Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Culture and analysis of kidney tubuloids and perfused tubuloid cells-on-a-chip

Abstract

Advanced in vitro kidney models are of great importance to the study of renal physiology and disease. Kidney tubuloids can be established from primary cells derived from adult kidney tissue or urine. Tubuloids are three-dimensional multicellular structures that recapitulate tubular function and have been used to study infectious, malignant, metabolic, and genetic diseases. For tubuloids to more closely represent the in vivo kidney, they can be integrated into an organ-on-a-chip system that has a more physiological tubular architecture and allows flow and interaction with vasculature or epithelial and mesenchymal cells from other organs. Here, we describe a detailed protocol for establishing tubuloid cultures from tissue and urine (1–3 weeks), as well as for generating and characterizing tubuloid cell–derived three-dimensional tubular structures in a perfused microfluidic multi-chip platform (7 d). The combination of the two systems yields a powerful in vitro tool that better recapitulates the complexity of the kidney tubule with donor-specific properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Barrier integrity assay in the OrganoPlate using fluorescent probes.
Fig. 2: Passaging tubuloids.
Fig. 3: Overview of the method for modeling perfused 3D tubular structures made of primary kidney tubuloids in the OrganoPlate.
Fig. 4: Overview of correct patterning of an ECM gel and seeding tubuloids in the OrganoPlate 3-Lane.
Fig. 5: Overview of the barrier integrity assay with a fluorescent dye in the OrganoPlate 3-Lane.
Fig. 6: Overview of correct installation of the OrganoTEER for TEER measurements of cultures in the OrganoPlate.
Fig. 7: Analysis of transepithelial transport images.
Fig. 8: Tubuloid-derived tubular structures in the OrganoPlate 3-Lane characterized by immunofluorescence staining.

Similar content being viewed by others

Data availability

The main data discussed in this protocol are available in the article figures and in the supporting primary research paper (https://www.nature.com/articles/s41587-019-0048-8). The raw datasets are available for research purposes from the corresponding author upon request.

References

  1. Saran, R., Robinson, B., Abbott, K. C. & Agodoa, L. Y. US Renal Data System 2018 Annual Data Report: epidemiology of kidney disease in the United States. Am. J. Kidney Dis. 73, A7–A8 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Clevers, H. & Watt, F. M. Defining adult stem cells by function, not by phenotype. Annu. Rev. Biochem. 87, 1015–1027 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Post, Y. & Clevers, H. Defining adult stem cell function at its simplest: the ability to replace lost cells through mitosis. Cell Stem Cell 25, 174–183 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Rossi, G., Manfrin, A. & Lutolf, M. P. Progress and potential in organoid research. Nat. Rev. Genet. 19, 671–687 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Lancaster, M. A. & Huch, M. Disease modelling in human organoids. Dis. Model. Mech. 12, dmm03934 (2019).

  7. Yousef Yengej, F. A., Jansen, J., Rookmaaker, M. B., Verhaar, M. C. & Clevers, H. Kidney organoids and tubuloids. Cells 9, 1–20 (2020).

    Article  Google Scholar 

  8. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Schutgens, F. et al. Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nat. Biotechnol. 37, 303–313 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Little, M., Georgas, K., Pennisi, D. & Wilkinson, L. Kidney development: two tales of tubulogenesis. Curr. Top. Dev. Biol. 90, 193–229 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Little, M. H., Kumar, S. V. & Forbes, T. Recapitulating kidney development: progress and challenges. Semin. Cell Dev. Biol. 91, 153–168 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Barker, N. et al. Lgr5+ve stem/progenitor cells contribute to nephron formation during kidney development. Cell Rep. 2, 540–552 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Brown, D., Lee, R. & Bonventre, J. V. Redistribution of villin to proximal tubule basolateral membranes after ischemia and reperfusion. Am. J. Physiol. 273, 1003–1012 (1997).

    Google Scholar 

  14. Soo, J. Y. C., Jansen, J., Masereeuw, R. & Little, M. H. Advances in predictive in vitro models of drug-induced nephrotoxicity. Nat. Rev. Nephrol. 14, 378–393 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jouan, E., Le Vee, M., Denizot, C., Da Violante, G. & Fardel, O. The mitochondrial fluorescent dye rhodamine 123 is a high-affinity substrate for organic cation transporters (OCTs) 1 and 2. Fundam. Clin. Pharmacol. 28, 65–77 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Calandrini, C. et al. An organoid biobank for childhood kidney cancers that captures disease and tissue heterogeneity. Nat. Commun. 11, 1310 (2020).

  17. Jamalpoor, A. et al. Cysteamine-bicalutamide combination treatment restores alpha-ketoglutarate and corrects proximal tubule phenotype in cystinosis. Preprint at bioRxiv https://doi.org/10.1101/2020.02.10.941799 (2020).

  18. Park, S. E., Georgescu, A. & Huh, D. Organoids-on-a-chip. Science 364, 960–965 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu, F., Hunziker, W. & Choudhury, D. Engineering microfluidic organoid-on-a-chip platforms. Micromachines 10, 1–12 (2019).

    Article  Google Scholar 

  20. Moisan, A. et al. Mechanistic investigations of diarrhea toxicity induced by Anti-HER2/3 combination therapy. Mol. Cancer Ther. 17, 1464–1474 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Petrosyan, A. et al. A glomerulus-on-a-chip to recapitulate the human glomerular filtration barrier. Nat. Commun. 10, 3656 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. van Duinen, V. et al. Perfused 3D angiogenic sprouting in a high-throughput in vitro platform. Angiogenesis 22, 157–165 (2019).

    Article  PubMed  Google Scholar 

  23. Wevers, N. R. et al. A perfused human blood-brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport. Fluids Barriers CNS 15, 23 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yetkin-Arik, B. et al. Endothelial tip cells in vitro are less glycolytic and have a more flexible response to metabolic stress than non-tip cells. Sci. Rep. 9, 1–17 (2019).

    Article  Google Scholar 

  25. Gijzen, L. et al. An intestine-on-a-chip model of plug-and-play modularity to study inflammatory processes. SLAS Technol. 25, 585–597 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vormann, M. K. et al. Nephrotoxicity and kidney transport assessment on 3D perfused proximal tubules. AAPS J. 20, 1–11 (2018).

    Article  CAS  Google Scholar 

  27. Kramer, B. et al. Interstitial flow recapitulates gemcitabine chemoresistance in a 3D microfluidic pancreatic ductal adenocarcinoma model by induction of multidrug resistance proteins. Int. J. Mol. Sci. 20, 4647 (2019).

  28. van Duinen, V. et al. Robust and scalable angiogenesis assay of perfused 3D human iPSC-derived endothelium for anti-angiogenic drug screening. Int. J. Mol. Sci. 21, 4804 (2020).

    Article  PubMed Central  Google Scholar 

  29. Naumovska, E. et al. Direct on-chip differentiation of intestinal tubules from induced pluripotent stem cells. Int. J. Mol. Sci. 21, 1–15 (2020).

    Article  Google Scholar 

  30. Post, Y. et al. Snake venom gland organoids. Cell 180, 233–247.e21 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Trietsch, S. J. et al. Membrane-free culture and real-time barrier integrity assessment of perfused intestinal epithelium tubes. Nat. Commun. 8, 262 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Poussin, C. 3D human microvessel-on-a-chip model for studying monocyte-to-endothelium adhesion under flow—application in systems toxicology. ALTEX 37, 47–63 (2019).

    PubMed  Google Scholar 

  33. Vriend, J. et al. Flow stimulates drug transport in a human kidney proximal tubule-on-a-chip independent of primary cilia. Biochim. Biophys. Acta Gen. Subj. 1864, 129433 (2020).

  34. Vulto, P. et al. Phaseguides: a paradigm shift in microfluidic priming and emptying. Lab Chip 11, 1596–1602 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Van der Hauwaert, C. et al. Expression profiles of genes involved in xenobiotic metabolism and disposition in human renal tissues and renal cell models. Toxicol. Appl. Pharmacol. 279, 409–418 (2014).

    Article  PubMed  Google Scholar 

  36. Wilmer, M. J. et al. Kidney-on-a-chip technology for drug-induced nephrotoxicity screening. Trends Biotechnol. 34, 156–170 (2015).

    Article  PubMed  Google Scholar 

  37. Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526, 564–568 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Little, M. H. & Combes, A. N. Kidney organoids: accurate models or fortunate accidents. Genes Dev. 33, 1319–1345 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kumar, S. V. et al. Kidney micro-organoids in suspension culture as a scalable source of human pluripotent stem cell-derived kidney cells. Development 146, dev172361 (2019).

  40. Wu, H. et al. Comparative analysis and refinement of human psc-derived kidney organoid differentiation with single-cell transcriptomics. Cell Stem Cell 23, 869–881.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Faria, J., Ahmed, S., Gerritsen, K. G. F., Mihaila, S. M. & Masereeuw, R. Kidney-based in vitro models for drug-induced toxicity testing. Arch. Toxicol. 93, 3397–3418 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Homan, K. A. et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat. Methods 16, 255–262 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jang, K.-J. et al. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr. Biol. 5, 1119 (2013).

    Article  CAS  Google Scholar 

  44. Kolesky, D. B. et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 26, 3124–3130 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Chung, H. H., Mireles, M., Kwarta, B. J. & Gaborski, T. R. Use of porous membranes in tissue barrier and co-culture models. Lab Chip 18, 1671–1689 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ashammakhi, N., Wesseling-Perry, K., Hasan, A., Elkhammas, E. & Zhang, Y. S. Kidney-on-a-chip: untapped opportunities. Kidney Int. 94, 1073–1086 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Weber, E. J. et al. Development of a microphysiological model of human kidney proximal tubule function. Kidney Int. 90, 627–637 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zanetti, F. Kidney-on-a-chip. in Organ-on-a-Chip (eds Hoeng, J., Bovard, D. & Peitch, M. C.), Chap. 7 (Elsevier, 2019).

  49. Musah, S. et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat. Biomed. Eng. 176, 139–148 (2017).

    Google Scholar 

  50. Yin, L. et al. Efficient drug screening and nephrotoxicity assessment on co-culture microfluidic kidney chip. Sci. Rep. 10, 1–11 (2020).

    Google Scholar 

  51. Toepke, M. W. & Beebe, D. J. PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 6, 1484–1486 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Ferenbach, D. A. & Bonventre, J. V. Acute kidney injury and chronic kidney disease: from the laboratory to the clinic. Nephrol. Ther. 12, S41–S48 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Huch, M. et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160, 299–312 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Albadine, R. et al. PAX8 (+)/p63 (−) immunostaining pattern in renal collecting duct carcinoma (CDC). Am. J. Surg. Pathol. 34, 965–969 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Saito, K. et al. Hydronephrosis in the early stage of pregnancy after renal transplantation. Int. J. Urol. 13, 809–810 (2006).

    Article  PubMed  Google Scholar 

  56. Cai, Z., Xin, J., Pollock, D. M. & Pollock, J. S. Shear stress-mediated NO production in inner medullary collecting duct cells. Am. J. Physiol. Ren. Physiol. 279, F270–F274 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

F.A.Y.Y., F.S., C.M.E.A., M.B.R., M.C.V. and H.C. acknowledge the support of the partners of ‘Regenerative Medicine Crossing Borders’ (RegMed XB), Powered by Health~Holland, Top Sector Life Sciences & Health, and support by the Dutch Ministry of Education, Culture and Science for the Gravitation Program 024.003.103 ‘Materials Driven Regeneration’.

Author information

Authors and Affiliations

Authors

Contributions

D.K., H.L.L., P.V. and H.C. conceived the strategy for this study. L.G., F.A.Y.Y., F.S. and C.M.E.A. designed and performed the experiments and data analysis. M.K.V. designed and performed the transepithelial transport experiments. A.N. designed the transepithelial electrical resistance experiments. L.G. and F.A.Y.Y. wrote the manuscript with comments from all authors. P.V., M.B.R., H.L.L, M.C.V. and H.C. oversaw the research.

Corresponding author

Correspondence to Hans Clevers.

Ethics declarations

Competing interests

L.G., M.K.V., A.N., D.K., H.L.L. and P.V. are employees of Mimetas BV, the Netherlands. P.V. is shareholder of the same company. OrganoPlate, OrganoFlow, and OrganoTEER are registered trademarks of Mimetas BV. H.C. is an inventor on several patents related to organoids. A full disclosure can be found at https://www.uu.nl/staff/JCClevers/Additional%20functions.

Additional information

Peer review information Nature Protocols thanks Joseph Vincent Bonventre, Ryuji Morizane and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related link

Key reference using this protocol

Schutgens, F. et al. Nat. Biotechnol. 37, 303–313 (2019): https://doi.org/10.1038/s41587-019-0048-8

Extended data

Extended Data Fig. 1 Expression levels of markers of the different nephron segments are stable in tubuloids over multiple passages, except for a decrease in the loop of Henle–specific transporter SLC12A1/NKCC2.

Normalized expression of SLC4A4/NBCe1 and SLC5A2/SGLT2 (proximal tubule), SLC12A1/NKCC2 (loop of Henle), SLC12A3/NCC (distal tubule) and SCNN1A/ENaCα (collecting duct principal cells) in tubuloids in passages 4, 7 and 10. Tubuloids from two different donors were analyzed for all genes except SLC4A4/NBCe1 and SLC5A2/SGLT2 (both one donor). Expression was normalized to the housekeeping gene RPLP0. Mean and SEM are shown.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gijzen, L., Yousef Yengej, F.A., Schutgens, F. et al. Culture and analysis of kidney tubuloids and perfused tubuloid cells-on-a-chip. Nat Protoc 16, 2023–2050 (2021). https://doi.org/10.1038/s41596-020-00479-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-00479-w

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing