Mitochondrial quality control in kidney injury and repair

Abstract

Mitochondria are essential for the activity, function and viability of eukaryotic cells and mitochondrial dysfunction is involved in the pathogenesis of acute kidney injury (AKI) and chronic kidney disease, as well as in abnormal kidney repair after AKI. Multiple quality control mechanisms, including antioxidant defence, protein quality control, mitochondrial DNA repair, mitochondrial dynamics, mitophagy and mitochondrial biogenesis, have evolved to preserve mitochondrial homeostasis under physiological and pathological conditions. Loss of these mechanisms may induce mitochondrial damage and dysfunction, leading to cell death, tissue injury and, potentially, organ failure. Accumulating evidence suggests a role of disturbances in mitochondrial quality control in the pathogenesis of AKI, incomplete or maladaptive kidney repair and chronic kidney disease. Moreover, specific interventions that target mitochondrial quality control mechanisms to preserve and restore mitochondrial function have emerged as promising therapeutic strategies to prevent and treat kidney injury and accelerate kidney repair. However, clinical translation of these findings is challenging owing to potential adverse effects, unclear mechanisms of action and a lack of knowledge of the specific roles and regulation of mitochondrial quality control mechanisms in kidney resident and circulating cell types during injury and repair of the kidney.

Key points

  • Mitochondria are essential for cell viability but are highly susceptible to injury or damage.

  • Mitochondrial homeostasis depends on multiple quality control mechanisms, including antioxidant defence, protein quality control, mitochondrial DNA repair, mitochondrial dynamics, mitophagy and mitochondrial biogenesis.

  • Loss of mitochondrial quality control may induce mitochondrial damage and dysfunction, leading to cell death, tissue injury and possible organ failure.

  • Acute kidney injury (AKI) is characterized by sublethal and lethal damage to kidney tubules and incomplete or maladaptive kidney repair after AKI leads to kidney fibrosis and eventually chronic kidney disease (CKD).

  • Mitochondrial dysfunction has a critical role in the pathogenesis of AKI, abnormal kidney repair and CKD.

  • Modulation of mitochondrial quality control is a promising therapeutic approach to preventing and treating AKI and CKD and to accelerating kidney repair.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Mitochondrial functions and the effects of mitochondrial damage.
Fig. 2: Mitochondrial quality control.
Fig. 3: Mitochondrial fusion and fission.
Fig. 4: Molecular mechanisms of mitophagy.
Fig. 5: Regulation of mitochondrial biogenesis during AKI and repair.
Fig. 6: Targeting mitochondrial quality control mechanisms to protect against kidney injury and accelerate kidney repair in AKI and CKD.

References

  1. 1.

    Bhargava, P. & Schnellmann, R. G. Mitochondrial energetics in the kidney. Nat. Rev. Nephrol. 13, 629–646 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Suliman, H. B. & Piantadosi, C. A. Mitochondrial quality control as a therapeutic target. Pharmacol. Rev. 68, 20–48 (2016).

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Guder, W. G. & Ross, B. D. Enzyme distribution along the nephron. Kidney Int. 26, 101–111 (1984).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Lan, R. et al. Mitochondrial pathology and glycolytic shift during proximal tubule atrophy after ischemic AKI. J. Am. Soc. Nephrol. 27, 3356–3367 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Heung, M. et al. Acute kidney injury recovery pattern and subsequent risk of CKD: an analysis of veterans health administration data. Am. J. Kidney Dis. 67, 742–752 (2016).

    PubMed  Article  Google Scholar 

  6. 6.

    See, E. J. et al. Long-term risk of adverse outcomes after acute kidney injury: a systematic review and meta-analysis of cohort studies using consensus definitions of exposure. Kidney Int. 95, 160–172 (2019).

    PubMed  Article  Google Scholar 

  7. 7.

    Yang, L., Besschetnova, T. Y., Brooks, C. R., Shah, J. V. & Bonventre, J. V. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat. Med. 16, 535–543 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Emma, F., Montini, G., Parikh, S. M. & Salviati, L. Mitochondrial dysfunction in inherited renal disease and acute kidney injury. Nat. Rev. Nephrol. 12, 267–280 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Forbes, J. M. & Thorburn, D. R. Mitochondrial dysfunction in diabetic kidney disease. Nat. Rev. Nephrol. 14, 291–312 (2018).

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 25, 486–541 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Birk, A. V., Chao, W. M., Bracken, C., Warren, J. D. & Szeto, H. H. Targeting mitochondrial cardiolipin and the cytochrome c/cardiolipin complex to promote electron transport and optimize mitochondrial ATP synthesis. Br. J. Pharmacol. 171, 2017–2028 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Wan, J. et al. Regulation of respiration and apoptosis by cytochrome c threonine 58 phosphorylation. Sci. Rep. 9, 15815 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. 13.

    Kalkavan, H. & Green, D. R. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ. 25, 46–55 (2018).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Schug, Z. T., Gonzalvez, F., Houtkooper, R. H., Vaz, F. M. & Gottlieb, E. BID is cleaved by caspase-8 within a native complex on the mitochondrial membrane. Cell Death Differ. 18, 538–548 (2011).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Zhang, Y. et al. RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome. Nat. Commun. 8, 14329 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Chen, D. et al. PUMA amplifies necroptosis signaling by activating cytosolic DNA sensors. Proc. Natl Acad. Sci. USA 115, 3930–3935 (2018).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Whelan, R. S. et al. Bax regulates primary necrosis through mitochondrial dynamics. Proc. Natl Acad. Sci. USA 109, 6566–6571 (2012).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Platnich, J. M. et al. Shiga toxin/lipopolysaccharide activates caspase-4 and gasdermin D to trigger mitochondrial reactive oxygen species upstream of the NLRP3 inflammasome. Cell Rep. 25, 1525–1536 e1527 (2018).

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Gao, M. et al. Role of mitochondria in ferroptosis. Mol. Cell 73, 354–363 e353 (2019).

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Zhang, Z. et al. Caspase-11-mediated tubular epithelial pyroptosis underlies contrast-induced acute kidney injury. Cell Death Dis. 9, 983 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. 21.

    Mulay, S. R. et al. Mitochondria permeability transition versus necroptosis in oxalate-induced AKI. J. Am. Soc. Nephrol. 30, 1857–1869 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Martin-Sanchez, D. et al. TWEAK and RIPK1 mediate a second wave of cell death during AKI. Proc. Natl Acad. Sci. USA 115, 4182–4187 (2018).

    PubMed  Article  Google Scholar 

  23. 23.

    Deng, F., Sharma, I., Dai, Y., Yang, M. & Kanwar, Y. S. Myo-inositol oxygenase expression profile modulates pathogenic ferroptosis in the renal proximal tubule. J. Clin. Invest. 129, 5033–5049 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Mitra, K., Wunder, C., Roysam, B., Lin, G. & Lippincott-Schwartz, J. A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc. Natl Acad. Sci. USA 106, 11960–11965 (2009).

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Pennock, R. et al. Human cell dedifferentiation in mesenchymal condensates through controlled autophagy. Sci. Rep. 5, 13113 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Antico Arciuch, V. G., Elguero, M. E., Poderoso, J. J. & Carreras, M. C. Mitochondrial regulation of cell cycle and proliferation. Antioxid. Redox. Signal. 16, 1150–1180 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Hamanaka, R. B. & Chandel, N. S. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem. Sci. 35, 505–513 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Heid, M. E. et al. Mitochondrial reactive oxygen species induces NLRP3-dependent lysosomal damage and inflammasome activation. J. Immunol. 191, 5230–5238 (2013).

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Bulua, A. C. et al. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J. Exp. Med. 208, 519–533 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    West, A. P., Shadel, G. S. & Ghosh, S. Mitochondria in innate immune responses. Nat. Rev. Immunol. 11, 389–402 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Buck, M. D. et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63–76 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Maekawa, H. et al. Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury. Cell Rep. 29, 1261–1273.e6 (2019).

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Chung, K. W. et al. Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis. Cell Metab. 30, 784–799 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Zuk, A. & Bonventre, J. V. Acute kidney injury. Annu. Rev. Med. 67, 293–307 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Venkatachalam, M. A., Weinberg, J. M., Kriz, W. & Bidani, A. K. Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J. Am. Soc. Nephrol. 26, 1765–1776 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Nath, K. A. et al. Intracellular targets in heme protein-induced renal injury. Kidney Int. 53, 100–111 (1998).

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Funk, J. A. & Schnellmann, R. G. Persistent disruption of mitochondrial homeostasis after acute kidney injury. Am. J. Physiol. Renal Physiol. 302, F853–F864 (2012).

    PubMed  Article  Google Scholar 

  39. 39.

    Aparicio-Trejo, O. E. et al. Chronic impairment of mitochondrial bioenergetics and β-oxidation promotes experimental AKI-to-CKD transition induced by folic acid. Free. Radic. Biol. Med. 154, 18–32 (2020).

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Brooks, C., Wei, Q., Cho, S. G. & Dong, Z. Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J. Clin. Invest. 119, 1275–1285 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Perry, H. M. et al. Dynamin-related protein 1 deficiency promotes recovery from AKI. J. Am. Soc. Nephrol. 29, 194–206 (2018).

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Szeto, H. H. et al. Mitochondria protection after acute ischemia prevents prolonged upregulation of IL-1β and IL-18 and arrests CKD. J. Am. Soc. Nephrol. 28, 1437–1449 (2017).

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Zorov, D. B., Juhaszova, M. & Sollott, S. J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 94, 909–950 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Turrens, J. F. Mitochondrial formation of reactive oxygen species. J. Physiol. 552, 335–344 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Rabilloud, T. et al. The mitochondrial antioxidant defence system and its response to oxidative stress. Proteomics 1, 1105–1110 (2001).

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Bindoli, A. & Rigobello, M. P. Principles in redox signaling: from chemistry to functional significance. Antioxid. Redox Signal. 18, 1557–1593 (2013).

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Zhao, X. et al. Tenofovir and adefovir down-regulate mitochondrial chaperone TRAP1 and succinate dehydrogenase subunit B to metabolically reprogram glucose metabolism and induce nephrotoxicity. Sci. Rep. 7, 46344 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Cline, S. D. Mitochondrial DNA damage and its consequences for mitochondrial gene expression. Biochim. Biophys. Acta 1819, 979–991 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Kim, J., Seok, Y. M., Jung, K. J. & Park, K. M. Reactive oxygen species/oxidative stress contributes to progression of kidney fibrosis following transient ischemic injury in mice. Am. J. Physiol. Renal Physiol. 297, F461–F470 (2009).

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Mapuskar, K. A. et al. Persistent increase in mitochondrial superoxide mediates cisplatin-induced chronic kidney disease. Redox Biol. 20, 98–106 (2019).

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Vasko, R. Peroxisomes and kidney injury. Antioxid. Redox Signal. 25, 217–231 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Hasegawa, K. et al. Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function. J. Biol. Chem. 285, 13045–13056 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Szeto, H. H. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br. J. Pharmacol. 171, 2029–2050 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Liu, D. et al. Enhanced efficiency of mitochondria-targeted peptide SS-31 for acute kidney injury by pH-responsive and AKI-kidney targeted nanopolyplexes. Biomaterials 211, 57–67 (2019).

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Liu, S., Soong, Y., Seshan, S. V. & Szeto, H. H. Novel cardiolipin therapeutic protects endothelial mitochondria during renal ischemia and mitigates microvascular rarefaction, inflammation, and fibrosis. Am. J. Physiol. Renal Physiol. 306, F970–F980 (2014).

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Bell, E. L., Klimova, T. A., Eisenbart, J., Schumacker, P. T. & Chandel, N. S. Mitochondrial reactive oxygen species trigger hypoxia-inducible factor-dependent extension of the replicative life span during hypoxia. Mol. Cell Biol. 27, 5737–5745 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Ding, W. et al. Mitochondrial reactive oxygen species-mediated NLRP3 inflammasome activation contributes to aldosterone-induced renal tubular cells injury. Oncotarget 7, 17479–17491 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Jain, M. et al. Mitochondrial reactive oxygen species regulate transforming growth factor-β signaling. J. Biol. Chem. 288, 770–777 (2013).

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Liu, B., Chen, Y. & St Clair, D. K. ROS and p53: a versatile partnership. Free Radic. Biol. Med. 44, 1529–1535 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Daenen, K. et al. Oxidative stress in chronic kidney disease. Pediatr. Nephrol. 34, 975–991 (2019).

    PubMed  Article  Google Scholar 

  61. 61.

    Kirkman, D. L., Muth, B. J., Ramick, M. G., Townsend, R. R. & Edwards, D. G. Role of mitochondria-derived reactive oxygen species in microvascular dysfunction in chronic kidney disease. Am. J. Physiol. Renal Physiol. 314, F423–F429 (2018).

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Miyamoto, S. et al. Restoring mitochondrial superoxide levels with elamipretide (MTP-131) protects db/db mice against progression of diabetic kidney disease. J. Biol. Chem. 295, 7249–7260 (2020).

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Mizuguchi, Y. et al. A novel cell-permeable antioxidant peptide decreases renal tubular apoptosis and damage in unilateral ureteral obstruction. Am. J. Physiol. Renal Physiol. 295, F1545–F1553 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Qi, H. et al. Glomerular endothelial mitochondrial dysfunction is essential and characteristic of diabetic kidney disease susceptibility. Diabetes 66, 763–778 (2017).

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Xiao, L. et al. The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1. Redox Biol. 11, 297–311 (2017).

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Szeto, H. H. et al. Protection of mitochondria prevents high-fat diet-induced glomerulopathy and proximal tubular injury. Kidney Int. 90, 997–1011 (2016).

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Dugan, L. L. et al. AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J. Clin. Invest. 123, 4888–4899 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Vazquez-Calvo, C., Suhm, T., Buttner, S. & Ott, M. The basic machineries for mitochondrial protein quality control. Mitochondrion 50, 121–131 (2020).

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Shpilka, T. & Haynes, C. M. The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat. Rev. Mol. Cell Biol. 19, 109–120 (2018).

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Bohovych, I., Chan, S. S. & Khalimonchuk, O. Mitochondrial protein quality control: the mechanisms guarding mitochondrial health. Antioxid. Redox Signal. 22, 977–994 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Saisawat, P. et al. Whole-exome resequencing reveals recessive mutations in TRAP1 in individuals with CAKUT and VACTERL association. Kidney Int. 85, 1310–1317 (2014).

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Stacchiotti, A. et al. Tubular stress proteins and nitric oxide synthase expression in rat kidney exposed to mercuric chloride and melatonin. J. Histochem. Cytochem. 54, 1149–1157 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    Hernadez-Pando, R. et al. Histological and subcellular distribution of 65 and 70 kD heat shock proteins in experimental nephrotoxic injury. Exp. Toxicol. Pathol. 47, 501–508 (1995).

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Fan, Y. et al. Inhibition of reticulon-1A-mediated endoplasmic reticulum stress in early AKI attenuates renal fibrosis development. J. Am. Soc. Nephrol. 28, 2007–2021 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Inagi, R., Ishimoto, Y. & Nangaku, M. Proteostasis in endoplasmic reticulum — new mechanisms in kidney disease. Nat. Rev. Nephrol. 10, 369–378 (2014).

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Shu, S. et al. Endoplasmic reticulum stress is activated in post-ischemic kidneys to promote chronic kidney disease. EBioMedicine 37, 269–280 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Senft, D. & Ronai, Z. A. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem. Sci. 40, 141–148 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Malhotra, J. D. & Kaufman, R. J. ER stress and its functional link to mitochondria: role in cell survival and death. Cold Spring Harb. Perspect. Biol. 3, a004424 (2011).

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Tran, M. et al. PGC-1α promotes recovery after acute kidney injury during systemic inflammation in mice. J. Clin. Invest. 121, 4003–4014 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Bhreathnach, U. et al. Profibrotic IHG-1 complexes with renal disease associated HSPA5 and TRAP1 in mitochondria. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 896–906 (2017).

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    Chen, J. F. et al. TRAP1 ameliorates renal tubulointerstitial fibrosis in mice with unilateral ureteral obstruction by protecting renal tubular epithelial cell mitochondria. FASEB J. 31, 4503–4514 (2017).

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Sharma, P. & Sampath, H. Mitochondrial DNA integrity: role in health and disease. Cells 8, 100 (2019).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  83. 83.

    Zinovkina, L. A. Mechanisms of mitochondrial DNA repair in mammals. Biochemistry 83, 233–249 (2018).

    CAS  PubMed  Google Scholar 

  84. 84.

    Moretton, A. et al. Selective mitochondrial DNA degradation following double-strand breaks. PLoS ONE 12, e0176795 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  85. 85.

    Uehara, M. et al. Pharmacological inhibition of ataxia-telangiectasia mutated exacerbates acute kidney injury by activating p53 signaling in mice. Sci. Rep. 10, 4441 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Kishi, S. et al. Proximal tubule ATR regulates DNA repair to prevent maladaptive renal injury responses. J. Clin. Invest. 129, 4797–4816 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Sun, Z. et al. Amelioration of oxidative mitochondrial DNA damage and deletion after renal ischemic injury by the KATP channel opener diazoxide. Am. J. Physiol. Renal Physiol. 294, F491–F498 (2008).

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Tan, X. et al. Postconditioning ameliorates mitochondrial DNA damage and deletion after renal ischemic injury. Nephrol. Dial. Transplant. 28, 2754–2765 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Bartz, R. R. et al. Staphylococcus aureus sepsis induces early renal mitochondrial DNA repair and mitochondrial biogenesis in mice. PLoS ONE 9, e100912 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  90. 90.

    Tanji, N. et al. Adefovir nephrotoxicity: possible role of mitochondrial DNA depletion. Hum. Pathol. 32, 734–740 (2001).

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Maniccia-Bozzo, E., Espiritu, M. B. & Singh, G. Differential effects of cisplatin on mouse hepatic and renal mitochondrial DNA. Mol. Cell Biochem. 94, 83–88 (1990).

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    Krishnan, K. J. et al. What causes mitochondrial DNA deletions in human cells? Nat. Genet. 40, 275–279 (2008).

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    Connor, T. M. et al. Mutations in mitochondrial DNA causing tubulointerstitial kidney disease. PLoS Genet. 13, e1006620 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  94. 94.

    O’Toole, J. F. Renal manifestations of genetic mitochondrial disease. Int. J. Nephrol. Renovasc. Dis. 7, 57–67 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  95. 95.

    Fedorova, L. V. et al. Mitochondrial impairment in the five-sixth nephrectomy model of chronic renal failure: proteomic approach. BMC Nephrol. 14, 209 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  96. 96.

    Tin, A. et al. Association between mitochondrial DNA copy number in peripheral blood and incident CKD in the atherosclerosis risk in communities study. J. Am. Soc. Nephrol. 27, 2467–2473 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Wai, T. & Langer, T. Mitochondrial dynamics and metabolic regulation. Trends Endocrinol. Metab. 27, 105–117 (2016).

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    Ni, H. M., Williams, J. A. & Ding, W. X. Mitochondrial dynamics and mitochondrial quality control. Redox Biol. 4, 6–13 (2015).

    CAS  PubMed  Article  Google Scholar 

  99. 99.

    Burman, J. L. et al. Mitochondrial fission facilitates the selective mitophagy of protein aggregates. J. Cell Biol. 216, 3231–3247 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. 100.

    Tilokani, L., Nagashima, S., Paupe, V. & Prudent, J. Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem. 62, 341–360 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  101. 101.

    Friedman, J. R. et al. ER tubules mark sites of mitochondrial division. Science 334, 358–362 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Lee, J. E., Westrate, L. M., Wu, H., Page, C. & Voeltz, G. K. Multiple dynamin family members collaborate to drive mitochondrial division. Nature 540, 139–143 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Kamerkar, S. C., Kraus, F., Sharpe, A. J., Pucadyil, T. J. & Ryan, M. T. Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission. Nat. Commun. 9, 5239 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Cho, S. G. et al. Bif-1 interacts with prohibitin-2 to regulate mitochondrial inner membrane during cell stress and apoptosis. J. Am. Soc. Nephrol. 30, 1174–1191 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. 105.

    Chakrabarti, R. et al. INF2-mediated actin polymerization at the ER stimulates mitochondrial calcium uptake, inner membrane constriction, and division. J. Cell Biol. 217, 251–268 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Ban, T. et al. Molecular basis of selective mitochondrial fusion by heterotypic action between OPA1 and cardiolipin. Nat. Cell Biol. 19, 856–863 (2017).

    CAS  PubMed  Article  Google Scholar 

  107. 107.

    Chan, D. C. Mitochondrial dynamics and its involvement in disease. Annu. Rev. Pathol. 15, 235–259 (2020).

    CAS  PubMed  Article  Google Scholar 

  108. 108.

    Wei, Q. et al. MicroRNA-668 represses MTP18 to preserve mitochondrial dynamics in ischemic acute kidney injury. J. Clin. Invest. 128, 5448–5464 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  109. 109.

    Morigi, M. et al. Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury. J. Clin. Invest. 125, 715–726 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Qin, N. et al. UCP2-dependent improvement of mitochondrial dynamics protects against acute kidney injury. J. Pathol. 247, 392–405 (2019).

    CAS  PubMed  Article  Google Scholar 

  111. 111.

    Liu, Z. et al. Numb depletion promotes Drp1-mediated mitochondrial fission and exacerbates mitochondrial fragmentation and dysfunction in acute kidney injury. Antioxid. Redox Signal. 30, 1797–1816 (2019).

    CAS  PubMed  Article  Google Scholar 

  112. 112.

    Xiao, X. et al. OMA1 mediates OPA1 proteolysis and mitochondrial fragmentation in experimental models of ischemic kidney injury. Am. J. Physiol. Renal Physiol. 306, F1318–F1326 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. 113.

    Gall, J. M. et al. Role of mitofusin 2 in the renal stress response. PLoS ONE 7, e31074 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. 114.

    Gall, J. M. et al. Conditional knockout of proximal tubule mitofusin 2 accelerates recovery and improves survival after renal ischemia. J. Am. Soc. Nephrol. 26, 1092–1102 (2015).

    CAS  PubMed  Article  Google Scholar 

  115. 115.

    Brooks, C., Cho, S. G., Wang, C. Y., Yang, T. & Dong, Z. Fragmented mitochondria are sensitized to Bax insertion and activation during apoptosis. Am. J. Physiol. Cell Physiol. 300, C447–C455 (2011).

    CAS  PubMed  Article  Google Scholar 

  116. 116.

    Scorrano, L. et al. A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev. Cell 2, 55–67 (2002).

    CAS  PubMed  Article  Google Scholar 

  117. 117.

    Varanita, T. et al. The OPA1-dependent mitochondrial cristae remodeling pathway controls atrophic, apoptotic, and ischemic tissue damage. Cell Metab. 21, 834–844 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    Otera, H., Miyata, N., Kuge, O. & Mihara, K. Drp1-dependent mitochondrial fission via MiD49/51 is essential for apoptotic cristae remodeling. J. Cell Biol. 212, 531–544 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119.

    Xiao, L. et al. Rap1 ameliorates renal tubular injury in diabetic nephropathy. Diabetes 63, 1366–1380 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. 120.

    Zhan, M., Usman, I. M., Sun, L. & Kanwar, Y. S. Disruption of renal tubular mitochondrial quality control by Myo-inositol oxygenase in diabetic kidney disease. J. Am. Soc. Nephrol. 26, 1304–1321 (2015).

    CAS  PubMed  Article  Google Scholar 

  121. 121.

    Ayanga, B. A. et al. Dynamin-related protein 1 deficiency improves mitochondrial fitness and protects against progression of diabetic nephropathy. J. Am. Soc. Nephrol. 27, 2733–2747 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Galvan, D. L. et al. Drp1S600 phosphorylation regulates mitochondrial fission and progression of nephropathy in diabetic mice. J. Clin. Invest. 129, 2807–2823 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  123. 123.

    Qin, X. et al. Berberine protects glomerular podocytes via inhibiting Drp1-mediated mitochondrial fission and dysfunction. Theranostics 9, 1698–1713 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. 124.

    Noh, M. R., Woo, C. H., Park, M. J., In Kim, J. & Park, K. M. Ablation of C/EBP homologous protein attenuates renal fibrosis after ureteral obstruction by reducing autophagy and microtubule disruption. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 1634–1641 (2018).

    CAS  PubMed  Article  Google Scholar 

  125. 125.

    Quan, Y. et al. Sirtuin 3 activation by honokiol decreases unilateral ureteral obstruction-induced renal inflammation and fibrosis via regulation of mitochondrial dynamics and the renal NF-κBTGF-β1/Smad signaling pathway. Int. J. Mol. Sci. 21, 402 (2020).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  126. 126.

    Wang, Y. et al. Drp1-mediated mitochondrial fission promotes renal fibroblast activation and fibrogenesis. Cell Death Dis. 11, 29 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  127. 127.

    Sato, M. & Sato, K. Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334, 1141–1144 (2011).

    CAS  PubMed  Article  Google Scholar 

  128. 128.

    Domenech, E. et al. AMPK and PFKFB3 mediate glycolysis and survival in response to mitophagy during mitotic arrest. Nat. Cell Biol. 17, 1304–1316 (2015).

    CAS  PubMed  Article  Google Scholar 

  129. 129.

    Palikaras, K., Lionaki, E. & Tavernarakis, N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat. Cell Biol. 20, 1013–1022 (2018).

    CAS  PubMed  Article  Google Scholar 

  130. 130.

    Liu, L., Sakakibara, K., Chen, Q. & Okamoto, K. Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res. 24, 787–795 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. 131.

    Matsuda, N. et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189, 211–221 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. 132.

    Kane, L. A. et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205, 143–153 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  133. 133.

    Gegg, M. E. et al. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet. 19, 4861–4870 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  134. 134.

    Lazarou, M. et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309–314 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  135. 135.

    McLelland, G. L., Soubannier, V., Chen, C. X., McBride, H. M. & Fon, E. A. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 33, 282–295 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136.

    McLelland, G. L., Lee, S. A., McBride, H. M. & Fon, E. A. Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system. J. Cell Biol. 214, 275–291 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  137. 137.

    Sugiura, A., McLelland, G. L., Fon, E. A. & McBride, H. M. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J. 33, 2142–2156 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  138. 138.

    Zhang, T. et al. BNIP3 protein suppresses PINK1 kinase proteolytic cleavage to promote mitophagy. J. Biol. Chem. 291, 21616–21629 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  139. 139.

    Lee, Y., Lee, H. Y., Hanna, R. A. & Gustafsson, A. B. Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 301, H1924–H1931 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  140. 140.

    Tang, C. et al. Activation of BNIP3-mediated mitophagy protects against renal ischemia-reperfusion injury. Cell Death Dis. 10, 677 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  141. 141.

    Tang, C. et al. PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury. Autophagy 14, 880–897 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  142. 142.

    Wang, J., Zhu, P., Li, R., Ren, J. & Zhou, H. Fundc1-dependent mitophagy is obligatory to ischemic preconditioning-conferred renoprotection in ischemic AKI via suppression of Drp1-mediated mitochondrial fission. Redox Biol. 30, 101415 (2020).

    CAS  PubMed  Article  Google Scholar 

  143. 143.

    Lin, Q. et al. PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation. Redox Biol. 26, 101254 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  144. 144.

    Wang, Y. et al. PINK1/Parkin-mediated mitophagy is activated in cisplatin nephrotoxicity to protect against kidney injury. Cell Death Dis. 9, 1113 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  145. 145.

    Liu, J. X. et al. Disturbance of mitochondrial dynamics and mitophagy in sepsis-induced acute kidney injury. Life Sci. 235, 116828 (2019).

    CAS  PubMed  Article  Google Scholar 

  146. 146.

    Lynch, M. R. et al. TFEB-driven lysosomal biogenesis is pivotal for PGC1α-dependent renal stress resistance. JCI Insight 5, e142898 (2019).

    Article  Google Scholar 

  147. 147.

    Gao, Y. et al. Role of Parkin-mediated mitophagy in the protective effect of polydatin in sepsis-induced acute kidney injury. J. Transl. Med. 18, 114 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  148. 148.

    Boya, P., Codogno, P. & Rodriguez-Muela, N. Autophagy in stem cells: repair, remodelling and metabolic reprogramming. Development 145, dev146506 (2018).

    Article  CAS  Google Scholar 

  149. 149.

    Esteban-Martinez, L. et al. Programmed mitophagy is essential for the glycolytic switch during cell differentiation. EMBO J. 36, 1688–1706 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  150. 150.

    Chen, K. et al. Optineurin-mediated mitophagy protects renal tubular epithelial cells against accelerated senescence in diabetic nephropathy. Cell Death Dis. 9, 105 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  151. 151.

    Chen, K. et al. Optineurin inhibits NLRP3 inflammasome activation by enhancing mitophagy of renal tubular cells in diabetic nephropathy. FASEB J. 33, 4571–4585 (2019).

    CAS  PubMed  Article  Google Scholar 

  152. 152.

    Li, W. et al. FoxO1 promotes mitophagy in the podocytes of diabetic male mice via the PINK1/Parkin pathway. Endocrinology 158, 2155–2167 (2017).

    CAS  PubMed  Article  Google Scholar 

  153. 153.

    Sun, J. et al. CoQ10 ameliorates mitochondrial dysfunction in diabetic nephropathy through mitophagy. J. Endocrinol. https://doi.org/10.1530/JOE-18-0578 (2019).

  154. 154.

    Zhou, D. et al. PGRN acts as a novel regulator of mitochondrial homeostasis by facilitating mitophagy and mitochondrial biogenesis to prevent podocyte injury in diabetic nephropathy. Cell Death Dis. 10, 524 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  155. 155.

    Li, S. et al. Drp1-regulated PARK2-dependent mitophagy protects against renal fibrosis in unilateral ureteral obstruction. Free Radic. Biol. Med. 152, 632–649 (2019).

    PubMed  Article  CAS  Google Scholar 

  156. 156.

    Bhatia, D. et al. Mitophagy-dependent macrophage reprogramming protects against kidney fibrosis. JCI Insight 4, e132826 (2019).

    PubMed Central  Article  PubMed  Google Scholar 

  157. 157.

    Ventura-Clapier, R., Garnier, A. & Veksler, V. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1α. Cardiovasc. Res. 79, 208–217 (2008).

    CAS  PubMed  Article  Google Scholar 

  158. 158.

    Dominy, J. E. & Puigserver, P. Mitochondrial biogenesis through activation of nuclear signaling proteins. Cold Spring Harb. Perspect. Biol. 5, a033944 (2013).

    Article  CAS  Google Scholar 

  159. 159.

    Portilla, D. et al. Alterations of PPARα and its coactivator PGC-1 in cisplatin-induced acute renal failure. Kidney Int. 62, 1208–1218 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  160. 160.

    Tran, M. T. et al. PGC1α drives NAD biosynthesis linking oxidative metabolism to renal protection. Nature 531, 528–532 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  161. 161.

    Jesinkey, S. R. et al. Formoterol restores mitochondrial and renal function after ischemia-reperfusion injury. J. Am. Soc. Nephrol. 25, 1157–1162 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  162. 162.

    Valle, I., Alvarez-Barrientos, A., Arza, E., Lamas, S. & Monsalve, M. PGC-1α regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc. Res. 66, 562–573 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  163. 163.

    Cherry, A. D., Suliman, H. B., Bartz, R. R. & Piantadosi, C. A. Peroxisome proliferator-activated receptor γ co-activator 1-α as a critical co-activator of the murine hepatic oxidative stress response and mitochondrial biogenesis in Staphylococcus aureus sepsis. J. Biol. Chem. 289, 41–52 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  164. 164.

    Kelly, D. P. & Scarpulla, R. C. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes. Dev. 18, 357–368 (2004).

    CAS  PubMed  Article  Google Scholar 

  165. 165.

    Smith, J. A., Stallons, L. J., Collier, J. B., Chavin, K. D. & Schnellmann, R. G. Suppression of mitochondrial biogenesis through toll-like receptor 4-dependent mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling in endotoxin-induced acute kidney injury. J. Pharmacol. Exp. Ther. 352, 346–357 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  166. 166.

    Ruiz-Andres, O. et al. The inflammatory cytokine TWEAK decreases PGC-1α expression and mitochondrial function in acute kidney injury. Kidney Int. 89, 399–410 (2016).

    CAS  PubMed  Article  Google Scholar 

  167. 167.

    Collier, J. B. & Schnellmann, R. G. Extracellular signal-regulated kinase 1/2 regulates NAD metabolism during acute kidney injury through microRNA-34a-mediated NAMPT expression. Cell Mol. Life Sci. 77, 3643–3655 (2019).

    PubMed  Article  CAS  Google Scholar 

  168. 168.

    Collier, J. B., Whitaker, R. M., Eblen, S. T. & Schnellmann, R. G. Rapid renal regulation of peroxisome proliferator-activated receptor γ coactivator-1α by extracellular signal-regulated kinase 1/2 in physiological and pathological conditions. J. Biol. Chem. 291, 26850–26859 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  169. 169.

    Gibbs, W. S. et al. 5-HT1F receptor regulates mitochondrial homeostasis and its loss potentiates acute kidney injury and impairs renal recovery. Am. J. Physiol. Renal Physiol. 315, F1119–F1128 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  170. 170.

    Cameron, R. B. et al. Proximal tubule β 2-adrenergic receptor mediates formoterol-induced recovery of mitochondrial and renal function after ischemia-reperfusion injury. J. Pharmacol. Exp. Ther. 369, 173–180 (2019).

    CAS  PubMed  Article  Google Scholar 

  171. 171.

    Fernandez-Marcos, P. J. & Auwerx, J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am. J. Clin. Nutr. 93, 884S–890S (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  172. 172.

    Sharma, K. et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J. Am. Soc. Nephrol. 24, 1901–1912 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  173. 173.

    Li, S. Y. et al. Increasing the level of peroxisome proliferator-activated receptor γ coactivator-1α in podocytes results in collapsing glomerulopathy. JCI Insight 2, e92930 (2017).

    PubMed Central  Article  PubMed  Google Scholar 

  174. 174.

    Long, J. et al. Long noncoding RNA Tug1 regulates mitochondrial bioenergetics in diabetic nephropathy. J. Clin. Invest. 126, 4205–4218 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  175. 175.

    Han, S. H. et al. PGC-1α protects from Notch-induced kidney fibrosis development. J. Am. Soc. Nephrol. 28, 3312–3322 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  176. 176.

    Kang, H. M. et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 21, 37–46 (2015).

    CAS  PubMed  Article  Google Scholar 

  177. 177.

    Han, S. H. et al. Deletion of Lkb1 in renal tubular epithelial cells leads to CKD by altering metabolism. J. Am. Soc. Nephrol. 27, 439–453 (2016).

    CAS  PubMed  Article  Google Scholar 

  178. 178.

    Dare, A. J. et al. Protection against renal ischemia-reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ. Redox Biol. 5, 163–168 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  179. 179.

    Plotnikov, E. Y. et al. Mechanisms of nephroprotective effect of mitochondria-targeted antioxidants under rhabdomyolysis and ischemia/reperfusion. Biochim. Biophys. Acta 1812, 77–86 (2011).

    CAS  PubMed  Article  Google Scholar 

  180. 180.

    Mukhopadhyay, P. et al. Mitochondrial-targeted antioxidants represent a promising approach for prevention of cisplatin-induced nephropathy. Free Radic. Biol. Med. 52, 497–506 (2012).

    CAS  PubMed  Article  Google Scholar 

  181. 181.

    Szeto, H. H. et al. Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic kidney injury. J. Am. Soc. Nephrol. 22, 1041–1052 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  182. 182.

    Birk, A. V. et al. The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J. Am. Soc. Nephrol. 24, 1250–1261 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  183. 183.

    Angelova, P. R. & Abramov, A. Y. Functional role of mitochondrial reactive oxygen species in physiology. Free Radic. Biol. Med. 100, 81–85 (2016).

    CAS  PubMed  Article  Google Scholar 

  184. 184.

    Kim, J., Jang, H. S. & Park, K. M. Reactive oxygen species generated by renal ischemia and reperfusion trigger protection against subsequent renal ischemia and reperfusion injury in mice. Am. J. Physiol. Renal Physiol. 298, F158–F166 (2010).

    CAS  PubMed  Article  Google Scholar 

  185. 185.

    Cassidy-Stone, A. et al. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev. Cell 14, 193–204 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  186. 186.

    Twig, G. et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433–446 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  187. 187.

    Bordt, E. A. et al. The putative Drp1 inhibitor mdivi-1 is a reversible mitochondrial complex I inhibitor that modulates reactive oxygen species. Dev. Cell 40, 583–594.e6 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  188. 188.

    Bhatia, D. & Choi, M. E. The emerging role of mitophagy in kidney diseases. J. Life Sci. 1, 13–22 (2019).

    Google Scholar 

  189. 189.

    Wang, Y., Cai, J., Tang, C. & Dong, Z. Mitophagy in acute kidney injury and kidney repair. Cells 9, 338 (2020).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  190. 190.

    Cui, J. et al. Rapamycin protects against gentamicin-induced acute kidney injury via autophagy in mini-pig models. Sci. Rep. 5, 11256 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  191. 191.

    Jiang, M. et al. Autophagy in proximal tubules protects against acute kidney injury. Kidney Int. 82, 1271–1283 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  192. 192.

    Marti, H. P. & Frey, F. J. Nephrotoxicity of rapamycin: an emerging problem in clinical medicine. Nephrol. Dial. Transplant. 20, 13–15 (2005).

    CAS  PubMed  Article  Google Scholar 

  193. 193.

    Shoji-Kawata, S. et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature 494, 201–206 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  194. 194.

    Livingston, M. J. et al. Persistent activation of autophagy in kidney tubular cells promotes renal interstitial fibrosis during unilateral ureteral obstruction. Autophagy 12, 976–998 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  195. 195.

    Ryu, D. et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat. Med. 22, 879–888 (2016).

    CAS  PubMed  Article  Google Scholar 

  196. 196.

    Zou, D. et al. Oral delivery of nanoparticle urolithin A normalizes cellular stress and improves survival in mouse model of cisplatin-induced AKI. Am. J. Physiol. Renal Physiol. 317, F1255–F1264 (2019).

    CAS  PubMed  Article  Google Scholar 

  197. 197.

    Zhang, Z., Zhang, H., Chen, R. & Wang, Z. Oral supplementation with ursolic acid ameliorates sepsis-induced acute kidney injury in a mouse model by inhibiting oxidative stress and inflammatory responses. Mol. Med. Rep. 17, 7142–7148 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. 198.

    Li, H. et al. Atg5-mediated autophagy deficiency in proximal tubules promotes cell cycle G2/M arrest and renal fibrosis. Autophagy 12, 1472–1486 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  199. 199.

    Scarpulla, R. C. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim. Biophys. Acta 1813, 1269–1278 (2011).

    CAS  PubMed  Article  Google Scholar 

  200. 200.

    Higashida, K. et al. Effects of resveratrol and SIRT1 on PGC-1α activity and mitochondrial biogenesis: a reevaluation. PLoS Biol. 11, e1001603 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  201. 201.

    Kitada, M. & Koya, D. Renal protective effects of resveratrol. Oxid. Med. Cell Longev. 2013, 568093 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  202. 202.

    Negishi, K. et al. Renal L-type fatty acid-binding protein mediates the bezafibrate reduction of cisplatin-induced acute kidney injury. Kidney Int. 73, 1374–1384 (2008).

    CAS  PubMed  Article  Google Scholar 

  203. 203.

    Lempiainen, J., Finckenberg, P., Levijoki, J. & Mervaala, E. AMPK activator AICAR ameliorates ischaemia reperfusion injury in the rat kidney. Br. J. Pharmacol. 166, 1905–1915 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  204. 204.

    Shin, Y. J. et al. Protective effects of quercetin against HgCl2-induced nephrotoxicity in Sprague-Dawley rats. J. Med. Food 18, 524–534 (2015).

    CAS  PubMed  Article  Google Scholar 

  205. 205.

    Funk, J. A. & Schnellmann, R. G. Accelerated recovery of renal mitochondrial and tubule homeostasis with SIRT1/PGC-1α activation following ischemia-reperfusion injury. Toxicol. Appl. Pharmacol. 273, 345–354 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  206. 206.

    Hong, Q. et al. Increased podocyte Sirtuin-1 function attenuates diabetic kidney injury. Kidney Int. 93, 1330–1343 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  207. 207.

    Zhong, Y., Lee, K. & He, J. C. SIRT1 is a potential drug target for treatment of diabetic kidney disease. Front. Endocrinol. 9, 624 (2018).

    Article  Google Scholar 

  208. 208.

    Hondares, E. et al. Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coactivator (PGC)-1α gene transcription: an autoregulatory loop controls PGC-1α expression in adipocytes via peroxisome proliferator-activated receptor-γ coactivation. Endocrinology 147, 2829–2838 (2006).

    CAS  PubMed  Article  Google Scholar 

  209. 209.

    Liu, Y. et al. AMP-activated protein kinase mediates the antiplatelet effects of the thiazolidinediones rosiglitazone and pioglitazone. Mol. Pharmacol. 89, 313–321 (2016).

    CAS  PubMed  Article  Google Scholar 

  210. 210.

    Sarafidis, P. A., Stafylas, P. C., Georgianos, P. I., Saratzis, A. N. & Lasaridis, A. N. Effect of thiazolidinediones on albuminuria and proteinuria in diabetes: a meta-analysis. Am. J. Kidney Dis. 55, 835–847 (2010).

    CAS  PubMed  Article  Google Scholar 

  211. 211.

    Sun, L. et al. Pioglitazone improves mitochondrial function in the remnant kidney and protects against renal fibrosis in 5/6 nephrectomized rats. Front. Pharmacol. 8, 545 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  212. 212.

    Chen, W. et al. Pioglitazone protects against renal ischemia-reperfusion injury via the AMP-activated protein kinase-regulated autophagy pathway. Front. Pharmacol. 9, 851 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  213. 213.

    Morrison, M. C. et al. Protective effect of rosiglitazone on kidney function in high-fat challenged human-CRP transgenic mice: a possible role for adiponectin and miR-21? Sci. Rep. 7, 2915 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  214. 214.

    Zhu, C. et al. Mitochondrial dysfunction mediates aldosterone-induced podocyte damage: a therapeutic target of PPARγ. Am. J. Pathol. 178, 2020–2031 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  215. 215.

    Graham, D. J. et al. Risk of acute myocardial infarction, stroke, heart failure, and death in elderly Medicare patients treated with rosiglitazone or pioglitazone. JAMA 304, 411–418 (2010).

    CAS  PubMed  Article  Google Scholar 

  216. 216.

    Arif, E. et al. Mitochondrial biogenesis induced by the β2-adrenergic receptor agonist formoterol accelerates podocyte recovery from glomerular injury. Kidney Int. 96, 656–673 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  217. 217.

    Garrett, S. M., Whitaker, R. M., Beeson, C. C. & Schnellmann, R. G. Agonism of the 5-hydroxytryptamine 1F receptor promotes mitochondrial biogenesis and recovery from acute kidney injury. J. Pharmacol. Exp. Ther. 350, 257–264 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  218. 218.

    Suzuki, T. et al. Mitochonic acid 5 binds mitochondria and ameliorates renal tubular and cardiac myocyte damage. J. Am. Soc. Nephrol. 27, 1925–1932 (2016).

    CAS  PubMed  Article  Google Scholar 

  219. 219.

    Li, W. & Sauve, A. A. NAD+ content and its role in mitochondria. Methods Mol. Biol. 1241, 39–48 (2015).

    CAS  PubMed  Article  Google Scholar 

  220. 220.

    Hershberger, K. A., Martin, A. S. & Hirschey, M. D. Role of NAD+ and mitochondrial sirtuins in cardiac and renal diseases. Nat. Rev. Nephrol. 13, 213–225 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  221. 221.

    Ralto, K. M., Rhee, E. P. & Parikh, S. M. NAD+ homeostasis in renal health and disease. Nat. Rev. Nephrol. 16, 99–111 (2020).

    CAS  PubMed  Article  Google Scholar 

  222. 222.

    Allison, S. J. Targeting NAD+ synthesis to boost mitochondrial function and protect the kidney. Nat. Rev. Nephrol. 15, 1 (2019).

    PubMed  Article  Google Scholar 

  223. 223.

    Poyan Mehr, A. et al. De novo NAD+ biosynthetic impairment in acute kidney injury in humans. Nat. Med. 24, 1351–1359 (2018).

    CAS  PubMed  Article  Google Scholar 

  224. 224.

    Katsyuba, E. et al. De novo NAD+ synthesis enhances mitochondrial function and improves health. Nature 563, 354–359 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  225. 225.

    Zheng, M. et al. Nicotinamide reduces renal interstitial fibrosis by suppressing tubular injury and inflammation. J. Cell Mol. Med. 23, 3995–4004 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  226. 226.

    Liu, J. et al. Cell-specific translational profiling in acute kidney injury. J. Clin. Invest. 124, 1242–1254 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  227. 227.

    Kobayashi, K. et al. Involvement of PARK2-mediated mitophagy in idiopathic pulmonary fibrosis pathogenesis. J. Immunol. 197, 504–516 (2016).

    CAS  PubMed  Article  Google Scholar 

  228. 228.

    Bueno, M. et al. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J. Clin. Invest. 125, 521–538 (2015).

    PubMed  Article  Google Scholar 

  229. 229.

    Larson-Casey, J. L., Deshane, J. S., Ryan, A. J., Thannickal, V. J. & Carter, A. B. Macrophage Akt1 kinase-mediated mitophagy modulates apoptosis resistance and pulmonary fibrosis. Immunity 44, 582–596 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

C.T. and Z.D. researched the data for the article and wrote the manuscript. All authors contributed substantially to discussions of the content and revision of the manuscript before submission.

Corresponding author

Correspondence to Zheng Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Nephrology thanks Rick Schnellmann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Electron transport chain

(ETC). A series of four protein complexes (complex I–IV) embedded in the inner mitochondrial membrane that transfer electrons from electron donors to electron acceptors via redox reactions. This process drives the transfer of protons across the inner mitochondrial membrane to produce ATP.

Hyperfused mitochondria

A network of elongated and highly connected mitochondria, which can result from increased fusion and/or reduced fission, and represent an adaptive response against stress.

Oxidative phosphorylation

(OXPHOS). A metabolic process in which the energy transferred by electrons from electron donors to electron acceptors through the electron transport chain via redox reactions drives the transport of protons across the inner mitochondrial membrane to generate a potential energy gradient. ATP synthase uses this energy to transform ADP into ATP in a phosphorylation reaction.

Fenton reaction

A catalytic process that converts hydrogen peroxide (H2O2) into highly reactive hydroxyl free radicals in the presence of ferrous iron (Fe(II)).

Mitochondrial cristae

Folds of the inner mitochondrial membrane that increase the surface area in which oxidative phosphorylation can occur and thus enhance the capacity of the mitochondrion to synthesize ATP.

Cristae junctions

Narrow, neck-like structures that connect the cristae membranes to the inner mitochondrial membrane. Cristae junctions act as a diffusion barrier that maintains the asymmetric protein composition between the inner mitochondrial membrane and cristae membranes and limits the diffusion of molecules, such as cytochrome c, from the intracristae space into the intermembrane space.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tang, C., Cai, J., Yin, XM. et al. Mitochondrial quality control in kidney injury and repair. Nat Rev Nephrol (2020). https://doi.org/10.1038/s41581-020-00369-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing