Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Kidney injury and disease in patients with haematological malignancies

Abstract

Acute kidney injury (AKI) is common in patients with cancer, especially in those with haematological malignancies. Kidney injury might be a direct consequence of the underlying haematological condition. For example, in the case of lymphoma infiltration or extramedullary haematopoiesis, it might be caused by a tumour product; in the case of cast nephropathy it might be due to the presence of monoclonal immunoglobulin; or it might result from tumour complications, such as hypercalcaemia. Kidney injury might also be caused by cancer treatment, as many chemotherapeutic agents are nephrotoxic. High-intensity treatments, such as high-dose chemotherapy followed by haematopoietic stem cell transplantation, not only increase the risk of infection but can also cause AKI through various mechanisms, including viral nephropathies, engraftment syndrome and sinusoidal obstruction syndrome. Some conditions, such as thrombotic microangiopathy, might also result directly from the haematological condition or the treatment. Novel immunotherapies, such as immune checkpoint inhibitors and chimeric antigen receptor T cell therapy, can also be nephrotoxic. As new therapies for haematological malignancies with increased anti-tumour efficacy and reduced toxicity are developed, the number of patients receiving these treatments will increase. Clinicians must gain a good understanding of the different mechanisms of kidney injury associated with cancer to better care for these patients.

Key points

  • Kidney injury is common in patients with haematological malignancies and the onconephrology subspecialty has been created to better care for patients with cancer-associated kidney disease and direct research in this area.

  • Causes of kidney injury in patients with haematological malignancies include the presence of monoclonal proteins, direct tumour invasion of the kidney and adverse effects of cancer therapies, such as haematopoietic stem cell transplantation or chemotherapy.

  • Both the severity and rates of kidney injury in patients undergoing haematopoietic stem cell transplantation are related to the intensity of the conditioning regimen and the source of the haematopoietic stem cells (that is, autologous versus allogeneic).

  • Thrombotic microangiopathy is a common cause of acute kidney injury in patients with haematological malignancies, and can be caused by the malignancy itself or the anti-cancer treatment.

  • Tumour lysis syndrome is a substantial cause of acute kidney injury in patients with haematological malignancy; prevention and treatment are focused on reduction of serum uric acid, potassium and phosphorus concentrations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathophysiology of light chain cast nephropathy.
Fig. 2: Pathophysiology of monoclonal immunoglobulin deposition diseases.
Fig. 3: Pathophysiology of Fanconi syndrome.
Fig. 4: Lymphomatous infiltration of the kidney.

Similar content being viewed by others

References

  1. Kitchlu, A. et al. Acute kidney injury in patients receiving systemic treatment for cancer: a population-based cohort study. J. Natl Cancer. Inst. 111, 727–736 (2018).

    PubMed Central  Google Scholar 

  2. Sanders, P. W. & Booker, B. B. Pathobiology of cast nephropathy from human Bence Jones proteins. J. Clin. Invest. 89, 630–639 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Manohar, S. & Leung, N. Cisplatin nephrotoxicity: a review of the literature. J. Nephrol. 31, 15–25 (2018).

    CAS  PubMed  Google Scholar 

  4. Korkmaz, S. The management of hyperleukocytosis in 2017: do we still need leukapheresis? Transfus. Apher. Sci. 57, 4–7 (2018).

    PubMed  Google Scholar 

  5. Cairo, M. S. & Bishop, M. Tumour lysis syndrome: new therapeutic strategies and classification. Br. J. Haematol. 127, 3–11 (2004).

    PubMed  Google Scholar 

  6. Zager, R. A. Acute renal failure in the setting of bone marrow transplantation. Kidney Int. 46, 1443–1458 (1994).

    CAS  PubMed  Google Scholar 

  7. Jhaveri, K. D. & Rosner, M. H. Chimeric antigen receptor T cell therapy and the kidney: what the nephrologist needs to know. Clin. J. Am. Soc. Nephrol. 13, 796–798 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wanchoo, R. et al. Adverse renal effects of immune checkpoint inhibitors: a narrative review. Am. J. Nephrol. 45, 160–169 (2017).

    CAS  PubMed  Google Scholar 

  9. Leung, N. et al. The evaluation of monoclonal gammopathy of renal significance: a consensus report of the International Kidney and Monoclonal Gammopathy Research Group. Nat. Rev. Nephrol. 15, 45–59 (2019).

    PubMed  Google Scholar 

  10. Leung, N. et al. Monoclonal gammopathy of renal significance: when MGUS is no longer undetermined or insignificant. Blood 120, 4292–4295 (2012).

    CAS  PubMed  Google Scholar 

  11. Gonsalves, W. I. et al. Improvement in renal function and its impact on survival in patients with newly diagnosed multiple myeloma. Blood Cancer J. 5, e296 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hutchison, C. A. et al. The pathogenesis and diagnosis of acute kidney injury in multiple myeloma. Nat. Rev. Nephrol. 8, 43–51 (2011).

    PubMed  PubMed Central  Google Scholar 

  13. Yadav, P. et al. Serum free light chain levels and renal function at diagnosis in patients with multiple myeloma. BMC Nephrol. 19, 178 (2018).

    PubMed  PubMed Central  Google Scholar 

  14. Haynes, R. J., Read, S., Collins, G. P., Darby, S. C. & Winearls, C. G. Presentation and survival of patients with severe acute kidney injury and multiple myeloma: a 20-year experience from a single centre. Nephrol. Dial. Transpl. 25, 419–426 (2010).

    Google Scholar 

  15. Higgins, L. et al. Kidney involvement of patients with Waldenström macroglobulinemia and other IgM-producing B cell lymphoproliferative disorders. Clin. J. Am. Soc. Nephrol. 13, 1037–1046 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Strati, P. et al. Renal complications in chronic lymphocytic leukemia and monoclonal B-cell lymphocytosis: the Mayo Clinic experience. Haematologica 100, 1180–1188 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yadav, P. et al. Serum free light chain level at diagnosis in myeloma cast nephropathy — a multicentre study. Blood Cancer J. 10, 28 (2020).

    PubMed  PubMed Central  Google Scholar 

  18. Ying, W. Z., Allen, C. E., Curtis, L. M., Aaron, K. J. & Sanders, P. W. Mechanism and prevention of acute kidney injury from cast nephropathy in a rodent model. J. Clin. Invest. 122, 1777–1785 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Basnayake, K., Stringer, S. J., Hutchison, C. A. & Cockwell, P. The biology of immunoglobulin free light chains and kidney injury. Kidney Int. 79, 1289–1301 (2011).

    CAS  PubMed  Google Scholar 

  20. Ying, W. Z. et al. Immunoglobulin light chains generate proinflammatory and profibrotic kidney injury. J. Clin. Invest. 129, 2792–2806 (2019).

    PubMed  PubMed Central  Google Scholar 

  21. Sanders, P. W. Mechanisms of light chain injury along the tubular nephron. J. Am. Soc. Nephrol. 23, 1777–1781 (2012).

    CAS  PubMed  Google Scholar 

  22. Batuman, V. The pathogenesis of acute kidney impairment in patients with multiple myeloma. Adv. Chronic Kidney Dis. 19, 282–286 (2012).

    PubMed  Google Scholar 

  23. Carr-Smith, H. D., Jenner, E. L., Evans, J. A. & Harding, S. J. Analytical issues of serum free light chain assays and the relative performance of polyclonal and monoclonal based reagents. Clin. Chem. Lab. Med. 54, 997–1003 (2016).

    CAS  PubMed  Google Scholar 

  24. Bridoux, F. et al. Effect of high-cutoff hemodialysis vs conventional hemodialysis on hemodialysis independence among patients with myeloma cast nephropathy: a randomized clinical trial. JAMA 318, 2099–2110 (2017).

    PubMed  PubMed Central  Google Scholar 

  25. Hutchison, C. A. et al. High cutoff versus high-flux haemodialysis for myeloma cast nephropathy in patients receiving bortezomib-based chemotherapy (EuLITE): a phase 2 randomised controlled trial. Lancet Haematol. 6, e217–e228 (2019).

    PubMed  Google Scholar 

  26. Rajkumar, S. V. et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 15, e538–e548 (2014).

    PubMed  Google Scholar 

  27. Yadav, P., Leung, N., Sanders, P. W. & Cockwell, P. The use of immunoglobulin light chain assays in the diagnosis of paraprotein-related kidney disease. Kidney Int. 87, 692–697 (2015).

    CAS  PubMed  Google Scholar 

  28. Leung, N. et al. Urinary albumin excretion patterns of patients with cast nephropathy and other monoclonal gammopathy-related kidney diseases. Clin. J. Am. Soc. Nephrol. 7, 1964–1968 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Dimopoulos, M. A. et al. International myeloma working group recommendations for the diagnosis and management of myeloma-related renal impairment. J. Clin. Oncol. 34, 1544–1557 (2016).

    PubMed  Google Scholar 

  30. Royal, V. et al. Clinicopathologic predictors of renal outcomes in light chain cast nephropathy: a multicenter retrospective study. Blood 135, 1833–1846 (2020).

    PubMed  PubMed Central  Google Scholar 

  31. Hutchison, C. A. et al. Early reduction of serum-free light chains associates with renal recovery in myeloma kidney. J. Am. Soc. Nephrol. 22, 1129–1136 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yadav, P., Cook, M. & Cockwell, P. Current trends of renal impairment in multiple myeloma. Kidney Dis. 1, 241–257 (2016).

    Google Scholar 

  33. Bridoux, F. et al. Randomized trial comparing double versus triple bortezomib-based regimen in patients with multiple myeloma and acute kidney injury due to cast nephropathy. J. Clin. Oncol. 38, 2647–2657 (2020).

    CAS  PubMed  Google Scholar 

  34. Facon, T. et al. Daratumumab plus lenalidomide and dexamethasone for untreated myeloma. N. Engl. J. Med. 380, 2104–2115 (2019).

    CAS  PubMed  Google Scholar 

  35. Mateos, M. V. et al. Daratumumab, bortezomib, and dexamethasone versus bortezomib and dexamethasone in patients with previously treated multiple myeloma: three-year follow-up of CASTOR. Clin. Lymphoma Myeloma Leuk. 20, 509–518 (2020).

    PubMed  Google Scholar 

  36. Moreau, P. et al. Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): a randomised, open-label, phase 3 study. Lancet 394, 29–38 (2019).

    CAS  PubMed  Google Scholar 

  37. Moreau, P. et al. Oral ixazomib, lenalidomide, and dexamethasone for multiple myeloma. N. Engl. J. Med. 374, 1621–1634 (2016).

    CAS  PubMed  Google Scholar 

  38. Stewart, A. K. et al. Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N. Engl. J. Med. 372, 142–152 (2015).

    PubMed  Google Scholar 

  39. Ball, S., Behera, T. R., Anwer, F. & Chakraborty, R. Risk of kidney toxicity with carfilzomib in multiple myeloma: a meta-analysis of randomized controlled trials. Ann. Hematol. 99, 1265–1271 (2020).

    CAS  PubMed  Google Scholar 

  40. Yui, J. C. et al. Proteasome inhibitor associated thrombotic microangiopathy. Am. J. Hematol. 91, E348–E352 (2016).

    CAS  PubMed  Google Scholar 

  41. Sanders, P. W. Pathogenesis and treatment of myeloma kidney. J. Lab. Clin. Med. 124, 484–488 (1994).

    CAS  PubMed  Google Scholar 

  42. Winearls, C. G. Acute myeloma kidney. Kidney Int. 48, 1347–1361 (1995).

    CAS  PubMed  Google Scholar 

  43. Rabb, H., Gunasekaran, H., Gunasekaran, S. & Saba, S. R. Acute renal failure from multiple myeloma precipitated by ACE inhibitors. Am. J. Kidney Dis. 33, E5 (1999).

    CAS  PubMed  Google Scholar 

  44. Machado, C. E. & Flombaum, C. D. Safety of pamidronate in patients with renal failure and hypercalcemia. Clin. Nephrol. 45, 175–179 (1996).

    CAS  PubMed  Google Scholar 

  45. Terpos, E., Christoulas, D. & Gavriatopoulou, M. Biology and treatment of myeloma related bone disease. Metabolism 80, 80–90 (2018).

    CAS  PubMed  Google Scholar 

  46. Torregrosa, J. V., Moreno, A., Mas, M., Ybarra, J. & Fuster, D. Usefulness of pamidronate in severe secondary hyperparathyroidism in patients undergoing hemodialysis. Kidney Int. Suppl. 63, S88–90 (2003).

    Google Scholar 

  47. Henry, D. H. et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J. Clin. Oncol. 29, 1125–1132 (2011).

    CAS  PubMed  Google Scholar 

  48. Dave, V., Chiang, C. Y., Booth, J. & Mount, P. F. Hypocalcemia post denosumab in patients with chronic kidney disease stage 4-5. Am. J. Nephrol. 41, 129–137 (2015).

    CAS  PubMed  Google Scholar 

  49. Clark, W. F. et al. Plasma exchange when myeloma presents as acute renal failure: a randomized, controlled trial. Ann. Intern. Med. 143, 777–784 (2005).

    PubMed  Google Scholar 

  50. Finkel, K. W. & Gallieni, M. Extracorporeal removal of light chains: new data and continued controversies. Clin. J. Am. Soc. Nephrol. 13, 1753–1754 (2018).

    PubMed  PubMed Central  Google Scholar 

  51. Yadav, P. et al. Patients with multiple myeloma have excellent long-term outcomes after recovery from dialysis-dependent acute kidney injury. Eur. J. Haematol. 96, 610–617 (2016).

    PubMed  Google Scholar 

  52. Gumber, R. et al. A clone-directed approach may improve diagnosis and treatment of proliferative glomerulonephritis with monoclonal immunoglobulin deposits. Kidney Int. 94, 199–205 (2018).

    PubMed  Google Scholar 

  53. Nasr, S. H. et al. Renal monoclonal immunoglobulin deposition disease: a report of 64 patients from a single institution. Clin. J. Am. Soc. Nephrol. 7, 231–239 (2012).

    PubMed  Google Scholar 

  54. Said, S. M. et al. Proliferative glomerulonephritis with monoclonal immunoglobulin G deposits is associated with high rate of early recurrence in the allograft. Kidney Int. 94, 159–169 (2018).

    CAS  PubMed  Google Scholar 

  55. Lin, J. et al. Renal monoclonal immunoglobulin deposition disease: the disease spectrum. J. Am. Soc. Nephrol. 12, 1482–1492 (2001).

    PubMed  Google Scholar 

  56. Nasr, S. H. et al. Proliferative glomerulonephritis with monoclonal IgG deposits. J. Am. Soc. Nephrol. 20, 2055–2064 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Nasr, S. H. et al. Light chain only variant of proliferative glomerulonephritis with monoclonal immunoglobulin deposits is associated with a high detection rate of the pathogenic plasma cell clone. Kidney Int. 97, 589–601 (2020).

    CAS  PubMed  Google Scholar 

  58. Bhutani, G. et al. Hematologic characteristics of proliferative glomerulonephritides with nonorganized monoclonal immunoglobulin deposits. Mayo Clin. Proc. 90, 587–596 (2015).

    CAS  PubMed  Google Scholar 

  59. Ramos-Casals, M., Stone, J. H., Cid, M. C. & Bosch, X. The cryoglobulinaemias. Lancet 379, 348–360 (2012).

    CAS  PubMed  Google Scholar 

  60. Stone, M. J. & Bogen, S. A. Evidence-based focused review of management of hyperviscosity syndrome. Blood 119, 2205–2208 (2012).

    CAS  PubMed  Google Scholar 

  61. Bryce, A. H., Kyle, R. A., Dispenzieri, A. & Gertz, M. A. Natural history and therapy of 66 patients with mixed cryoglobulinemia. Am. J. Hematol. 81, 511–518 (2006).

    PubMed  Google Scholar 

  62. Sidana, S. et al. IgM AL amyloidosis: delineating disease biology and outcomes with clinical, genomic and bone marrow morphological features. Leukemia 34, 1373–1382 (2019).

    PubMed  PubMed Central  Google Scholar 

  63. Kourelis, T. V. et al. Outcomes of patients with renal monoclonal immunoglobulin deposition disease. Am. J. Hematol. 91, 1123–1128 (2016).

    CAS  PubMed  Google Scholar 

  64. Sayed, R. H. et al. Natural history and outcome of light chain deposition disease. Blood 126, 2805–2810 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Milani, P. et al. Daratumumab in light chain deposition disease: rapid and profound hematologic response preserves kidney function. Blood Adv. 4, 1321–1324 (2020).

    PubMed  PubMed Central  Google Scholar 

  66. Abeykoon, J. P. et al. Daratumumab-based therapy in patients with heavily-pretreated AL amyloidosis. Leukemia 33, 531–536 (2019).

    Google Scholar 

  67. Palladini, G. et al. New criteria for response to treatment in immunoglobulin light chain amyloidosis based on free light chain measurement and cardiac biomarkers: impact on survival outcomes. J. Clin. Oncol. 30, 4541–4549 (2012).

    CAS  Google Scholar 

  68. Sirac, C. et al. Animal models of monoclonal immunoglobulin-related renal diseases. Nat. Rev. Nephrol. 14, 246–264 (2018).

    CAS  PubMed  Google Scholar 

  69. Decourt, C. et al. Mutational analysis in murine models for myeloma-associated Fanconi’s syndrome or cast myeloma nephropathy. Blood 94, 3559–3566 (1999).

    CAS  PubMed  Google Scholar 

  70. Luciani, A. et al. Impaired lysosomal function underlies monoclonal light chain-associated renal Fanconi syndrome. J. Am. Soc. Nephrol. 27, 2049–2061 (2016).

    CAS  PubMed  Google Scholar 

  71. Ma, C. X. et al. Acquired Fanconi syndrome is an indolent disorder in the absence of overt multiple myeloma. Blood 104, 40–42 (2004).

    CAS  PubMed  Google Scholar 

  72. Vignon, M. et al. Current anti-myeloma therapies in renal manifestations of monoclonal light chain-associated Fanconi syndrome: a retrospective series of 49 patients. Leukemia 31, 123–129 (2017).

    CAS  PubMed  Google Scholar 

  73. Clarke, B. L., Wynne, A. G., Wilson, D. M. & Fitzpatrick, L. A. Osteomalacia associated with adult Fanconi’s syndrome: clinical and diagnostic features. Clin. Endocrinol. 43, 479–490 (1995).

    CAS  Google Scholar 

  74. Lacy, M. Q. & Gertz, M. A. Acquired Fanconi’s syndrome associated with monoclonal gammopathies. Hematol. Oncol. Clin. North. Am. 13, 1273–1280 (1999).

    CAS  PubMed  Google Scholar 

  75. Muggia, F. M., Heinemann, H. O., Farhangi, M. & Osserman, E. F. Lysozymuria and renal tubular dysfunction in monocytic and myelomonocytic leukemia. Am. J. Med. 47, 351–366 (1969).

    CAS  PubMed  Google Scholar 

  76. Patel, A. B., Miles, R. R. & Deininger, M. W. Lysozyme nephropathy in chronic myelomonocytic leukemia. Clin. Case Rep. 7, 1263–1264 (2019).

    PubMed  PubMed Central  Google Scholar 

  77. Liu, Y., Zhu, T., Xu, L., Qin, Y. & Zhuang, J. A single-center case series of eight patients with the rare plasma cell dyscrasia of acquired Fanconi syndrome secondary to monoclonal gammopathy. Leuk. Lymphoma 56, 3124–3128 (2015).

    CAS  PubMed  Google Scholar 

  78. Stokes, M. B. et al. Light chain proximal tubulopathy: clinical and pathologic characteristics in the modern treatment era. J. Am. Soc. Nephrol. 27, 1555–1565 (2016).

    CAS  PubMed  Google Scholar 

  79. Clines, G. A. Mechanisms and treatment of hypercalcemia of malignancy. Curr. Opin. Endocrinol. Diabetes Obes. 18, 339–346 (2011).

    CAS  PubMed  Google Scholar 

  80. Kyle, R. A. et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin. Proc. 78, 21–33 (2003).

    PubMed  Google Scholar 

  81. Riccardi, A. et al. Changing clinical presentation of multiple myeloma. Eur. J. Cancer 27, 1401–1405 (1991).

    CAS  PubMed  Google Scholar 

  82. Seymour, J. F. & Gagel, R. F. Calcitriol: the major humoral mediator of hypercalcemia in Hodgkin’s disease and non-Hodgkin’s lymphomas. Blood 82, 1383–1394 (1993).

    CAS  PubMed  Google Scholar 

  83. Hu, M. I. et al. Denosumab for treatment of hypercalcemia of malignancy. J. Clin. Endocrinol. Metab. 99, 3144–3152 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Bhandari, S. et al. Outcomes of hypercalcemia of malignancy in patients with solid cancer: a national inpatient analysis. Med. Oncol. 36, 90 (2019).

    PubMed  Google Scholar 

  85. Vallet, N. et al. Hypercalcemia is associated with a poor prognosis in lymphoma a retrospective monocentric matched-control study and extensive review of published reported cases. Ann. Hematol. 99, 229–239 (2020).

    CAS  PubMed  Google Scholar 

  86. Rosner, M. H. & Dalkin, A. C. Onco-nephrology: the pathophysiology and treatment of malignancy-associated hypercalcemia. Clin. J. Am. Soc. Nephrol. 7, 1722–1729 (2012).

    CAS  PubMed  Google Scholar 

  87. Weide, R. et al. Renal toxicity in patients with multiple myeloma receiving zoledronic acid vs. ibandronate: a retrospective medical records review. J. Cancer Res. Ther. 6, 31–35 (2010).

    CAS  PubMed  Google Scholar 

  88. Dhillon, S. Zoledronic acid (Reclast®), Aclasta®): a review in osteoporosis. Drugs 76, 1683–1697 (2016).

    CAS  PubMed  Google Scholar 

  89. Markowitz, G. S. et al. Collapsing focal segmental glomerulosclerosis following treatment with high-dose pamidronate. J. Am. Soc. Nephrol. 12, 1164–1172 (2001).

    CAS  PubMed  Google Scholar 

  90. Barcos, M. et al. An autopsy study of 1206 acute and chronic leukemias (1958 to 1982). Cancer 60, 827–837 (1987).

    CAS  PubMed  Google Scholar 

  91. Schwartz, J. B. & Shamsuddin, A. M. The effects of leukemic infiltrates in various organs in chronic lymphocytic leukemia. Hum. Pathol. 12, 432–440 (1981).

    CAS  PubMed  Google Scholar 

  92. Richards, M. A., Mootoosamy, I., Reznek, R. H., Webb, J. A. & Lister, T. A. Renal involvement in patients with non-Hodgkin’s lymphoma: clinical and pathological features in 23 cases. Hematol. Oncol. 8, 105–110 (1990).

    CAS  PubMed  Google Scholar 

  93. Da’as, N. et al. Kidney involvement and renal manifestations in non-Hodgkin’s lymphoma and lymphocytic leukemia: a retrospective study in 700 patients. Eur. J. Haematol. 67, 158–164 (2001).

    PubMed  Google Scholar 

  94. Morel, P. et al. Aggressive lymphomas with renal involvement: a study of 48 patients treated with the LNH-84 and LNH-87 regimens. Groupe d’Etude des Lymphomes de l’Adulte. Br. J. Cancer 70, 154–159 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Ryan, R. J. et al. Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue with amyloid deposition: a clinicopathologic case series. Am. J. Clin. Pathol. 137, 51–64 (2012).

    PubMed  Google Scholar 

  96. Mustafar, R. et al. A rare cause of acute kidney injury: primary renal lymphoma in a patient with human immunodeficiency virus. Case Rep. Med. 2018, 8425985 (2018).

    PubMed  PubMed Central  Google Scholar 

  97. Nasr, S. H. et al. Methotrexate-associated B-cell lymphoma presenting with acute renal failure and bilateral nephromegaly. Kidney Int. 71, 272–275 (2007).

    CAS  PubMed  Google Scholar 

  98. Tornroth, T., Heiro, M., Marcussen, N. & Franssila, K. Lymphomas diagnosed by percutaneous kidney biopsy. Am. J. Kidney Dis. 42, 960–971 (2003).

    PubMed  Google Scholar 

  99. Kwakernaak, A. J. et al. Precursor T-lymphoblastic lymphoma presenting as primary renal lymphoma with acute renal failure. NDT Plus 4, 289–291 (2011).

    PubMed  PubMed Central  Google Scholar 

  100. Bonacina, M. et al. Ethmoidal and extranodal Burkitt lymphoma in a child with bilateral kidney Burkitt lymphoma lesions incidentally detected by 18F-FDG PET/CT. Rev. Esp. Med. Nucl. Imagen Mol. 37, 384–386 (2018).

    CAS  PubMed  Google Scholar 

  101. Desclaux, A., Lazaro, E., Pinaquy, J. B., Yacoub, M. & Viallard, J. F. Renal intravascular large B-cell lymphoma: a case report and review of the literature. Intern. Med. 56, 827–833 (2017).

    PubMed  PubMed Central  Google Scholar 

  102. Sellin, L. et al. Acute renal failure due to a malignant lymphoma infiltration uncovered by renal biopsy. Nephrol. Dial. Transpl. 19, 2657–2660 (2004).

    Google Scholar 

  103. Rajakumar, V. et al. Lymphoblastic lymphoma presenting as bilateral renal enlargement diagnosed by percutaneous kidney biopsy: report of three cases. Indian J. Nephrol. 26, 298–301 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Silva, W. F. D. J. et al. Renal infiltration presenting as acute kidney injury in Hodgkin lymphoma — a case report and review of the literature. Leuk. Res. Rep. 10, 41–43 (2018).

    Google Scholar 

  105. ter Haar, E., Labarque, V., Tousseyn, T. & Mekahli, D. Severe acute kidney injury as presentation of Burkitt’s lymphoma. BMJ Case Rep. https://doi.org/10.1136/bcr-2016-214780 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Choi, J. H. et al. Bilateral primary renal non-Hodgkin’s lymphoma presenting with acute renal failure: successful treatment with systemic chemotherapy. Acta Haematol. 97, 231–235 (1997).

    CAS  PubMed  Google Scholar 

  107. Nasr, S. H. et al. Clinicopathologic correlations in multiple myeloma: a case series of 190 patients with kidney biopsies. Am. J. Kidney Dis. 59, 786–794 (2012).

    PubMed  Google Scholar 

  108. Kowalewska, J., Nicosia, R. F., Smith, K. D., Kats, A. & Alpers, C. E. Patterns of glomerular injury in kidneys infiltrated by lymphoplasmacytic neoplasms. Hum. Pathol. 42, 896–903 (2011).

    PubMed  Google Scholar 

  109. Nasr, S. H. et al. Granulomatous interstitial nephritis secondary to chronic lymphocytic leukemia/small lymphocytic lymphoma. Ann. Diagn. Pathol. 19, 130–136 (2015).

    PubMed  Google Scholar 

  110. D’Agati, V., Sablay, L. B., Knowles, D. M. & Walter, L. Angiotropic large cell lymphoma (intravascular malignant lymphomatosis) of the kidney: presentation as minimal change disease. Hum. Pathol. 20, 263–268 (1989).

    PubMed  Google Scholar 

  111. Ozolek, J., Nodit, L., Bastacky, S., Craig, F. & Nalesnik, M. Pathologic quiz case: a 72-year-old man with fatigue and proteinuria. Angiotropic (intravascular) large B-cell lymphoma. Arch. Pathol. Lab. Med. 127, 1380–1382 (2003).

    PubMed  Google Scholar 

  112. Sekulic, M., Martin, S., Lal, A. & Weins, A. Intravascular large B-cell lymphoma of the kidney. Kidney Int. Rep. 3, 1501–1505 (2018).

    PubMed  PubMed Central  Google Scholar 

  113. Javaugue, V. et al. Clinicopathological spectrum of renal parenchymal involvement in B-cell lymphoproliferative disorders. Kidney Int. 96, 94–103 (2019).

    PubMed  Google Scholar 

  114. Ganatra, A. M. & Loughlin, K. R. The management of malignant ureteral obstruction treated with ureteral stents. J. Urol. 174, 2125–2128 (2005).

    PubMed  Google Scholar 

  115. Matsuura, H., Arase, S. & Hori, Y. Ureteral stents for malignant extrinsic ureteral obstruction: outcomes and factors predicting stent failure. Int. J. Clin. Oncol. 24, 306–312 (2019).

    CAS  PubMed  Google Scholar 

  116. Ohtaka, M. et al. Gastrointestinal cancer and bilateral hydronephrosis resulted in a high risk of ureteral stent failure. BMC Urol. 18, 35 (2018).

    PubMed  PubMed Central  Google Scholar 

  117. Holt, S. G. et al. Extramedullary haematopoeisis in the renal parenchyma as a cause of acute renal failure in myelofibrosis. Nephrol. Dial. Transpl. 10, 1438–1440 (1995).

    CAS  Google Scholar 

  118. Imai, K. et al. A case of perirenal extramedullary hematopoiesis in a patient with primary myelofibrosis. CEN Case Rep. 6, 194–199 (2017).

    PubMed  PubMed Central  Google Scholar 

  119. Del Sordo, R. et al. Nephrotic syndrome in primary myelofibrosis with renal extramedullary hematopoiesis and glomerulopathy in the JAK inhibitor era. Clin. Nephrol. Case Stud. 5, 70–77 (2017).

    PubMed  PubMed Central  Google Scholar 

  120. Nasr, S. H., Alobeid, B. B., Otrakji, J. A. & Markowitz, G. S. Myeloma cast nephropathy, direct renal infiltration by myeloma, and renal extramedullary hematopoiesis. Kidney Int. 73, 517–518 (2008).

    CAS  PubMed  Google Scholar 

  121. Bao, Y. et al. Extramedullary hematopoiesis secondary to malignant solid tumors: a case report and literature review. Cancer Manag. Res. 10, 1461–1470 (2018).

    PubMed  PubMed Central  Google Scholar 

  122. Alexander, M. P. et al. Renal extramedullary hematopoiesis: interstitial and glomerular pathology. Mod. Pathol. 28, 1574–1583 (2015).

    CAS  PubMed  Google Scholar 

  123. Pitcock, J. A., Reinhard, E. H., Justus, B. W. & Mendelsohn, R. S. A clinical and pathological study of seventy cases of myelofibrosis. Ann. Intern. Med. 57, 73–84 (1962).

    CAS  PubMed  Google Scholar 

  124. Saisorn, I., Leewansangtong, S., Sukpanichnant, S., Ruchutrakool, T. & Leemanont, P. Intrarenal extramedullary hematopoiesis as a renal mass in a patient with thalassemia. J. Urol. 165, 507–508 (2001).

    CAS  PubMed  Google Scholar 

  125. Said, S. M. et al. Myeloproliferative neoplasms cause glomerulopathy. Kidney Int. 80, 753–759 (2011).

    PubMed  Google Scholar 

  126. Al-Nouri, Z. L., Reese, J. A., Terrell, D. R., Vesely, S. K. & George, J. N. Drug-induced thrombotic microangiopathy: a systematic review of published reports. Blood 125, 616–618 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. George, J. N. & Nester, C. M. Syndromes of thrombotic microangiopathy. N. Engl. J. Med. 371, 1847–1848 (2014).

    PubMed  Google Scholar 

  128. Brocklebank, V., Wood, K. M. & Kavanagh, D. Thrombotic microangiopathy and the kidney. Clin. J. Am. Soc. Nephrol. 13, 300–317 (2018).

    CAS  PubMed  Google Scholar 

  129. Nakamoto, Y., Imai, H., Yasuda, T., Wakui, H. & Miura, A. B. A spectrum of clinicopathological features of nephropathy associated with POEMS syndrome. Nephrol. Dial. Transpl. 14, 2370–2378 (1999).

    CAS  Google Scholar 

  130. Ravindran, A., Go, R. S., Fervenza, F. C. & Sethi, S. Thrombotic microangiopathy associated with monoclonal gammopathy. Kidney Int. 91, 691–698 (2017).

    PubMed  Google Scholar 

  131. Hofmeister, C. C., Jin, M., Cataland, S. R., Benson, D. M. & Wu, H. M. TTP disease course is independent of myeloma treatment and response. Am. J. Hematol. 85, 304–306 (2010).

    PubMed  PubMed Central  Google Scholar 

  132. Kawahara, M. et al. Diffuse neurodeficits in intravascular lymphomatosis with ADAMTS13 inhibitor. Neurology 63, 1731–1733 (2004).

    CAS  PubMed  Google Scholar 

  133. Rigothier, C. et al. Distal angiopathy and atypical hemolytic uremic syndrome: clinical and functional properties of an anti-factor H IgAlambda antibody. Am. J. Kidney Dis. 66, 331–336 (2015).

    CAS  PubMed  Google Scholar 

  134. Cheungpasitporn, W., Leung, N., Sethi, S., Gertz, M. A. & Fervenza, F. C. Refractory atypical hemolytic uremic syndrome with monoclonal gammopathy responsive to bortezomib-based therapy. Clin. Nephrol. 83, 363–369 (2015).

    PubMed  Google Scholar 

  135. Izzedine, H. & Perazella, M. A. Thrombotic microangiopathy, cancer, and cancer drugs. Am. J. Kidney Dis. 66, 857–868 (2015).

    CAS  PubMed  Google Scholar 

  136. Perazella, M. A. Onco-nephrology: renal toxicities of chemotherapeutic agents. Clin. J. Am. Soc. Nephrol. 7, 1713–1721 (2012).

    CAS  PubMed  Google Scholar 

  137. Jhaveri, K. D., Wanchoo, R., Sakhiya, V., Ross, D. W. & Fishbane, S. Adverse renal effects of novel molecular oncologic targeted therapies: a narrative review. Kidney Int. Rep. 2, 108–123 (2017).

    PubMed  Google Scholar 

  138. Wanchoo, R. et al. Renal toxicities of novel agents used for treatment of multiple myeloma. Clin. J. Am. Soc. Nephrol. 12, 176–189 (2017).

    CAS  Google Scholar 

  139. Condit, P. T. Treatment of carcinoma with radiation therapy and methotrexate. Mo. Med. 65, 832–835 (1968).

    CAS  PubMed  Google Scholar 

  140. Garneau, A. P., Riopel, J. & Isenring, P. Acute methotrexate-induced crystal nephropathy. N. Engl. J. Med. 373, 2691–2693 (2015).

    PubMed  Google Scholar 

  141. Yui, J. C., Dispenzieri, A. & Leung, N. Ixazomib-induced thrombotic microangiopathy. Am. J. Hematol. 92, E53–E55 (2017).

    PubMed  Google Scholar 

  142. Fujieda, M. et al. Children’s toxicology from bench to bed — drug-induced renal injury (2): nephrotoxicity induced by cisplatin and ifosfamide in children. J. Toxicol. Sci. 34 (Suppl 2), SP251–SP257 (2009).

    CAS  PubMed  Google Scholar 

  143. Laskin, B. L., Goebel, J., Davies, S. M. & Jodele, S. Small vessels, big trouble in the kidneys and beyond: hematopoietic stem cell transplantation-associated thrombotic microangiopathy. Blood 118, 1452–1462 (2011).

    CAS  PubMed  Google Scholar 

  144. Mamlouk, O. et al. Nephrotoxicity of immune checkpoint inhibitors beyond tubulointerstitial nephritis: single-center experience. J. Immunother. Cancer 7, 2 (2019).

    PubMed  PubMed Central  Google Scholar 

  145. Shimada, M. et al. A novel role for uric acid in acute kidney injury associated with tumour lysis syndrome. Nephrol. Dial. Transpl. 24, 2960–2964 (2009).

    CAS  Google Scholar 

  146. Kjellstrand, C. M., Cambell, D. C. II, von Hartitzsch, B. & Buselmeier, T. J. Hyperuricemic acute renal failure. Arch. Intern. Med. 133, 349–359 (1974).

    CAS  PubMed  Google Scholar 

  147. Williams, S. M. & Killeen, A. A. Tumor lysis syndrome. Arch. Pathol. Lab. Med. 143, 386–393 (2019).

    CAS  PubMed  Google Scholar 

  148. Trachsler, J., Gaspert, A., Previsdomini, M., Wuthrich, R. P. & Fehr, T. Massive uric acid nephrolithiasis with progressive renal failure due to spontaneous tumour lysis syndrome. NDT Plus 1, 307–309 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Kelton, J., Kelley, W. N. & Holmes, E. W. A rapid method for the diagnosis of acute uric acid nephropathy. Arch. Intern. Med. 138, 612–615 (1978).

    CAS  PubMed  Google Scholar 

  150. Gopakumar, K. G. et al. Risk-based management strategy and outcomes of tumor lysis syndrome in children with leukemia/lymphoma: analysis from a resource-limited setting. Pediatr. Blood Cancer 65, e27401 (2018).

    PubMed  Google Scholar 

  151. Davids, M. S. et al. Revised dose ramp-up to mitigate the risk of tumor lysis syndrome when initiating venetoclax in patients with mantle cell lymphoma. J. Clin. Oncol. https://doi.org/10.1200/JCO.18.00359 (2018).

    Article  PubMed  Google Scholar 

  152. Terzi Demirsoy, E. et al. Carfilzomib-induced tumor lysis syndrome in relapsed multiple myeloma: a report of two cases. Tumori 105, NP24–NP27 (2018).

    PubMed  Google Scholar 

  153. Spector, T. Inhibition of urate production by allopurinol. Biochem. Pharmacol. 26, 355–358 (1977).

    CAS  PubMed  Google Scholar 

  154. Brogard, J. M., Coumaros, D., Franckhauser, J., Stahl, A. & Stahl, J. Enzymatic uricolysis: a study of the effect of a fungal urate-oxydase. Rev. Eur. Etud. Clin. Biol. 17, 890–895 (1972).

    CAS  PubMed  Google Scholar 

  155. Goldman, S. C. et al. A randomized comparison between rasburicase and allopurinol in children with lymphoma or leukemia at high risk for tumor lysis. Blood 97, 2998–3003 (2001).

    CAS  PubMed  Google Scholar 

  156. Coiffier, B., Altman, A., Pui, C. H., Younes, A. & Cairo, M. S. Guidelines for the management of pediatric and adult tumor lysis syndrome: an evidence-based review. J. Clin. Oncol. 26, 2767–2778 (2008).

    CAS  PubMed  Google Scholar 

  157. Reese, J. A. et al. Drug-induced thrombotic microangiopathy: experience of the Oklahoma Registry and the BloodCenter of Wisconsin. Am. J. Hematol. 90, 406–410 (2015).

    PubMed  PubMed Central  Google Scholar 

  158. Saleem, R., Reese, J. A. & George, J. N. Drug-induced thrombotic microangiopathy: an updated systematic review, 2014–2018. Am. J. Hematol. 93, E241–E243 (2018).

    PubMed  Google Scholar 

  159. Calimeri, T. & Ferreri, A. J. M. m-TOR inhibitors and their potential role in haematological malignancies. Br. J. Haematol. 177, 684–702 (2017).

    CAS  PubMed  Google Scholar 

  160. Curtis, B. R. et al. Immune-mediated thrombocytopenia resulting from sensitivity to oxaliplatin. Am. J. Hematol. 81, 193–198 (2006).

    PubMed  Google Scholar 

  161. Zupancic, M., Shah, P. C. & Shah-Khan, F. Gemcitabine-associated thrombotic thrombocytopenic purpura. Lancet Oncol. 8, 634–641 (2007).

    CAS  PubMed  Google Scholar 

  162. Sunwoo, J. B. et al. Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-kappa B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clin. Cancer Res. 7, 1419–1428 (2001).

    CAS  PubMed  Google Scholar 

  163. Duffy, S. M. & Coyle, T. E. Platelet transfusions and bleeding complications associated with plasma exchange catheter placement in patients with presumed thrombotic thrombocytopenic purpura. J. Clin. Apher. 28, 356–358 (2013).

    PubMed  Google Scholar 

  164. Schwartz, J. et al. Guidelines on the use of therapeutic apheresis in clinical practice-evidence-based approach from the writing committee of the American Society for Apheresis: The Seventh Special Issue. J. Clin. Apher. 31, 149–162 (2016).

    PubMed  Google Scholar 

  165. Buti, S. et al. Oxaliplatin-induced hemolytic anemia during adjuvant treatment of a patient with colon cancer: a case report. Anticancer Drugs 18, 297–300 (2007).

    CAS  PubMed  Google Scholar 

  166. Kersting, S., Koomans, H. A., Hene, R. J. & Verdonck, L. F. Acute renal failure after allogeneic myeloablative stem cell transplantation: retrospective analysis of incidence, risk factors and survival. Bone Marrow Transpl. 39, 359–365 (2007).

    CAS  Google Scholar 

  167. Kogon, A. & Hingorani, S. Acute kidney injury in hematopoietic cell transplantation. Semin. Nephrol. 30, 615–626 (2010).

    PubMed  PubMed Central  Google Scholar 

  168. Parikh, C. R. et al. Renal dysfunction in allogeneic hematopoietic cell transplantation. Kidney Int. 62, 566–573 (2002).

    PubMed  Google Scholar 

  169. Dropulic, L. K. & Jones, R. J. Polyomavirus BK infection in blood and marrow transplant recipients. Bone Marrow Transpl. 41, 11–18 (2008).

    CAS  Google Scholar 

  170. Erard, V. et al. BK DNA viral load in plasma: evidence for an association with hemorrhagic cystitis in allogeneic hematopoietic cell transplant recipients. Blood 106, 1130–1132 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Baldwin, A. et al. Outcome and clinical course of 100 patients with adenovirus infection following bone marrow transplantation. Bone Marrow Transpl. 26, 1333–1338 (2000).

    CAS  Google Scholar 

  172. Moledina, D. G. & Perazella, M. A. Drug-induced acute interstitial nephritis. Clin. J. Am. Soc. Nephrol. 12, 2046–2049 (2017).

    PubMed  PubMed Central  Google Scholar 

  173. Coppell, J. A. et al. Hepatic veno-occlusive disease following stem cell transplantation: incidence, clinical course, and outcome. Biol. Blood Marrow Transpl. 16, 157–168 (2010).

    Google Scholar 

  174. Choi, C. M., Schmaier, A. H., Snell, M. R. & Lazarus, H. M. Thrombotic microangiopathy in haematopoietic stem cell transplantation: diagnosis and treatment. Drugs 69, 183–198 (2009).

    CAS  PubMed  Google Scholar 

  175. Bil-Lula, I. et al. Hematuria due to adenoviral infection in bone marrow transplant recipients. Transpl. Proc. 42, 3729–3734 (2010).

    CAS  Google Scholar 

  176. Dispenzieri, A. et al. Peripheral blood stem cell transplant for POEMS syndrome is associated with high rates of engraftment syndrome. Eur. J. Haematol. 80, 397–406 (2008).

    PubMed  PubMed Central  Google Scholar 

  177. Irazabal, M. V. et al. Acute kidney injury during leukocyte engraftment after autologous stem cell transplantation in patients with light-chain amyloidosis. Am. J. Hematol. 87, 51–54 (2012).

    CAS  PubMed  Google Scholar 

  178. Choi, S. J. et al. Peri-engraftment clinical abnormalities following allogeneic hematopoietic cell transplantation: a retrospective review of 216 patients. Bone Marrow Transpl. 32, 809–813 (2003).

    Google Scholar 

  179. Jones, R. J. et al. Venoocclusive disease of the liver following bone marrow transplantation. Transplantation 44, 778–783 (1987).

    CAS  PubMed  Google Scholar 

  180. McDonald, G. B., Sharma, P., Matthews, D. E., Shulman, H. M. & Thomas, E. D. Venocclusive disease of the liver after bone marrow transplantation: diagnosis, incidence, and predisposing factors. Hepatology 4, 116–122 (1984).

    CAS  PubMed  Google Scholar 

  181. Dignan, F. L. et al. BCSH/BSBMT guideline: diagnosis and management of veno-occlusive disease (sinusoidal obstruction syndrome) following haematopoietic stem cell transplantation. Br. J. Haematol. 163, 444–457 (2013).

    CAS  PubMed  Google Scholar 

  182. Richardson, P. G. et al. Defibrotide for patients with hepatic veno-occlusive disease/sinusoidal obstruction syndrome: interim results from a treatment IND Study. Biol. Blood Marrow Transpl. 23, 997–1004 (2017).

    CAS  Google Scholar 

  183. Richardson, P. G. et al. Phase 3 trial of defibrotide for the treatment of severe veno-occlusive disease and multi-organ failure. Blood 127, 1656–1665 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Lam, A. Q. & Humphreys, B. D. Onco-nephrology: AKI in the cancer patient. Clin. J. Am. Soc. Nephrol. 7, 1692–1700 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Glezerman, I. G. et al. Chronic kidney disease, thrombotic microangiopathy, and hypertension following T cell-depleted hematopoietic stem cell transplantation. Biol. Blood Marrow Transpl. 16, 976–984 (2010).

    Google Scholar 

  186. Barton, T. D. et al. A prospective cross-sectional study of BK virus infection in non-renal solid organ transplant recipients with chronic renal dysfunction. Transpl. Infect. Dis. 8, 102–107 (2006).

    CAS  PubMed  Google Scholar 

  187. Viswesh, V., Yost, S. E. & Kaplan, B. The prevalence and implications of BK virus replication in non-renal solid organ transplant recipients: a systematic review. Transpl. Rev. 29, 175–180 (2015).

    Google Scholar 

  188. Mylonakis, E. et al. BK virus in solid organ transplant recipients: an emerging syndrome. Transplantation 72, 1587–1592 (2001).

    CAS  PubMed  Google Scholar 

  189. Hatakeyama, N. et al. Successful cidofovir treatment of adenovirus-associated hemorrhagic cystitis and renal dysfunction after allogenic bone marrow transplant. Pediatr. Infect. Dis. J. 22, 928–929 (2003).

    PubMed  Google Scholar 

  190. Ito, M., Hirabayashi, N., Uno, Y., Nakayama, A. & Asai, J. Necrotizing tubulointerstitial nephritis associated with adenovirus infection. Hum. Pathol. 22, 1225–1231 (1991).

    CAS  PubMed  Google Scholar 

  191. Chanswangphuwana, C., Townamchai, N., Intragumtornchai, T. & Bunworasate, U. Glomerular diseases associated with chronic graft-versus-host disease after allogeneic peripheral blood stem cell transplantation: case reports. Transpl. Proc. 46, 3616–3619 (2014).

    CAS  Google Scholar 

  192. Wong, E. et al. Nephrotic syndrome as a complication of chronic graft-versus-host disease after allogeneic haemopoietic stem cell transplantation. Intern. Med. J. 46, 737–741 (2016).

    CAS  PubMed  Google Scholar 

  193. Salahudeen, A. K. & Bonventre, J. V. Onconephrology: the latest frontier in the war against kidney disease. J. Am. Soc. Nephrol. 24, 26–30 (2013).

    PubMed  Google Scholar 

  194. Capasso, A. et al. Summary of the International Conference on Onco-Nephrology: an emerging field in medicine. Kidney Int. 96, 555–567 (2019).

    PubMed  Google Scholar 

  195. Cosmai, L., Porta, C., Gallieni, M. & Perazella, M. A. Onco-nephrology: a decalogue. Nephrol. Dial. Transpl. 31, 515–519 (2016).

    Google Scholar 

  196. Popat, U. R. et al. Fludarabine with a higher versus lower dose of myeloablative timed-sequential busulfan in older patients and patients with comorbidities: an open-label, non-stratified, randomised phase 2 trial. Lancet Haematol. 5, e532–e542 (2018).

    PubMed  PubMed Central  Google Scholar 

  197. Long-Boyle, J. R. et al. High fludarabine exposure and relationship with treatment-related mortality after nonmyeloablative hematopoietic cell transplantation. Bone Marrow Transpl. 46, 20–26 (2011).

    CAS  Google Scholar 

  198. Sun, L. et al. Autologous stem cell transplantation in elderly lymphoma patients in their 70s: outcomes and analysis. Oncologist 23, 624–630 (2018).

    PubMed  Google Scholar 

  199. Leung, N. et al. Acute renal insufficiency after high-dose melphalan in patients with primary systemic amyloidosis during stem cell transplantation. Am. J. Kidney Dis. 45, 102–111 (2005).

    CAS  PubMed  Google Scholar 

  200. Schacht, R. G., Feiner, H. D., Gallo, G. R., Lieberman, A. & Baldwin, D. S. Nephrotoxicity of nitrosoureas. Cancer 48, 1328–1334 (1981).

    CAS  PubMed  Google Scholar 

  201. Andersson, B. S. et al. Fludarabine with pharmacokinetically guided IV busulfan is superior to fixed-dose delivery in pretransplant conditioning of AML/MDS patients. Bone Marrow Transpl. 52, 580–587 (2017).

    CAS  Google Scholar 

  202. Ciurea, S. O. et al. Fludarabine, melphalan, thiotepa and anti-thymocyte globulin conditioning for unrelated cord blood transplant. Leuk. Lymphoma 53, 901–906 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Chen, G. L. et al. Reduced-intensity conditioning with fludarabine, melphalan, and total body irradiation for allogeneic hematopoietic cell transplantation: the effect of increasing melphalan dose on underlying disease and toxicity. Biol. Blood Marrow Transpl. 25, 689–698 (2019).

    CAS  Google Scholar 

  204. Laport, G. G. et al. Reduced-intensity conditioning with fludarabine, cyclophosphamide, and high-dose rituximab for allogeneic hematopoietic cell transplantation for follicular lymphoma: a phase two multicenter trial from the blood and marrow transplant clinical trials network. Biol. Blood Marrow Transpl. 22, 1440–1448 (2016).

    CAS  Google Scholar 

  205. Ruggiero, A., Ferrara, P., Attina, G., Rizzo, D. & Riccardi, R. Renal toxicity and chemotherapy in children with cancer. Br. J. Clin. Pharmacol. 83, 2605–2614 (2017).

    PubMed  PubMed Central  Google Scholar 

  206. Kornblit, B. et al. Fludarabine and 2-Gy TBI is superior to 2 Gy TBI as conditioning for HLA-matched related hematopoietic cell transplantation: a phase III randomized trial. Biol. Blood Marrow Transpl. 19, 1340–1347 (2013).

    CAS  Google Scholar 

  207. Cheng, J. C., Schultheiss, T. E. & Wong, J. Y. Impact of drug therapy, radiation dose, and dose rate on renal toxicity following bone marrow transplantation. Int. J. Radiat. Oncol. Biol. Phys. 71, 1436–1443 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I.G. and V.G. are supported by NIH/NCI Cancer Center Support Grant P30 CA008748.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and wrote the manuscript. N.L., F.B., P.C., I.G., V.G., J.J.H., K.D.J., S.H.N. and D.S. made substantial contributions to discussions of the content. N.L., F.B., P.C., I.G., J.J.H., K.D.J., S.H.N. and D.S. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Nelson Leung.

Ethics declarations

Competing interests

N.L. is on the advisory board of AbbVie, Takeda, Aduro and BTG, has received grants from Omeros and Alnylam, and has stocks in Checkpoint Therapeutic Inc. I.G. has stocks in Pfizer Inc. K.D.J. is a consultant for Astex Pharmacueticals and Natera. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Nephrology thanks E. Canet, L. Cosmai, A. Kitchlu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Involved immunoglobulin free light chain

The immunoglobulin light chain produced by the pathological clone.

Antigen excess

Occurs when the target antigen concentration is so high that it interferes with the antibody-antigen complex, resulting in false underestimation of the antigen concentration.

Plasma cell dyscrasia

A proliferative clonal plasma cell disorder.

Cryoglobulins

Immunoglobulins that precipitate at low temperatures.

Dysproteinaemia

A monoclonal gammopathy.

Paraneoplastic syndrome

A group of disorders triggered by an immune response to cancer antigens that result in off-target organ injury.

Evans syndrome

An autoimmune condition resulting in Coombs positive haemolytic anaemia and immune-mediated thrombocytopenia.

Conditioning regimens

Chemoradiation therapy used to prepare the patient for haematopoietic stem cell transplantation.

Engraftment syndrome

A condition that occurs around the time of leukocyte engraftment after haematopoietic stem cell transplantation that results from increased capillary permeability and is characterized by non-infectious fever, rash and non-cardiogenic pulmonary oedema.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bridoux, F., Cockwell, P., Glezerman, I. et al. Kidney injury and disease in patients with haematological malignancies. Nat Rev Nephrol 17, 386–401 (2021). https://doi.org/10.1038/s41581-021-00405-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-021-00405-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing