Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of sodium in modulating immune cell function

Abstract

Sodium intake is undoubtedly indispensable for normal body functions but can be detrimental when taken in excess of dietary requirements. The consequences of excessive salt intake are becoming increasingly clear as high salt consumption persists across the globe. Salt has long been suspected to promote the development of hypertension and cardiovascular diseases and is now also recognized as a potential modulator of inflammatory and autoimmune diseases through its direct and indirect effects on immune cells. The finding that, in addition to the kidneys, other organs such as the skin regulate sodium levels in the body prompted new hypotheses, including the concept that skin-resident macrophages might participate in tissue sodium regulation through their interactions with lymphatic vessels. Moreover, immune cells such as macrophages and different T cell subsets are found in sodium-rich interstitial microenvironments, where sodium levels modulate their function. Alterations to the intestinal bacterial community induced by excess dietary salt represent another relevant axis whereby salt indirectly modulates immune cell function. Depending on the inflammatory context, sodium might either contribute to protective immunity (for example, by enhancing host responses against cutaneous pathogens) or it might contribute to immune dysregulation and promote the development of cardiovascular and autoimmune diseases.

Key points

  • Salt (sodium chloride) is an important environmental factor that influences various immune cells at biological barriers, including the skin, intestine and kidney.

  • Innate and adaptive immune cells can sense hypertonic sodium in the interstitium, which subsequently affects their differentiation and/or function.

  • Salt-enhanced pro-inflammatory responses may be beneficial for the clearance of invasive pathogens but they might also promote hypertension and chronic immune-mediated diseases.

  • Salt also affects immune cells through its effects on the composition of the gut microbiome.

  • Clinical studies on the role of salt in immune-mediated diseases partly confirm experimental findings, but further investigation is needed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Salt promotes activation of pro-inflammatory macrophages.
Fig. 2: High salt promotes pathogenic TH17 cells and inhibits the suppressive function of Treg cells.
Fig. 3: High salt affects immune cells in different organs.

Similar content being viewed by others

References

  1. Brodin, P. et al. Variation in the human immune system is largely driven by non-heritable influences. Cell 160, 37–47 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Brodin, P. & Davis, M. M. Human immune system variation. Nat. Rev. Immunol. 17, 21–29 (2017).

    CAS  PubMed  Google Scholar 

  3. Bogdanos, D. P. et al. Twin studies in autoimmune disease: genetics, gender and environment. J. Autoimmun. 38, J156–J169 (2012).

    PubMed  Google Scholar 

  4. Glaser, R. & Kiecolt-Glaser, J. K. Stress-induced immune dysfunction: implications for health. Nat. Rev. Immunol. 5, 243–251 (2005).

    CAS  PubMed  Google Scholar 

  5. Dong, T. S. & Gupta, A. Influence of early life, diet, and the environment on the microbiome. Clin. Gastroenterol. Hepatol. 17, 231–242 (2019).

    PubMed  Google Scholar 

  6. Scheiermann, C., Kunisaki, Y. & Frenette, P. S. Circadian control of the immune system. Nat. Rev. Immunol. 13, 190–198 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Leone, V. et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 17, 681–689 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lambrecht, B. N. & Hammad, H. The immunology of the allergy epidemic and the hygiene hypothesis. Nat. Immunol. 18, 1076–1083 (2017).

    CAS  PubMed  Google Scholar 

  9. Christ, A. et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162–175 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kloss, L., Meyer, J. D., Graeve, L. & Vetter, W. Sodium intake and its reduction by food reformulation in the European Union — a review. NFS. Journal 1, 9–19 (2015).

    Google Scholar 

  11. Anderson, C. A. M. et al. Dietary sources of sodium in China, Japan, the United Kingdom, and the United States, women and men aged 40 to 59 years: the INTERMAP study. J. Am. Diet. Assoc. 110, 736–745 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ni Mhurchu, C. et al. Sodium content of processed foods in the United Kingdom: analysis of 44,000 foods purchased by 21,000 households1–3. Am. J. Clin. Nutr. 93, 594–600 (2011).

    PubMed  Google Scholar 

  13. Yu, L. et al. Secular trends in salt and soy sauce intake among Chinese adults, 1997–2011. Int. J. Food Sci. Nutr. 69, 215–222 (2018).

    CAS  PubMed  Google Scholar 

  14. Wiig, H., Luft, F. C. & Titze, J. M. The interstitium conducts extrarenal storage of sodium and represents a third compartment essential for extracellular volume and blood pressure homeostasis. Acta Physiol. 222, e13006 (2018).

    Google Scholar 

  15. Kitada, K. et al. High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation. J. Clin. Invest. 127, 1944–1959 (2017).

    PubMed  PubMed Central  Google Scholar 

  16. Machnik, A. et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat. Med. 15, 545–552 (2009).

    CAS  PubMed  Google Scholar 

  17. Kopp, C. et al. 23Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients. Hypertension 61, 635–640 (2013).

    CAS  PubMed  Google Scholar 

  18. Titze, J. et al. Osmotically inactive skin Na+ storage in rats. Am. J. Physiol. Renal Physiol. 285, F1108–F1117 (2003).

    CAS  Google Scholar 

  19. Titze, J. et al. Internal sodium balance in DOCA-salt rats: a body composition study. Am. J. Physiol. Renal Physiol. 289, F793–F802 (2005).

    CAS  PubMed  Google Scholar 

  20. Titze, J. et al. Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin. Am. J. Physiol. Heart. Circ. Physiol. 287, H203–H208 (2004).

    CAS  PubMed  Google Scholar 

  21. Wiig, H. & Swartz, M. A. Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer. Physiol. Rev. 92, 1005–1060 (2012).

    CAS  PubMed  Google Scholar 

  22. Fischereder, M. et al. Sodium storage in human tissues is mediated by glycosaminoglycan expression. Am. J. Physiol. Renal Physiol. 313, F319–F325 (2017).

    CAS  PubMed  Google Scholar 

  23. Schafflhuber, M. et al. Mobilization of osmotically inactive Na+ by growth and by dietary salt restriction in rats. Am. J. Physiol. Renal Physiol. 292, F1490–F1500 (2007).

    CAS  PubMed  Google Scholar 

  24. Titze, J. et al. Reduced osmotically inactive Na storage capacity and hypertension in the Dahl mode. Am. J. Physiol. Renal Physiol. 283, F134–F141 (2002).

    CAS  PubMed  Google Scholar 

  25. Titze, J. et al. Extrarenal Na+ balance, volume, and blood pressure homeostasis in intact and ovariectomized deoxycorticosterone-acetate salt rats. Hypertension 47, 1101–1107 (2006).

    CAS  PubMed  Google Scholar 

  26. Muller, S. et al. Salt-dependent chemotaxis of macrophages. PLOS ONE 8, e73439 (2013).

    PubMed  PubMed Central  Google Scholar 

  27. Jantsch, J. et al. Cutaneous Na+ storage strengthens the antimicrobial barrier function of the skin and boosts macrophage-driven host defense. Cell Metab. 21, 493–501 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wiig, H. et al. Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J. Clin. Invest. 123, 2803–2815 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Berry, M. R. et al. Renal sodium gradient orchestrates a dynamic antibacterial defense zone. Cell 170, 860–874 (2017).

    CAS  PubMed  Google Scholar 

  30. Kleinewietfeld, M. et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496, 518–522 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu, C. et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 496, 513–517 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wei, Y. et al. High salt diet stimulates gut Th17 response and exacerbates TNBS-induced colitis in mice. Oncotarget 8, 70–82 (2017).

    PubMed  Google Scholar 

  33. Hernandez, A. L. et al. Sodium chloride inhibits the suppressive function of FOXP3+regulatory T cells. J. Clin. Invest. 125, 4212–4222 (2015).

    PubMed  PubMed Central  Google Scholar 

  34. Safa, K. et al. Salt accelerates allograft rejection through serum- and glucocorticoid-regulated kinase-1-dependent inhibition of regulatory T cells. J. Am. Soc. Nephrol. 26, 2341–2347 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Miranda, P. M. et al. High salt diet exacerbates colitis in mice by decreasing Lactobacillus levels and butyrate production. Microbiome 6, 57 (2018).

    PubMed  PubMed Central  Google Scholar 

  36. Wilck, N. et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551, 585–589 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Brown, I. J., Tzoulaki, I., Candeias, V. & Elliott, P. Salt intakes around the world: implications for public health. Int. J. Epidemiol. 38, 791–813 (2009).

    PubMed  Google Scholar 

  38. Mente, A. et al. Association of urinary sodium and potassium excretion with blood pressure. N. Engl. J. Med. 371, 601–611 (2014).

    PubMed  Google Scholar 

  39. He, F. J. & MacGregor, G. A. Role of salt intake in prevention of cardiovascular disease: controversies and challenges. Nat. Rev. Cardiol. 15, 371–377 (2018).

    PubMed  Google Scholar 

  40. Mozaffarian, D. et al. Global sodium consumption and death from cardiovascular causes. N. Engl. J. Med. 371, 624–634 (2014).

    PubMed  Google Scholar 

  41. Norlander, A. E., Madhur, M. S. & Harrison, D. G. The immunology of hypertension. J. Exp. Med. 215, 21–33 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Farez, M. F., Fiol, M. P., Gaitan, M. I., Quintana, F. J. & Correale, J. Sodium intake is associated with increased disease activity in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 86, 26–31 (2015).

    PubMed  Google Scholar 

  43. Fitzgerald, K. C. et al. Sodium intake and multiple sclerosis activity and progression in BENEFIT. Ann. Neurol. 82, 20–29 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Muller, D. N., Wilck, N., Haase, S., Kleinewietfeld, M. & Linker, R. A. Sodium in the microenvironment regulates immune responses and tissue homeostasis. Nat. Rev. Immunol. 19, 243–254 (2019).

    PubMed  Google Scholar 

  45. Junger, W. G., Liu, F. C., Loomis, W. H. & Hoyt, D. B. Hypertonic saline enhances cellular immune function. Circ. Shock 42, 190–196 (1994).

    CAS  PubMed  Google Scholar 

  46. Shapiro, L. & Dinarello, C. A. Osmotic regulation of cytokine synthesis in vitro. Proc. Natl Acad. Sci. USA 92, 12230–12234 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ip, W. K. & Medzhitov, R. Macrophages monitor tissue osmolarity and induce inflammatory response through NLRP3 and NLRC4 inflammasome activation. Nat. Commun. 6, 6931 (2015).

    CAS  PubMed  Google Scholar 

  48. Binger, K. J. et al. High salt reduces the activation of IL-4- and IL-13-stimulated macrophages. J. Clin. Invest. 125, 4223–4238 (2015).

    PubMed  PubMed Central  Google Scholar 

  49. Byles, V. et al. The TSC-mTOR pathway regulates macrophage polarization. Nat. Commun. 4, 2834 (2013).

    PubMed  Google Scholar 

  50. Huber, S., Hoffmann, R., Muskens, F. & Voehringer, D. Alternatively activated macrophages inhibit T cell proliferation by Stat6-dependent expression of PD-L2. Blood 116, 3311–3320 (2010).

    CAS  PubMed  Google Scholar 

  51. Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, W. C. et al. High salt primes a specific activation state of macrophages, M(Na). Cell Res. 25, 893–910 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hucke, S. et al. Sodium chloride promotes pro-inflammatory macrophage polarization thereby aggravating CNS autoimmunity. J. Autoimmun. 67, 90–101 (2016).

    CAS  PubMed  Google Scholar 

  54. Pennock, N. D. et al. T cell responses: naive to memory and everything in between. Adv. Physiol. Educ. 37, 273–283 (2013).

    PubMed  PubMed Central  Google Scholar 

  55. Steinman, L. A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat. Med. 13, 139–145 (2007).

    CAS  PubMed  Google Scholar 

  56. Kaiko, G. E., Horvat, J. C., Beagley, K. W. & Hansbro, P. M. Immunological decision-making: how does the immune system decide to mount a helper T cell response? Immunology 123, 326–338 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ivanov, I. I. et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+T helper cells. Cell 126, 1121–1133 (2006).

    CAS  PubMed  Google Scholar 

  58. Coccia, M. et al. IL-1beta mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4+ Th17 cells. J. Exp. Med. 209, 1595–1609 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. McGeachy, M. J. et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat. Immunol. 10, 314–324 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Haghikia, A. et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 43, 817–829 (2015).

    CAS  PubMed  Google Scholar 

  61. Atarashi, K. et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163, 367–380 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sano, T. et al. An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses. Cell 163, 381–393 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ladinsky, M. S. et al. Endocytosis of commensal antigens by intestinal epithelial cells regulates mucosal T cell homeostasis. Science 363, eaat4042 (2019).

    PubMed  PubMed Central  Google Scholar 

  65. Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453, 106–109 (2008).

    CAS  PubMed  Google Scholar 

  66. Vallon, V. et al. SGK1 as a determinant of kidney function and salt intake in response to mineralocorticoid excess. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R395–R401 (2005).

    CAS  PubMed  Google Scholar 

  67. Chen, S. et al. Tonicity-dependent induction of Sgk1 expression has a potential role in dehydration-induced natriuresis in rodents. J. Clin. Invest. 119, 1647–1658 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Krementsov, D. N., Case, L. K., Hickey, W. F. & Teuscher, C. Exacerbation of autoimmune neuroinflammation by dietary sodium is genetically controlled and sex specific. FASEB J. 29, 3446–3457 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Markle, J. G. et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339, 1084–1088 (2013).

    CAS  PubMed  Google Scholar 

  70. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    CAS  PubMed  Google Scholar 

  71. Onishi, Y., Fehervari, Z., Yamaguchi, T. & Sakaguchi, S. Foxp3+natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc. Natl Acad. Sci. USA 105, 10113–10118 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Schmidt, A., Oberle, N. & Krammer, P. H. Molecular mechanisms of treg-mediated T cell suppression. Front. Immunol. 3, 51 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Shevach, E. M. Mechanisms of foxp3+T regulatory cell-mediated suppression. Immunity 30, 636–645 (2009).

    CAS  PubMed  Google Scholar 

  74. Crome, S. Q. et al. Inflammatory effects of ex vivo human Th17 cells are suppressed by regulatory T cells. J. Immunol. 185, 3199–3208 (2010).

    CAS  PubMed  Google Scholar 

  75. Luo, Y. et al. Negligible effect of sodium chloride on the development and function of TGF-beta-induced CD4+ Foxp3+ regulatory T cells. Cell Rep. 26, 1869–1879 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Aguiar, S. L. F. et al. High-salt diet induces IL-17-dependent gut inflammation and exacerbates colitis in mice. Front. Immunol. 8, 1969 (2017).

    PubMed  Google Scholar 

  77. Monteleone, I. et al. Sodium chloride-enriched diet enhanced inflammatory cytokine production and exacerbated experimental colitis in mice. J. Crohns Colitis 11, 237–245 (2017).

    PubMed  Google Scholar 

  78. Faraco, G. et al. Dietary salt promotes neurovascular and cognitive dysfunction through a gut-initiated TH17 response. Nat. Neurosci. 21, 240–249 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Matthias, J. et al. Sodium chloride is an ionic checkpoint for human TH2 cells and shapes the atopic skin microenvironment. Sci. Transl Med. 11, eaau0683 (2019).

    CAS  PubMed  Google Scholar 

  80. Belkaid, Y. & Harrison, O. J. Homeostatic immunity and the microbiota. Immunity 46, 562–576 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).

    CAS  PubMed  Google Scholar 

  82. Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

    CAS  PubMed  Google Scholar 

  83. Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).

    CAS  PubMed  Google Scholar 

  84. Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl Acad. Sci. USA 104, 13780–13785 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Turnbaugh, P. J. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl Med. 1, 6ra14 (2009).

    PubMed  PubMed Central  Google Scholar 

  86. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    CAS  PubMed  Google Scholar 

  87. Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).

    PubMed  Google Scholar 

  88. Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).

    CAS  PubMed  Google Scholar 

  89. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L. & Gordon, J. I. Human nutrition, the gut microbiome and the immune system. Nature 474, 327–336 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Zelante, T. et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39, 372–385 (2013).

    CAS  PubMed  Google Scholar 

  92. Lamas, B. et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 22, 598–605 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Laurans, L. et al. Genetic deficiency of indoleamine 2,3-dioxygenase promotes gut microbiota-mediated metabolic health. Nat. Med. 24, 1113–1120 (2018).

    CAS  PubMed  Google Scholar 

  94. Wang, C. et al. High-salt diet has a certain impact on protein digestion and gut microbiota: a sequencing and proteome combined study. Front. Microbiol. 8, 1838 (2017).

    PubMed  PubMed Central  Google Scholar 

  95. Kurdi, A. T. et al. Tiam1/Rac1 complex controls Il17a transcription and autoimmunity. Nat. Commun. 7, 13048 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Shen, F. & Gaffen, S. L. Structure-function relationships in the IL-17 receptor: implications for signal transduction and therapy. Cytokine 41, 92–104 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kotla, S., Singh, N. K., Heckle, M. R., Tigyi, G. J. & Rao, G. N. The transcription factor CREB enhances interleukin-17A production and inflammation in a mouse model of atherosclerosis. Sci. Signal 6, ra83 (2013).

    PubMed  PubMed Central  Google Scholar 

  98. Chang, P. V., Hao, L., Offermanns, S. & Medzhitov, R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl Acad. Sci. USA 111, 2247–2252 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T cell generation. Nature 504, 451–455 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Stamler, J. The INTERSALT study: background, methods, findings, and implications. Am. J. Clin. Nutr. 65, 626S–642S (1997).

    CAS  PubMed  Google Scholar 

  101. O’Donnell, M. et al. Urinary sodium and potassium excretion, mortality, and cardiovascular events. N. Engl. J. Med. 371, 612–623 (2014).

    PubMed  Google Scholar 

  102. Itani, H. A. et al. CD70 exacerbates blood pressure elevation and renal damage in response to repeated hypertensive stimuli. Circ. Res. 118, 1233–1243 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. De Miguel, C., Das, S., Lund, H. & Mattson, D. L. T lymphocytes mediate hypertension and kidney damage in Dahl salt-sensitive rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R1136–R1142 (2010).

    PubMed  PubMed Central  Google Scholar 

  104. Mattson, D. L. et al. Genetic mutation of recombination activating gene 1 in Dahl salt-sensitive rats attenuates hypertension and renal damage. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304, R407–R414 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Rodriguez-Iturbe, B. et al. Mycophenolate mofetil prevents salt-sensitive hypertension resulting from angiotensin II exposure. Kidney Int. 59, 2222–2232 (2001).

    CAS  PubMed  Google Scholar 

  106. Luft, F. C., Dechend, R. & Muller, D. N. Immune mechanisms in angiotensin II-induced target-organ damage. Ann. Med. 44 (Suppl. 1), S49–S54 (2012).

    CAS  PubMed  Google Scholar 

  107. Rucker, A. J., Rudemiller, N. P. & Crowley, S. D. Salt, hypertension, and immunity. Annu. Rev. Physiol. 80, 283–307 (2018).

    CAS  PubMed  Google Scholar 

  108. Wenzel, P. et al. Lysozyme M-positive monocytes mediate angiotensin II-induced arterial hypertension and vascular dysfunction. Circulation 124, 1370–1381 (2011).

    CAS  PubMed  Google Scholar 

  109. De Ciuceis, C. et al. Reduced vascular remodeling, endothelial dysfunction, and oxidative stress in resistance arteries of angiotensin II-infused macrophage colony-stimulating factor-deficient mice: evidence for a role in inflammation in angiotensin-induced vascular injury. Arterioscler. Thromb. Vasc. Biol. 25, 2106–2113 (2005).

    PubMed  Google Scholar 

  110. Ko, E. A. et al. Resistance artery remodeling in deoxycorticosterone acetate-salt hypertension is dependent on vascular inflammation: evidence from m-CSF-deficient mice. Am. J. Physiol. Heart Circ. Physiol. 292, H1789–H1795 (2007).

    CAS  PubMed  Google Scholar 

  111. Lankhorst, S. et al. Salt sensitivity of angiogenesis inhibition-induced blood pressure rise: role of interstitial sodium accumulation? Hypertension 69, 919–926 (2017).

    CAS  PubMed  Google Scholar 

  112. Machnik, A. et al. Mononuclear phagocyte system depletion blocks interstitial tonicity-responsive enhancer binding protein/vascular endothelial growth factor C expression and induces salt-sensitive hypertension in rats. Hypertension 55, 755–761 (2010).

    CAS  PubMed  Google Scholar 

  113. Guzik, T. J. et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J. Exp. Med. 204, 2449–2460 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Pons, H. et al. Immune reactivity to heat shock protein 70 expressed in the kidney is cause of salt-sensitive hypertension. Am. J. Physiol. Renal Physiol. 304, F289–F299 (2013).

    CAS  PubMed  Google Scholar 

  115. Kirabo, A. et al. DC isoketal-modified proteins activate T cells and promote hypertension. J. Clin. Invest. 124, 4642–4656 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Trott, D. W. et al. Oligoclonal CD8+T cells play a critical role in the development of hypertension. Hypertension 64, 1108–1115 (2014).

    CAS  PubMed  Google Scholar 

  117. McDonnell, W. J. et al. High CD8 T-cell receptor clonality and altered CDR3 properties are associated with elevated isolevuglandins in adipose tissue during diet-induced obesity. Diabetes 67, 2361–2376 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Youn, J. C. et al. Immunosenescent CD8+T cells and C-X-C chemokine receptor type 3 chemokines are increased in human hypertension. Hypertension 62, 126–133 (2013).

    CAS  PubMed  Google Scholar 

  119. Liu, Y. et al. CD8+ T cells stimulate Na-Cl co-transporter NCC in distal convoluted tubules leading to salt-sensitive hypertension. Nat. Commun. 8, 14037 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Madhur, M. S. et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension 55, 500–507 (2010).

    CAS  PubMed  Google Scholar 

  121. Kamat, N. V. et al. Renal transporter activation during angiotensin-II hypertension is blunted in interferon-gamma−/− and interleukin-17A−/− mice. Hypertension 65, 569–576 (2015).

    CAS  PubMed  Google Scholar 

  122. Norlander, A. E. et al. Interleukin-17A regulates renal sodium transporters and renal injury in angiotensin II-induced hypertension. Hypertension 68, 167–174 (2016).

    CAS  PubMed  Google Scholar 

  123. Norlander, A. E. et al. A salt-sensing kinase in T lymphocytes, SGK1, drives hypertension and hypertensive end-organ damage. JCI insight 2, 92801 (2017).

    PubMed  Google Scholar 

  124. Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162–174 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Shah, K. H. et al. Myeloid suppressor cells accumulate and regulate blood pressure in hypertension. Circ. Res. 117, 858–869 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Vinh, A. et al. Inhibition and genetic ablation of the B7/CD28 T cell costimulation axis prevents experimental hypertension. Circulation 122, 2529–2537 (2010).

    PubMed  PubMed Central  Google Scholar 

  127. Barbaro, N. R. et al. Dendritic cell amiloride-sensitive channels mediate sodium-induced inflammation and hypertension. Cell Rep. 21, 1009–1020 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Yi, B. et al. Effects of dietary salt levels on monocytic cells and immune responses in healthy human subjects: a longitudinal study. Transl Res. 166, 103–110 (2015).

    CAS  PubMed  Google Scholar 

  129. Zhou, X. et al. Variation in dietary salt intake induces coordinated dynamics of monocyte subsets and monocyte-platelet aggregates in humans: implications in end organ inflammation. PLOS ONE 8, e60332 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Luo, T. et al. Th17/Treg imbalance induced by dietary salt variation indicates inflammation of target organs in humans. Sci. Rep. 6, 26767 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Rakova, N. et al. Long-term space flight simulation reveals infradian rhythmicity in human Na+ balance. Cell Metab. 17, 125–131 (2013).

    CAS  PubMed  Google Scholar 

  132. Lerchl, K. et al. Agreement between 24-hour salt ingestion and sodium excretion in a controlled environment. Hypertension 66, 850–857 (2015).

    CAS  PubMed  Google Scholar 

  133. McDonald, J. et al. A case-control study of dietary salt intake in pediatric-onset multiple sclerosis. Mult. Scler. Relat. Disord. 6, 87–92 (2016).

    PubMed  PubMed Central  Google Scholar 

  134. Nourbakhsh, B. et al. Dietary salt intake and time to relapse in paediatric multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 87, 1350–1353 (2016).

    PubMed  Google Scholar 

  135. McLean, R. M. et al. Assessment of dietary sodium intake using a food frequency questionnaire and 24-hour urinary sodium excretion: a systematic literature review. J. Clin. Hypertens. 19, 1214–1230 (2017).

    Google Scholar 

  136. Salgado, E., Bes-Rastrollo, M., de Irala, J., Carmona, L. & Gomez-Reino, J. J. High sodium intake is associated with self-reported rheumatoid arthritis: a cross sectional and case control analysis within the SUN cohort. Medicine 94, e924 (2015).

    Google Scholar 

  137. Jiang, X. et al. High sodium chloride consumption enhances the effects of smoking but does not interact with SGK1 polymorphisms in the development of ACPA-positive status in patients with RA. Ann. Rheum. Dis. 75, 943–946 (2016).

    CAS  PubMed  Google Scholar 

  138. Sundstrom, B., Johansson, I. & Rantapaa-Dahlqvist, S. Interaction between dietary sodium and smoking increases the risk for rheumatoid arthritis: results from a nested case-control study. Rheumatology 54, 487–493 (2015).

    PubMed  Google Scholar 

  139. Marouen, S. et al. Sodium excretion is higher in patients with rheumatoid arthritis than in matched controls. PLOS ONE 12, e0186157 (2017).

    PubMed  PubMed Central  Google Scholar 

  140. Khalili, H. et al. Identification and characterization of a novel association between dietary potassium and risk of Crohn’s disease and ulcerative colitis. Front. Immunol. 7, 554 (2016).

    PubMed  PubMed Central  Google Scholar 

  141. Schmieder, R. E. Dietary salt intake and left ventricular hypertrophy. Nephrol. Dial. Transplant. 12, 245–248 (1997).

    CAS  PubMed  Google Scholar 

  142. Jin, Y. et al. Independent relations of left ventricular structure with the 24-hour urinary excretion of sodium and aldosterone. Hypertension 54, 489–495 (2009).

    CAS  PubMed  Google Scholar 

  143. Rodriguez, C. J. et al. Association of sodium and potassium intake with left ventricular mass: coronary artery risk development in young adults. Hypertension 58, 410–416 (2011).

    CAS  PubMed  Google Scholar 

  144. Farquhar, W. B., Edwards, D. G., Jurkovitz, C. T. & Weintraub, W. S. Dietary sodium and health: more than just blood pressure. J. Am. Coll. Cardiol. 65, 1042–1050 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Elijovich, F. et al. Salt sensitivity of blood pressure: a scientific statement from the American Heart Association. Hypertension 68, e7–e46 (2016).

    CAS  PubMed  Google Scholar 

  146. Kurtz, T. W., DiCarlo, S. E., Pravenec, M. & Morris, R. C. Jr. An appraisal of methods recently recommended for testing salt sensitivity of blood pressure. J. Am. Heart Assoc. 6, e005653 (2017).

    PubMed  PubMed Central  Google Scholar 

  147. Kotchen, T. A., Cowley, A. W. Jr & Frohlich, E. D. Salt in health and disease—a delicate balance. N. Engl. J. Med. 368, 1229–1237 (2013).

    CAS  PubMed  Google Scholar 

  148. Luft, F. C. & Weinberger, M. H. Heterogeneous responses to changes in dietary salt intake: the salt-sensitivity paradigm. Am. J. Clin. Nutr. 65, 612S–617S (1997).

    CAS  PubMed  Google Scholar 

  149. Weinberger, M. H. Salt sensitivity of blood pressure in humans. Hypertension 27, 481–490 (1996).

    CAS  PubMed  Google Scholar 

  150. Johnson, R. J., Herrera-Acosta, J., Schreiner, G. F. & Rodriguez-Iturbe, B. Subtle acquired renal injury as a mechanism of salt-sensitive hypertension. N. Engl. J. Med. 346, 913–923 (2002).

    CAS  PubMed  Google Scholar 

  151. Luzardo, L., Noboa, O. & Boggia, J. Mechanisms of salt-sensitive hypertension. Curr. Hypertens. Rev. 11, 14–21 (2015).

    CAS  PubMed  Google Scholar 

  152. Itani, H. A. et al. Activation of human T cells in hypertension: studies of humanized mice and hypertensive humans. Hypertension 68, 123–132 (2016).

    CAS  PubMed  Google Scholar 

  153. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    CAS  PubMed  Google Scholar 

  154. Ridker, P. M. et al. Low-dose methotrexate for the prevention of atherosclerotic events. N. Engl. J. Med. 380, 752–762 (2019).

    CAS  PubMed  Google Scholar 

  155. Dalekos, G. N., Elisaf, M., Bairaktari, E., Tsolas, O. & Siamopoulos, K. C. Increased serum levels of interleukin-1beta in the systemic circulation of patients with essential hypertension: additional risk factor for atherogenesis in hypertensive patients? J. Lab. Clin. Med. 129, 300–308 (1997).

    CAS  PubMed  Google Scholar 

  156. Dorffel, Y. et al. Preactivated peripheral blood monocytes in patients with essential hypertension. Hypertension 34, 113–117 (1999).

    CAS  PubMed  Google Scholar 

  157. Schneider, M. P. et al. Skin sodium concentration correlates with left ventricular hypertrophy in CKD. J. Am. Soc. Nephrol. 28, 1867–1876 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Hammon, M. et al. 3 Tesla 23Na magnetic resonance imaging during acute kidney injury. Acad. Radiol. 24, 1086–1093 (2017).

    PubMed  Google Scholar 

  159. Dahlmann, A. et al. Magnetic resonance-determined sodium removal from tissue stores in hemodialysis patients. Kidney Int. 87, 434–441 (2015).

    CAS  PubMed  Google Scholar 

  160. Hammon, M. et al. 23Na magnetic resonance imaging of the lower leg of acute heart failure patients during diuretic treatment. PLOS ONE 10, e0141336 (2015).

    PubMed  PubMed Central  Google Scholar 

  161. Kopp, C. et al. Na+ deposition in the fibrotic skin of systemic sclerosis patients detected by 23Na-magnetic resonance imaging. Rheumatology 56, 556–560 (2017).

    CAS  PubMed  Google Scholar 

  162. Colonna, M. Innate lymphoid cells: diversity, plasticity, and unique functions in immunity. Immunity 48, 1104–1117 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Constantinides, M. G., McDonald, B. D., Verhoef, P. A. & Bendelac, A. A committed precursor to innate lymphoid cells. Nature 508, 397–401 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank E. G. Avery (Max Delbruck Center for Molecular Medicine, Berlin, Germany) for critically reviewing the manuscript before submission. N.W. is funded by the Berlin Institute of Health (Clinician Scientist Program), Berlin, Germany.

Peer review information

Nature Reviews Nephrology thanks A. Kirabo, P. Mehrotra and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

N.W. and D.N.M. researched the data and wrote the article with major input from H.B., L.M. and A.B. All authors discussed the content, reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Dominik N. Müller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Western diet

Diet characterized, for example, by the consumption of high amounts of red meat, dairy products, sugars, unsaturated fats and salt (typically consumed in pre-processed foods).

Glycosaminoglycans

(GAGs). Linear, negatively charged carbohydrates, often bound to glycoproteins in the extracellular matrix, where they determine the biomechanical properties of the interstitial space.

Intestinal microbiome

Collective genomes of the community of intestinal microorganisms, which include bacteria, viruses and fungi.

Acute cellulitis

Acute bacterial infection of the skin affecting the dermis and adjacent subcutaneous fat.

Osmolytes

Osmotically active particles (for example, ions or proteins) that are dissolved in the cytosol and the extracellular fluid and affect cell volume and other cellular processes.

Hypertonicity

A state in which the extracellular space contains more solutes than the cytosol.

Naive T cells

Mature T cells (helper T cells or cytotoxic T cells) that have not encountered their cognate antigens in peripheral tissues.

16S ribosomal RNA (rRNA) sequencing

Sequencing of the 16S rRNA amplicon, a common, culture-independent method used to identify and compare bacterial phylogeny and taxonomy in a microbial sample.

Essential hypertension

Chronic elevation of blood pressure in the systemic circulation that cannot be assigned to an identifiable cause; also known as primary or idiopathic hypertension, it affects approximately 90% of all patients with high blood pressure.

Isoketal-modified proteins

Proteins oxidatively modified by highly reactive γ-ketoaldehydes (also referred to as isoketals, formed by peroxidation of arachidonic acid induced by free radicals). Isoketals adduct to lysine residues on proteins and extensively crosslink proteins.

Subpressor dose

Low dose of a given substance that leads to an increase in blood pressure.

Clinically isolated syndrome

A single episode of neurological symptoms and inflammatory demyelination in humans that is isolated in time and compatible with a possible future development of multiple sclerosis.

23Na MRI

Non-invasive method for imaging of tissue sodium using the nuclear magnetic resonance signal of sodium nuclei; quantification is performed by placing phantoms of known sodium concentration within the field of view.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilck, N., Balogh, A., Markó, L. et al. The role of sodium in modulating immune cell function. Nat Rev Nephrol 15, 546–558 (2019). https://doi.org/10.1038/s41581-019-0167-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-019-0167-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing