Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Mini Review
  • Published:

Skin regulation of salt and blood pressure and potential clinical implications

Abstract

Sodium chloride, as salt, gives rise to hypertension. Nevertheless, individual susceptibility to the ramifications of sodium chloride is heterogeneous. The conventional nephron-centric regulation of sodium with neurohormonal inputs and responses is now expanded to include an intricate extrarenal pathway including the endothelium, skin, lymphatics, and immune cells. An overabundance of sodium is buffered and regulated by the skin interstitium. Excess sodium passes through (and damages) the vascular endothelium and can be dynamically stored in the skin, modulated by skin immune cells and lymphatics. This excess interstitially stored sodium is implicated in hypertension, cardiovascular dysfunction, metabolic disruption, and inflammatory dysregulation. This extrarenal pathway of regulating sodium represents a novel target for better blood pressure management, rebalancing disturbed inflammation, and hence addressing cardiovascular and metabolic disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2224–60.

    Article  Google Scholar 

  2. World Health Organization. A global brief on hypertension: silent killer, global public health crisis. 2013.

  3. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2019). Hypertens Res. 2019;42:1235–481.

    Article  Google Scholar 

  4. Adrogue HJ, Madias NE. Sodium and potassium in the pathogenesis of hypertension. N Engl J Med. 2007;356:1966–78.

    Article  CAS  Google Scholar 

  5. Stamler J. The INTERSALT study: background, methods, findings, and implications. Am J Clin Nutr. 1997;65:626S–42S.

    Article  CAS  Google Scholar 

  6. Erdem Y, Arici M, Altun B, Turgan C, Sindel S, Erbay B, et al. The relationship between hypertension and salt intake in Turkish population: SALTURK study. Blood Press. 2010;19:313–8.

    Article  CAS  Google Scholar 

  7. Kim HJ, Paik HY, Lee SY, Shim JE, Kim YS. Salt usage behaviors are related to urinary sodium excretion in normotensive Korean adults. Asia Pac J Clin Nutr. 2007;16:122–8.

    Google Scholar 

  8. Collaborators GBDRF. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390:1345–422.

    Article  Google Scholar 

  9. Guideline: sodium intake for adults and children. WHO Guidelines Approved by the Guidelines Review Committee. Geneva 2012.

  10. Mozaffarian D, Fahimi S, Singh GM, Micha R, Khatibzadeh S, Engell RE, et al. Global sodium consumption and death from cardiovascular causes. N Engl J Med. 2014;371:624–34.

    Article  Google Scholar 

  11. Powles J, Fahimi S, Micha R, Khatibzadeh S, Shi P, Ezzati M, et al. Global, regional and national sodium intakes in 1990 and 2010: a systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. BMJ Open 2013;3:e003733.

    Article  Google Scholar 

  12. Kawasaki T, Delea CS, Bartter FC, Smith H. The effect of high-sodium and low-sodium intakes on blood pressure and other related variables in human subjects with idiopathic hypertension. Am J Med. 1978;64:193–8.

    Article  CAS  Google Scholar 

  13. Morimoto A, Uzu T, Fujii T, Nishimura M, Kuroda S, Nakamura S, et al. Sodium sensitivity and cardiovascular events in patients with essential hypertension. Lancet. 1997;350:1734–7.

    Article  CAS  Google Scholar 

  14. Weinberger MH, Fineberg NS, Fineberg SE, Weinberger M. Salt sensitivity, pulse pressure, and death in normal and hypertensive humans. Hypertension. 2001;37:429–32.

    Article  CAS  Google Scholar 

  15. Sullivan JM. Salt sensitivity. Definition, conception, methodology, and long-term issues. Hypertension. 1991;17:I61–8.

    Article  CAS  Google Scholar 

  16. Guyton AC. Blood pressure control-special role of the kidneys and body fluids. Science. 1991;252:1813–6.

    Article  CAS  Google Scholar 

  17. Hall JE, Guyton AC, Brands MW. Pressure-volume regulation in hypertension. Kidney Int Suppl. 1996;55:S35–41.

    CAS  Google Scholar 

  18. Selvarajah V, Connolly K, McEniery C, Wilkinson I. Skin sodium and hypertension: a paradigm shift? Curr Hypertens Rep. 2018;20:94.

    Article  Google Scholar 

  19. Qian Q. Salt, water and nephron: mechanisms of action and link to hypertension and chronic kidney disease. Nephrology. 2018;23:44–9.

    Article  CAS  Google Scholar 

  20. Choe KY, Han SY, Gaub P, Shell B, Voisin DL, Knapp BA, et al. High salt intake increases blood pressure via BDNF-mediated downregulation of KCC2 and impaired baroreflex inhibition of vasopressin neurons. Neuron. 2015;85:549–60.

    Article  CAS  Google Scholar 

  21. Kim YB, Kim YS, Kim WB, Shen FY, Lee SW, Chung HJ, et al. GABAergic excitation of vasopressin neurons: possible mechanism underlying sodium-dependent hypertension. Circ Res. 2013;113:1296–307.

    Article  CAS  Google Scholar 

  22. Rakova N, Juttner K, Dahlmann A, Schroder A, Linz P, Kopp C, et al. Long-term space flight simulation reveals infradian rhythmicity in human Na(+) balance. Cell Metab. 2013;17:125–31.

    Article  CAS  Google Scholar 

  23. Kitada K, Daub S, Zhang Y, Klein JD, Nakano D, Pedchenko T, et al. High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation. J Clin Investig. 2017;127:1944–59.

    Article  Google Scholar 

  24. Wild J, Jung R, Knopp T, Efentakis P, Benaki D, Grill A, et al. Aestivation motifs explain hypertension and muscle mass loss in mice with psoriatic skin barrier defect. Acta Physiol. 2021;232:e13628.

    Article  CAS  Google Scholar 

  25. Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell. 2001;104:545–56.

    Article  CAS  Google Scholar 

  26. Morris RC Jr, Schmidlin O, Sebastian A, Tanaka M, Kurtz TW. Vasodysfunction that involves renal vasodysfunction, not abnormally increased renal retention of sodium, accounts for the initiation of salt-induced hypertension. Circulation. 2016;133:881–93.

    Article  Google Scholar 

  27. Li C, He J, Chen J, Zhao J, Gu D, Hixson JE, et al. Genome-wide gene-sodium interaction analyses on blood pressure: the Genetic Epidemiology Network of Salt-Sensitivity Study. Hypertension. 2016;68:348–55.

    Article  CAS  Google Scholar 

  28. He FJ, Markandu ND, Sagnella GA, de Wardener HE, MacGregor GA. Plasma sodium: ignored and underestimated. Hypertension. 2005;45:98–102.

    Article  CAS  Google Scholar 

  29. Streeten DH, Rapoport A, Conn JW. Existence of a slowly exchangeable pool of body sodium in normal subjects and its diminution in patients with primary aldosteronism. J Clin Endocrinol Metab. 1963;23:928–37.

    Article  CAS  Google Scholar 

  30. Canaud B, Kooman J, Selby NM, Taal M, Francis S, Kopperschmidt P, et al. Sodium and water handling during hemodialysis: new pathophysiologic insights and management approaches for improving outcomes in end-stage kidney disease. Kidney Int. 2019;95:296–309.

    Article  CAS  Google Scholar 

  31. Ellison DH, Welling P. Insights into salt handling and blood pressure. N Engl J Med. 2021;385:1981–93.

    Article  CAS  Google Scholar 

  32. Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG. The endothelial glycocalyx: composition, functions, and visualization. Pflug Arch. 2007;454:345–59.

    Article  CAS  Google Scholar 

  33. du Cailar G, Mimran A, Fesler P, Ribstein J, Blacher J, Safar ME. Dietary sodium and pulse pressure in normotensive and essential hypertensive subjects. J Hypertens. 2004;22:697–703.

    Article  Google Scholar 

  34. Olde Engberink RH, Rorije NM, Homan van der Heide JJ, van den Born BJ, Vogt L. Role of the vascular wall in sodium homeostasis and salt sensitivity. J Am Soc Nephrol. 2015;26:777–83.

    Article  CAS  Google Scholar 

  35. Oberleithner HK-VK, Schillers H. Endothelial cells as vascular salt sensors. Kidney Int. 2010;77:490–4.

    Article  CAS  Google Scholar 

  36. Schierke F, Wyrwoll MJ, Wisdorf M, Niedzielski L, Maase M, Ruck T, et al. Nanomechanics of the endothelial glycocalyx contribute to Na(+)-induced vascular inflammation. Sci Rep. 2017;7:46476.

    Article  CAS  Google Scholar 

  37. Tobin DJ. Biochemistry of human skin-our brain on the outside. Chem Soc Rev. 2006;35:52–67.

    Article  CAS  Google Scholar 

  38. Fischereder MMB, Schmockel E, Habicht A, Kunisch R, Pavelic I, et al. Sodium storage in human tissues is mediated by glycosamino- glycan expression. Am J Physiol Ren Physiol. 2017;313:F319–F25.

    Article  CAS  Google Scholar 

  39. Titze J, Shakibaei M, Schafflhuber M, Schulze-Tanzil G, Porst M, Schwind KH, et al. Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin. Am J Physiol Heart Circ Physiol. 2004;287:H203–8.

    Article  CAS  Google Scholar 

  40. Kopp C, Linz P, Dahlmann A, Hammon M, Jantsch J, Muller DN, et al. 23Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients. Hypertension. 2013;61:635–40.

    Article  CAS  Google Scholar 

  41. Fischereder M, Michalke B, Schmockel E, Habicht A, Kunisch R, Pavelic I, et al. Sodium storage in human tissues is mediated by glycosaminoglycan expression. Am J Physiol Ren Physiol. 2017;313:F319–F25.

    Article  CAS  Google Scholar 

  42. Rossitto G, Mary S, Chen JY, Boder P, Chew KS, Neves KB, et al. Tissue sodium excess is not hypertonic and reflects extracellular volume expansion. Nat Commun. 2020;11:4222.

    Article  CAS  Google Scholar 

  43. Bhave G, Neilson EG. Body fluid dynamics: back to the future. J Am Soc Nephrol. 2011;22:2166–81.

    Article  CAS  Google Scholar 

  44. Rossitto G, Delles C. Mechanisms of sodium-mediated injury in cardiovascular disease: old play, new scripts. FEBS J. 2021. [online ahead of print]

  45. Laffer CL, Scott RC 3rd, Titze JM, Luft FC, Elijovich F. Hemodynamics and salt-and-water balance link sodium storage and vascular dysfunction in salt-sensitive subjects. Hypertension. 2016;68:195–203.

    Article  CAS  Google Scholar 

  46. Rossitto G, Touyz RM, Petrie MC, Delles C. Much Ado about N…atrium: modelling tissue sodium as a highly sensitive marker of subclinical and localized oedema. Clin Sci. 2018;132:2609–13.

    Article  CAS  Google Scholar 

  47. Nikpey E, Karlsen TV, Rakova N, Titze JM, Tenstad O, Wiig H. High-salt diet causes osmotic gradients and hyperosmolality in skin without affecting interstitial fluid and lymph. Hypertension. 2017;69:660–8.

    Article  CAS  Google Scholar 

  48. Hofmeister LH, Perisic S, Titze J. Tissue sodium storage: evidence for kidney-like extrarenal countercurrent systems? Pflug Arch. 2015;467:551–8.

    Article  CAS  Google Scholar 

  49. Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T, Machura K, et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med. 2009;15:545–52.

    Article  CAS  Google Scholar 

  50. Wiig H, Schroder A, Neuhofer W, Jantsch J, Kopp C, Karlsen TV, et al. Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J Clin Investig. 2013;123:2803–15.

    Article  CAS  Google Scholar 

  51. Machnik A, Dahlmann A, Kopp C, Goss J, Wagner H, van Rooijen N, et al. Mononuclear phagocyte system depletion blocks interstitial tonicity-responsive enhancer binding protein/vascular endothelial growth factor C expression and induces salt-sensitive hypertension in rats. Hypertension. 2010;55:755–61.

    Article  CAS  Google Scholar 

  52. Lankhorst S, Severs D, Marko L, Rakova N, Titze J, Muller DN, et al. Salt sensitivity of angiogenesis inhibition-induced blood pressure rise: role of interstitial sodium accumulation? Hypertension. 2017;69:919–26.

    Article  CAS  Google Scholar 

  53. Serne EH, Gans RO, ter Maaten JC, Tangelder GJ, Donker AJ, Stehouwer CD. Impaired skin capillary recruitment in essential hypertension is caused by both functional and structural capillary rarefaction. Hypertension. 2001;38:238–42.

    Article  CAS  Google Scholar 

  54. He FJ, Marciniak M, Markandu ND, Antonios TF, MacGregor GA. Effect of modest salt reduction on skin capillary rarefaction in white, black, and Asian individuals with mild hypertension. Hypertension. 2010;56:253–9.

    Article  CAS  Google Scholar 

  55. Cheng C, Daskalakis C, Falkner B. Capillary rarefaction in treated and untreated hypertensive subjects. Ther Adv Cardiovasc Dis. 2008;2:79–88.

    Article  Google Scholar 

  56. Cowburn AS, Takeda N, Boutin AT, Kim JW, Sterling JC, Nakasaki M, et al. HIF isoforms in the skin differentially regulate systemic arterial pressure. Proc Natl Acad Sci USA. 2013;110:17570–5.

    Article  CAS  Google Scholar 

  57. Fehrenbach DJ, Mattson DL. Inflammatory macrophages in the kidney contribute to salt-sensitive hypertension. Am J Physiol Ren Physiol. 2020;318:F544–f8.

    Article  CAS  Google Scholar 

  58. Hammer A, Stegbauer J, Linker RA. Macrophages in neuroinflammation: role of the renin-angiotensin-system. Pflug Arch. 2017;469:431–44.

    Article  CAS  Google Scholar 

  59. Zhang WC, Zheng XJ, Du LJ, Sun JY, Shen ZX, Shi C, et al. High salt primes a specific activation state of macrophages, M(Na). Cell Res. 2015;25:893–910.

    Article  CAS  Google Scholar 

  60. Kirabo A, Fontana V, de Faria AP, Loperena R, Galindo CL, Wu J, et al. DC isoketal-modified proteins activate T cells and promote hypertension. J Clin Investig. 2014;124:4642–56.

    Article  Google Scholar 

  61. Wildgruber M, Aschenbrenner T, Wendorff H, Czubba M, Glinzer A, Haller B, et al. The “Intermediate” CD14(++)CD16(+) monocyte subset increases in severe peripheral artery disease in humans. Sci Rep. 2016;6:39483.

    Article  CAS  Google Scholar 

  62. Zhou X, Zhang L, Ji WJ, Yuan F, Guo ZZ, Pang B, et al. Variation in dietary salt intake induces coordinated dynamics of monocyte subsets and monocyte-platelet aggregates in humans: implications in end organ inflammation. PLoS One. 2013;8:e60332.

    Article  CAS  Google Scholar 

  63. Yi B, Titze J, Rykova M, Feuerecker M, Vassilieva G, Nichiporuk I, et al. Effects of dietary salt levels on monocytic cells and immune responses in healthy human subjects: a longitudinal study. Transl Res. 2015;166:103–10.

    Article  CAS  Google Scholar 

  64. Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N, Linker RA, et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature. 2013;496:518–22.

    Article  CAS  Google Scholar 

  65. Mattson DL. Infiltrating immune cells in the kidney in salt-sensitive hypertension and renal injury. Am J Physiol Ren Physiol. 2014;307:F499–508.

    Article  CAS  Google Scholar 

  66. Barbaro NR, Foss JD, Kryshtal DO, Tsyba N, Kumaresan S, Xiao L, et al. Dendritic cell amiloride-sensitive channels mediate sodium-induced inflammation and hypertension. Cell Rep. 2017;21:1009–20.

    Article  CAS  Google Scholar 

  67. Araos P, Figueroa S, Amador CA. The role of neutrophils in hypertension. Int J Mol Sci. 2020;21:8536.

  68. Wenzel UO, Kemper C, Bode M. The role of complement in arterial hypertension and hypertensive end organ damage. Br J Pharm. 2021;178:2849–62.

    Article  CAS  Google Scholar 

  69. Kotchen TA, Galla JH, Luke RG. Failure of NaHCO3 and KHCO3 to inhibit renin in the rat. Am J Physiol. 1976;231:1050–6.

    Article  CAS  Google Scholar 

  70. Kotchen TA, Luke RG, Ott CE, Galla JH, Whitescarver S. Effect of chloride on renin and blood pressure responses to sodium chloride. Ann Intern Med. 1983;98:817–22.

    Article  CAS  Google Scholar 

  71. Cil O, Chen X, Askew Page HR, Baldwin SN, Jordan MC, Myat Thwe P, et al. A small molecule inhibitor of the chloride channel TMEM16A blocks vascular smooth muscle contraction and lowers blood pressure in spontaneously hypertensive rats. Kidney Int. 2021;100:311–20.

    Article  CAS  Google Scholar 

  72. Kurtz TW, Al-Bander HA, Morris RC Jr. “Salt-sensitive” essential hypertension in men. Is the sodium ion alone important? N Engl J Med. 1987;317:1043–8.

    Article  CAS  Google Scholar 

  73. Calvo CGF, Perez-Leiros P, López E, Fernandez-Merino M. Sodium bicarbonate and sodium chloride: effects on blood pressure in salt-sensitive hypertensives. Am J Hypertens. 1998;11:206A.

    Article  Google Scholar 

  74. Shore AC, Markandu ND, MacGregor GA. A randomized crossover study to compare the blood pressure response to sodium loading with and without chloride in patients with essential hypertension. J Hypertens. 1988;6:613–7.

    Article  CAS  Google Scholar 

  75. van der Leeuw J, de Borst MH, Kieneker LM, Bakker SJL, Gansevoort RT, Rookmaaker MB. Separating the effects of 24-hour urinary chloride and sodium excretion on blood pressure and risk of hypertension: Results from PREVEND. PLoS One. 2020;15:e0228490.

    Article  Google Scholar 

  76. De Bacquer DDBG, De Buyzere M, Kornitzer M. Is low serum chloride level a risk factor for cardiovascular mortality? J Cardiovasc Risk. 1998;5:177–84.

    Article  Google Scholar 

  77. McCallum L, Jeemon P, Hastie CE, Patel RK, Williamson C, Redzuan AM, et al. Serum chloride is an independent predictor of mortality in hypertensive patients. Hypertension. 2013;62:836–43.

    Article  CAS  Google Scholar 

  78. Takahashi A, Maeda K, Sasaki K, Doi S, Nakashima A, Doi T, et al. Relationships of hyperchloremia with hypertension and proteinuria in patients with chronic kidney disease. Clin Exp Nephrol. 2022;26:880–85.

  79. Neal B, Wu Y, Feng X, Zhang R, Zhang Y, Shi J, et al. Effect of salt substitution on cardiovascular events and death. N Engl J Med. 2021;385:1067–77.

    Article  CAS  Google Scholar 

  80. Huang L, Trieu K, Yoshimura S, Neal B, Woodward M, Campbell NRC, et al. Effect of dose and duration of reduction in dietary sodium on blood pressure levels: systematic review and meta-analysis of randomised trials. BMJ. 2020;368:m315.

    Article  Google Scholar 

  81. Filippini T, Naska A, Kasdagli MI, Torres D, Lopes C, Carvalho C, et al. Potassium intake and blood pressure: a dose-response meta-analysis of randomized controlled trials. J Am Heart Assoc. 2020;9:e015719.

    Article  CAS  Google Scholar 

  82. Greer RC, Marklund M, Anderson CAM, Cobb LK, Dalcin AT, Henry M, et al. Potassium-enriched salt substitutes as a means to lower blood pressure: benefits and risks. Hypertension. 2020;75:266–74.

    Article  CAS  Google Scholar 

  83. McCallum L, Lip S, Padmanabhan S. The hidden hand of chloride in hypertension. Pflug Arch. 2015;467:595–603.

    Article  CAS  Google Scholar 

  84. Jantsch J, Schatz V, Friedrich D, Schroder A, Kopp C, Siegert I, et al. Cutaneous Na+ storage strengthens the antimicrobial barrier function of the skin and boosts macrophage-driven host defense. Cell Metab. 2015;21:493–501.

    Article  CAS  Google Scholar 

  85. Ritz E, Dikow R, Morath C, Schwenger V. Salt-a potential ‘uremic toxin’? Blood Purif. 2006;24:63–6.

    Article  CAS  Google Scholar 

  86. Fang Y, Mu JJ, He LC, Wang SC, Liu ZQ. Salt loading on plasma asymmetrical dimethylarginine and the protective role of potassium supplement in normotensive salt-sensitive asians. Hypertension. 2006;48:724–9.

    Article  CAS  Google Scholar 

  87. Fujiwara N, Osanai T, Kamada T, Katoh T, Takahashi K, Okumura K. Study on the relationship between plasma nitrite and nitrate level and salt sensitivity in human hypertension: modulation of nitric oxide synthesis by salt intake. Circulation. 2000;101:856–61.

    Article  CAS  Google Scholar 

  88. Elkareh J, Periyasamy SM, Shidyak A, Vetteth S, Schroeder J, Raju V, et al. Marinobufagenin induces increases in procollagen expression in a process involving protein kinase C and Fli-1: implications for uremic cardiomyopathy. Am J Physiol Ren Physiol. 2009;296:F1219–26.

    Article  CAS  Google Scholar 

  89. Adijiang A, Goto S, Uramoto S, Nishijima F, Niwa T. Indoxyl sulphate promotes aortic calcification with expression of osteoblast-specific proteins in hypertensive rats. Nephrol Dial Transpl. 2008;23:1892–901.

    Article  CAS  Google Scholar 

  90. Gu JW, Anand V, Shek EW, Moore MC, Brady AL, Kelly WC, et al. Sodium induces hypertrophy of cultured myocardial myoblasts and vascular smooth muscle cells. Hypertension. 1998;31:1083–7.

    Article  CAS  Google Scholar 

  91. Friedman SM. The relation of cell volume, cell sodium and the transmembrane sodium gradient to blood pressure. J Hypertens. 1990;8:67–73.

    Article  CAS  Google Scholar 

  92. Srikanthan P, Hevener AL, Karlamangla AS. Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: findings from the National Health and Nutrition Examination Survey III. PLoS One. 2010;5:e10805.

    Article  Google Scholar 

  93. Deger SM, Wang P, Fissell R, Ellis CD, Booker C, Sha F, et al. Tissue sodium accumulation and peripheral insulin sensitivity in maintenance hemodialysis patients. J Cachexia Sarcopenia Muscle. 2017;8:500–7.

    Article  Google Scholar 

  94. Dmitrieva NI, Burg MB. High NaCl promotes cellular senescence. Cell Cycle. 2007;6:3108–13.

    Article  CAS  Google Scholar 

  95. Mattson DL, James L, Berdan EA, Meister CJ. Immune suppression attenuates hypertension and renal disease in the Dahl salt-sensitive rat. Hypertension. 2006;48:149–56.

    Article  CAS  Google Scholar 

  96. Herrera J, Ferrebuz A, MacGregor EG, Rodriguez-Iturbe B. Mycophenolate mofetil treatment improves hypertension in patients with psoriasis and rheumatoid arthritis. J Am Soc Nephrol. 2006;17:S218–25.

    Article  CAS  Google Scholar 

  97. Seaberg EC, Munoz A, Lu M, Detels R, Margolick JB, Riddler SA, et al. Association between highly active antiretroviral therapy and hypertension in a large cohort of men followed from 1984 to 2003. AIDS. 2005;19:953–60.

    Article  Google Scholar 

  98. Karg MV, Bosch A, Kannenkeril D, Striepe K, Ott C, Schneider MP, et al. SGLT-2-inhibition with dapagliflozin reduces tissue sodium content: a randomised controlled trial. Cardiovasc Diabetol. 2018;17:5.

    Article  CAS  Google Scholar 

  99. Solini A, Giannini L, Seghieri M, Vitolo E, Taddei S, Ghiadoni L, et al. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: a pilot study. Cardiovasc Diabetol. 2017;16:138.

    Article  Google Scholar 

  100. Alsouqi A, Deger SM, Sahinoz M, Mambungu C, Clagett AR, Bian A, et al. Tissue sodium in patients with early stage hypertension: a randomized controlled trial. J Am Heart Assoc. 2022;11:e022723.

    Article  Google Scholar 

  101. Salerno FR, Akbari A, Lemoine S, Filler G, Scholl TJ, McIntyre CW. Outcomes and predictors of skin sodium concentration in dialysis patients. Clin Kidney J. 2022;15:1129–36.

    Article  Google Scholar 

Download references

Acknowledgements

KM is supported by the University of Melbourne Professional and Practice-Based Research Training Program Scholarship and The Royal Melbourne Hospital Margaret Henderson Women in Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kylie Martin.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, K., Toussaint, N.D., Tan, SJ. et al. Skin regulation of salt and blood pressure and potential clinical implications. Hypertens Res 46, 408–416 (2023). https://doi.org/10.1038/s41440-022-01096-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-022-01096-8

Keywords

This article is cited by

Search

Quick links