org/10.1038/s41581-021-00528-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-021-00528-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing