Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Uraemic syndrome of chronic kidney disease: altered remote sensing and signalling

Abstract

Uraemic syndrome (also known as uremic syndrome) in patients with advanced chronic kidney disease involves the accumulation in plasma of small-molecule uraemic solutes and uraemic toxins (also known as uremic toxins), dysfunction of multiple organs and dysbiosis of the gut microbiota. As such, uraemic syndrome can be viewed as a disease of perturbed inter-organ and inter-organism (host–microbiota) communication. Multiple biological pathways are affected, including those controlled by solute carrier (SLC) and ATP-binding cassette (ABC) transporters and drug-metabolizing enzymes, many of which are also involved in drug absorption, distribution, metabolism and elimination (ADME). The remote sensing and signalling hypothesis identifies SLC and ABC transporter-mediated communication between organs and/or between the host and gut microbiota as key to the homeostasis of metabolites, antioxidants, signalling molecules, microbiota-derived products and dietary components in body tissues and fluid compartments. Thus, this hypothesis provides a useful perspective on the pathobiology of uraemic syndrome. Pathways considered central to drug ADME might be particularly important for the body’s attempts to restore homeostasis, including the correction of disturbances due to kidney injury and the accumulation of uraemic solutes and toxins. This Review discusses how the remote sensing and signalling hypothesis helps to provide a systems-level understanding of aspects of uraemia that could lead to novel approaches to its treatment.

Key points

  • The uraemic syndrome (also known as uremic syndrome) associated with chronic kidney disease (CKD) is characterized by complex local and systemic derangements in metabolism and signalling.

  • CKD involves aberrant inter-organ (gut–liver–kidney–brain) and inter-organism (host–gut microbiota) remote communication via small molecules, including uraemic solutes, metabolites and signalling molecules.

  • Aspects of uraemic syndrome can be considered disordered remote sensing and signalling mediated by a multi-organ network of solute carrier (SLC) and ATP-binding cassette (ABC) transporters and drug-metabolizing enzymes (DMEs).

  • The remote sensing and signalling hypothesis provides a systems biology framework for understanding the role of these transporters and DMEs in small-molecule-mediated inter-organ and inter-organism communication.

  • Transported uraemic solutes (including gut-microbiota-derived indoxyl sulfate) can affect multiple signalling pathways.

  • Viewing CKD and uraemic syndrome through the lens of the remote sensing and signalling hypothesis provides fresh perspectives on the metabolic derangements of CKD that might lead to novel therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Aberrant inter-organ and inter-organism communication contributes to uraemic syndrome.
Fig. 2: The gut–liver–kidney axis.
Fig. 3: The role of indoxyl sulfate in inter-organism and inter-organ remote communication.
Fig. 4: A remote sensing and signalling system maintains homeostasis in the steady state and resets homeostasis following perturbations due to kidney dysfunction and microbiota dysbiosis.

Similar content being viewed by others

References

  1. Wu, W., Dnyanmote, A. V. & Nigam, S. K. Remote communication through solute carriers and ATP binding cassette drug transporter pathways: an update on the remote sensing and signaling hypothesis. Mol. Pharmacol. 79, 795–805 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu, X. & Dai, C. Advances in understanding and management of residual renal function in patients with chronic kidney disease. Kidney Dis. 2, 187–196 (2017).

    Google Scholar 

  3. Lowenstein, J. & Grantham, J. J. Residual renal function: a paradigm shift. Kidney Int. 91, 561–565 (2017).

    PubMed  Google Scholar 

  4. Shafi, T., Mullangi, S., Toth-Manikowski, S. M., Hwang, S. & Michels, W. M. Residual kidney function: implications in the era of personalized medicine. Semin. Dial. 30, 241–245 (2017).

    PubMed  Google Scholar 

  5. Nigam, S. K. What do drug transporters really do? Nat. Rev. Drug Discov. 14, 29–44 (2015).

    CAS  PubMed  Google Scholar 

  6. Nigam, S. K. et al. Handling of drugs, metabolites, and uremic toxins by kidney proximal tubule drug transporters. Clin. J. Am. Soc. Nephrol. 10, 2039–2049 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wikoff, W. R., Nagle, M. A., Kouznetsova, V. L., Tsigelny, I. F. & Nigam, S. K. Untargeted metabolomics identifies enterobiome metabolites and putative uremic toxins as substrates of organic anion transporter 1 (Oat1). J. Proteome Res. 10, 2842–2851 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu, W., Bush, K. T. & Nigam, S. K. Key role for the organic anion transporters, OAT1 and OAT3, in the in vivo handling of uremic toxins and solutes. Sci. Rep. 7, 4939 (2017).

    PubMed  PubMed Central  Google Scholar 

  9. Kim, S. H., Yu, M. A., Ryu, E. S., Jang, Y. H. & Kang, D. H. Indoxyl sulfate-induced epithelial-to-mesenchymal transition and apoptosis of renal tubular cells as novel mechanisms of progression of renal disease. Lab. Invest. 92, 488–498 (2012).

    CAS  PubMed  Google Scholar 

  10. Sun, C. Y., Chang, S. C. & Wu, M. S. Uremic toxins induce kidney fibrosis by activating intrarenal renin-angiotensin-aldosterone system associated epithelial-to-mesenchymal transition. PLOS ONE 7, e34026 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bolati, D., Shimizu, H., Higashiyama, Y., Nishijima, F. & Niwa, T. Indoxyl sulfate induces epithelial-to-mesenchymal transition in rat kidneys and human proximal tubular cells. Am. J. Nephrol. 34, 318–323 (2011).

    CAS  PubMed  Google Scholar 

  12. van den Brand, J. A. et al. Uremic solutes in chronic kidney disease and their role in progression. PLOS ONE 11, e0168117 (2016).

    PubMed  PubMed Central  Google Scholar 

  13. Nigam, S. K. The SLC22 transporter family: a paradigm for the impact of drug transporters on metabolic pathways, signaling, and disease. Annu. Rev. Pharmacol. Toxicol. 58, 663–687 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ahn, S. Y. & Nigam, S. K. Toward a systems level understanding of organic anion and other multispecific drug transporters: a remote sensing and signaling hypothesis. Mol. Pharmacol. 76, 481–490 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Nigam, S. K. et al. The organic anion transporter (OAT) family: a systems biology perspective. Physiol. Rev. 95, 83–123 (2015).

    PubMed  PubMed Central  Google Scholar 

  16. Kaler, G. et al. Structural variation governs substrate specificity for organic anion transporter (OAT) homologs. Potential remote sensing by OAT family members. J. Biol. Chem. 282, 23841–23853 (2007).

    CAS  PubMed  Google Scholar 

  17. Pavlova, A. et al. Developmentally regulated expression of organic ion transporters NKT (OAT1), OCT1, NLT (OAT2), and ROCT. Am. J. Physiol. Renal Physiol. 278, F635–F643 (2000).

    CAS  PubMed  Google Scholar 

  18. Kaler, G. et al. Olfactory mucosa-expressed organic anion transporter, Oat6, manifests high affinity interactions with odorant organic anions. Biochem. Biophys. Res. Commun. 351, 872–876 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Monte, J. C., Nagle, M. A., Eraly, S. A. & Nigam, S. K. Identification of a novel murine organic anion transporter family member, OAT6, expressed in olfactory mucosa. Biochem. Biophys. Res. Commun. 323, 429–436 (2004).

    CAS  PubMed  Google Scholar 

  20. Bush, K. T., Wu, W., Lun, C. & Nigam, S. K. The drug transporter OAT3 (SLC22A8) and endogenous metabolite communication via the gut-liver-kidney axis. J. Biol. Chem. 292, 15789–15803 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nigam, S. K. & Bhatnagar, V. The systems biology of uric acid transporters: the role of remote sensing and signaling. Curr. Opin. Nephrol. Hypertens. 27, 305–313 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, T. & Apte, U. Bile acid metabolism and signaling in cholestasis, inflammation, and cancer. Adv. Pharmacol. 74, 263–302 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chiang, J. Y. Recent advances in understanding bile acid homeostasis. F1000Res. 6, 2029 (2017).

    PubMed  PubMed Central  Google Scholar 

  24. Molinaro, A., Wahlstrom, A. & Marschall, H. U. Role of bile acids in metabolic control. Trends Endocrinol. Metab. 29, 31–41 (2018).

    CAS  PubMed  Google Scholar 

  25. Evenepoel, P., Poesen, R. & Meijers, B. The gut–kidney axis. Pediatr. Nephrol. 32, 2005–2014 (2017).

    PubMed  Google Scholar 

  26. Wing, M. R., Patel, S. S., Ramezani, A. & Raj, D. S. Gut microbiome in chronic kidney disease. Exp. Physiol. 101, 471–477 (2016).

    CAS  PubMed  Google Scholar 

  27. Spector, R., Robert Snodgrass, S. & Johanson, C. E. A balanced view of the cerebrospinal fluid composition and functions: focus on adult humans. Exp. Neurol. 273, 57–68 (2015).

    CAS  PubMed  Google Scholar 

  28. Stieger, B. & Gao, B. Drug transporters in the central nervous system. Clin. Pharmacokinet. 54, 225–242 (2015).

    CAS  PubMed  Google Scholar 

  29. Jabbari, B. & Vaziri, N. D. The nature, consequences, and management of neurological disorders in chronic kidney disease. Hemodial. Int. 22, 150–160 (2018).

    PubMed  Google Scholar 

  30. Seifter, J. L. & Samuels, M. A. Uremic encephalopathy and other brain disorders associated with renal failure. Semin. Neurol. 31, 139–143 (2011).

    PubMed  Google Scholar 

  31. Ebah, L. M. et al. Subcutaneous interstitial pressure and volume characteristics in renal impairment associated with edema. Kidney Int. 84, 980–988 (2013).

    PubMed  Google Scholar 

  32. Mayerl, S. et al. Transporters MCT8 and OATP1C1 maintain murine brain thyroid hormone homeostasis. J. Clin. Invest. 124, 1987–1999 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Prentice, K. J. et al. The furan fatty acid metabolite CMPF is elevated in diabetes and induces beta cell dysfunction. Cell Metab. 19, 653–666 (2014).

    CAS  PubMed  Google Scholar 

  34. Ahn, S. Y. et al. Linkage of organic anion transporter-1 to metabolic pathways through integrated “omics”-driven network and functional analysis. J. Biol. Chem. 286, 31522–31531 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, H. C. et al. An organic anion transporter 1 (OAT1)-centered metabolic network. J. Biol. Chem. 291, 19474–19486 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu, W. et al. Multispecific drug transporter Slc22a8 (Oat3) regulates multiple metabolic and signaling pathways. Drug Metab. Dispos. 41, 1825–1834 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, B. et al. Metabolic enzyme system and transport pathways in chronic kidney diseases. Curr. Drug Metab. 19, 568–576 (2018).

    CAS  PubMed  Google Scholar 

  38. Takada, T. et al. Identification of ABCG2 as an exporter of uremic toxin indoxyl sulfate in mice and as a crucial factor influencing CKD progression. Sci. Rep. 8, 11147 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Matsuo, H. et al. Hyperuricemia in acute gastroenteritis is caused by decreased urate excretion via ABCG2. Sci. Rep. 6, 31003 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bhatnagar, V. et al. Analysis of ABCG2 and other urate transporters in uric acid homeostasis in chronic kidney disease: potential role of remote sensing and signaling. Clin. Kidney J. 9, 444–453 (2016).

    CAS  Google Scholar 

  41. Jing, J. et al. Genetics of serum urate concentrations and gout in a high-risk population, patients with chronic kidney disease. Sci. Rep. 8, 13184 (2018).

    PubMed  PubMed Central  Google Scholar 

  42. Takada, T. et al. ABCG2 dysfunction increases serum uric acid by decreased intestinal urate excretion. Nucleosides Nucleotides Nucleic Acids 33, 275–281 (2014).

    CAS  PubMed  Google Scholar 

  43. Yano, H., Tamura, Y., Kobayashi, K., Tanemoto, M. & Uchida, S. Uric acid transporter ABCG2 is increased in the intestine of the 5/6 nephrectomy rat model of chronic kidney disease. Clin. Exp. Nephrol. 18, 50–55 (2014).

    CAS  PubMed  Google Scholar 

  44. Pahl, M. V. & Vaziri, N. D. The chronic kidney disease–colonic axis. Semin. Dial. 28, 459–463 (2015).

    PubMed  Google Scholar 

  45. Velenosi, T. J., Fu, A. Y., Luo, S., Wang, H. & Urquhart, B. L. Down-regulation of hepatic CYP3A and CYP2C mediated metabolism in rats with moderate chronic kidney disease. Drug Metab. Dispos. 40, 1508–1514 (2012).

    CAS  PubMed  Google Scholar 

  46. Naud, J., Nolin, T. D., Leblond, F. A. & Pichette, V. Current understanding of drug disposition in kidney disease. J. Clin. Pharmacol. 52, 10S–22S (2012).

    CAS  PubMed  Google Scholar 

  47. Philips, B. J., Lane, K., Dixon, J. & Macphee, I. The effects of acute renal failure on drug metabolism. Expert Opin. Drug Metab. Toxicol. 10, 11–23 (2014).

    CAS  PubMed  Google Scholar 

  48. Ladda, M. A. & Goralski, K. B. The effects of CKD on cytochrome P450-mediated drug metabolism. Adv. Chronic Kidney Dis. 23, 67–75 (2016).

    Google Scholar 

  49. Michaud, J. et al. Effect of hemodialysis on hepatic cytochrome P450 functional expression. J. Pharmacol. Sci. 108, 157–163 (2008).

    CAS  PubMed  Google Scholar 

  50. Ma, X., Idle, J. R. & Gonzalez, F. J. The pregnane X receptor: from bench to bedside. Expert Opin. Drug Metab. Toxicol. 4, 895–908 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Martovetsky, G., Bush, K. T. & Nigam, S. K. Kidney versus liver specification of SLC and ABC drug transporters, tight junction molecules, and biomarkers. Drug Metab. Dispos. 44, 1050–1060 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Martovetsky, G., Tee, J. B. & Nigam, S. K. Hepatocyte nuclear factors 4α and 1α regulate kidney developmental expression of drug-metabolizing enzymes and drug transporters. Mol. Pharmacol. 84, 808–823 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Staudinger, J. L. et al. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc. Natl Acad. Sci. USA 98, 3369–3374 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Xie, W. et al. Humanized xenobiotic response in mice expressing nuclear receptor SXR. Nature 406, 435–439 (2000).

    CAS  PubMed  Google Scholar 

  55. Santana Machado, T. et al. Indoxyl sulfate upregulates liver P-glycoprotein expression and activity through aryl hydrocarbon receptor signaling. J. Am. Soc. Nephrol. 29, 906–918 (2018).

    PubMed  Google Scholar 

  56. Xu, C., Li, C. Y. & Kong, A. N. Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch. Pharm. Res. 28, 249–268 (2005).

    CAS  PubMed  Google Scholar 

  57. Leong, S. C. & Sirich, T. L. Indoxyl sulfate — review of toxicity and therapeutic strategies. Toxins 8, E358 (2016).

    PubMed  Google Scholar 

  58. Camacho, O. et al. Effect of a sustained difference in hemodialytic clearance on the plasma levels of p-cresol sulfate and indoxyl sulfate. Nephrol. Dial. Transplant. 31, 1335–1341 (2016).

    CAS  PubMed  Google Scholar 

  59. Poesen, R. et al. The influence of prebiotic arabinoxylan oligosaccharides on microbiota derived uremic retention solutes in patients with chronic kidney disease: a randomized controlled trial. PLOS ONE 11, e0153893 (2016).

    PubMed  PubMed Central  Google Scholar 

  60. Chiavaroli, L., Mirrahimi, A., Sievenpiper, J. L., Jenkins, D. J. & Darling, P. B. Dietary fiber effects in chronic kidney disease: a systematic review and meta-analysis of controlled feeding trials. Eur. J. Clin. Nutr. 69, 761–768 (2015).

    CAS  PubMed  Google Scholar 

  61. Cha, R. H. et al. A randomized, controlled trial of oral intestinal sorbent AST-120 on renal function deterioration in patients with advanced renal dysfunction. Clin. J. Am. Soc. Nephrol. 11, 559–567 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Rossi, M. et al. Synbiotics easing renal failure by improving gut microbiology (SYNERGY): a randomized trial. Clin. J. Am. Soc. Nephrol. 11, 223–231 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Schulman, G. et al. Randomized placebo-controlled EPPIC trials of AST-120 in CKD. J. Am. Soc. Nephrol. 26, 1732–1746 (2015).

    CAS  PubMed  Google Scholar 

  64. Sirich, T. L., Plummer, N. S., Gardner, C. D., Hostetter, T. H. & Meyer, T. W. Effect of increasing dietary fiber on plasma levels of colon-derived solutes in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 9, 1603–1610 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Prokopienko, A. J. & Nolin, T. D. Microbiota-derived uremic retention solutes: perpetrators of altered nonrenal drug clearance in kidney disease. Expert Rev. Clin. Pharmacol. 11, 71–82 (2018).

    CAS  PubMed  Google Scholar 

  66. Vanholder, R., Schepers, E., Pletinck, A., Nagler, E. V. & Glorieux, G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: a systematic review. J. Am. Soc. Nephrol. 25, 1897–1907 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kaminski, T., Michalowska, M. & Pawlak, D. Aryl hydrocarbon receptor (AhR) and its endogenous agonist - indoxyl sulfate in chronic kidney disease. Postepy Hig. Med. Dosw. 71, 624–632 (2017).

    Google Scholar 

  68. Gao, H. & Liu, S. Role of uremic toxin indoxyl sulfate in the progression of cardiovascular disease. Life Sci. 185, 23–29 (2017).

    CAS  PubMed  Google Scholar 

  69. Liu, H., Narayanan, R., Hoffmann, M. & Surapaneni, S. The uremic toxin indoxyl-3-sulfate induces CYP1A2 in primary human hepatocytes. Drug Metab. Lett. 10, 195–199 (2016).

    CAS  PubMed  Google Scholar 

  70. Wu, Y., Han, X., Wang, L., Diao, Z. & Liu, W. Indoxyl sulfate promotes vascular smooth muscle cell calcification via the JNK/Pit-1 pathway. Ren. Fail. 38, 1702–1710 (2016).

    CAS  PubMed  Google Scholar 

  71. Muteliefu, G. et al. Indoxyl sulfate promotes vascular smooth muscle cell senescence with upregulation ofp53, p21, and prelamin A through oxidative stress. Am. J. Physiol. Cell Physiol. 303, C126–C134 (2012).

    CAS  PubMed  Google Scholar 

  72. Mozar, A. et al. Uremic toxin indoxyl sulfate inhibits human vascular smooth muscle cell proliferation. Ther. Apher. Dial. 15, 135–139 (2011).

    CAS  PubMed  Google Scholar 

  73. Shimizu, H., Hirose, Y., Nishijima, F., Tsubakihara, Y. & Miyazaki, H. ROS and PDGF-β [corrected] receptors are critically involved in indoxyl sulfate actions that promote vascular smooth muscle cell proliferation and migration. Am. J. Physiol. Cell Physiol. 297, C389–C396 (2009).

    CAS  PubMed  Google Scholar 

  74. Yamamoto, H. et al. Indoxyl sulfate stimulates proliferation of rat vascular smooth muscle cells. Kidney Int. 69, 1780–1785 (2006).

    CAS  PubMed  Google Scholar 

  75. Mair, R. D., Sirich, T. L. & Meyer, T. W. Uremic toxin clearance and cardiovascular toxicities. Toxins 10, E226 (2018).

    PubMed  Google Scholar 

  76. Schroeder, J. C. et al. The uremic toxin 3-indoxyl sulfate is a potent endogenous agonist for the human aryl hydrocarbon receptor. Biochemistry 49, 393–400 (2010).

    CAS  PubMed  Google Scholar 

  77. Esser, C. & Rannug, A. The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology. Pharmacol. Rev. 67, 259–279 (2015).

    CAS  PubMed  Google Scholar 

  78. Roman, A. C., Carvajal-Gonzalez, J. M., Merino, J. M., Mulero-Navarro, S. & Fernandez-Salguero, P. M. The aryl hydrocarbon receptor in the crossroad of signalling networks with therapeutic value. Pharmacol. Ther. 185, 50–63 (2017).

    PubMed  Google Scholar 

  79. Wakamatsu, T. et al. Indoxyl sulfate promotes macrophage IL-1β production by activating aryl hydrocarbon receptor/NF-κ/MAPK cascades, but the NLRP3 inflammasome was not activated. Toxins 10, E124 (2018).

    PubMed  Google Scholar 

  80. Wanchai, K. et al. Probiotic Lactobacillus paracasei HII01 protects rats against obese-insulin resistance-induced kidney injury and impaired renal organic anion transporter 3 function. Clin. Sci. 132, 1545–1563 (2018).

    CAS  Google Scholar 

  81. Czuba, L. C., Hillgren, K. M. & Swaan, P. W. Post-translational modifications of transporters. Pharmacol. Ther. 192, 88–99 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Murray, M. & Zhou, F. Trafficking and other regulatory mechanisms for organic anion transporting polypeptides and organic anion transporters that modulate cellular drug and xenobiotic influx and that are dysregulated in disease. Br. J. Pharmacol. 174, 1908–1924 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Xu, D. & You, G. Loops and layers of post-translational modifications of drug transporters. Adv. Drug Deliv. Rev. 116, 37–44 (2017).

    CAS  PubMed  Google Scholar 

  84. Hong, M. et al. Human organic anion transporter hOAT1 forms homooligomers. J. Biol. Chem. 280, 32285–32290 (2005).

    CAS  PubMed  Google Scholar 

  85. Miyazaki, H. et al. Modulation of renal apical organic anion transporter 4 function by two PDZ domain-containing proteins. J. Am. Soc. Nephrol. 16, 3498–3506 (2005).

    CAS  PubMed  Google Scholar 

  86. Endou, H. & Anzai, N. Urate transport across the apical membrane of renal proximal tubules. Nucleosides Nucleotides Nucleic Acids 27, 578–584 (2008).

    CAS  PubMed  Google Scholar 

  87. Zhang, Q., Pan, Z. & You, G. Regulation of human organic anion transporter 4 by protein kinase C and NHERF-1: altering the endocytosis of the transporter. Pharm. Res. 27, 589–596 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Xue, P., Crum, C. M. & Thibodeau, P. H. Regulation of ABCC6 trafficking and stability by a conserved C-terminal PDZ-like sequence. PLOS ONE 9, e97360 (2014).

    PubMed  PubMed Central  Google Scholar 

  89. Schaletzki, Y. et al. Several adaptor proteins promote intracellular localisation of the transporter MRP4/ABCC4 in platelets and haematopoietic cells. Thromb. Haemost. 117, 105–115 (2017).

    PubMed  Google Scholar 

  90. Ferreira, C. et al. The scaffold protein PDZK1 modulates expression and function of the organic anion transporting polypeptide 2B1. Eur. J. Pharm. Sci. 120, 181–190 (2018).

    CAS  PubMed  Google Scholar 

  91. Venot, Q. et al. A PDZ-like motif in the biliary transporter ABCB4 interacts with the scaffold protein EBP50 and regulates ABCB4 cell surface expression. PLOS ONE 11, e0146962 (2016).

    PubMed  PubMed Central  Google Scholar 

  92. Vanholder, R. et al. The role of EUTox in uremic toxin research. Semin. Dial. 22, 323–328 (2009).

    PubMed  Google Scholar 

  93. Zhao, Y. Y. Metabolomics in chronic kidney disease. Clin. Chim. Acta 422, 59–69 (2013).

    CAS  PubMed  Google Scholar 

  94. Lau, W. L., Savoj, J., Nakata, M. B. & Vaziri, N. D. Altered microbiome in chronic kidney disease: systemic effects of gut-derived uremic toxins. Clin. Sci. 132, 509–522 (2018).

    CAS  Google Scholar 

  95. Mahmoodpoor, F., Rahbar Saadat, Y., Barzegari, A., Ardalan, M. & Zununi Vahed, S. The impact of gut microbiota on kidney function and pathogenesis. Biomed. Pharmacother. 93, 412–419 (2017).

    CAS  PubMed  Google Scholar 

  96. Vogt, S. L., Pena-Diaz, J. & Finlay, B. B. Chemical communication in the gut: effects of microbiota-generated metabolites on gastrointestinal bacterial pathogens. Anaerobe 34, 106–115 (2015).

    CAS  PubMed  Google Scholar 

  97. Kennedy, P. J., Cryan, J. F., Dinan, T. G. & Clarke, G. Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology 112, 399–412 (2017).

    CAS  PubMed  Google Scholar 

  98. Xu, L. et al. Furan fatty acids — beneficial or harmful to health? Prog. Lipid Res. 68, 119–137 (2017).

    CAS  PubMed  Google Scholar 

  99. El Ridi, R. & Tallima, H. Physiological functions and pathogenic potential of uric acid: a review. J. Adv. Res. 8, 487–493 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Bae, D. H., Lane, D. J. R., Jansson, P. J. & Richardson, D. R. The old and new biochemistry of polyamines. Biochim. Biophys. Acta Gen. Subj. 1862, 2053–2068 (2018).

    CAS  PubMed  Google Scholar 

  101. Lopez-Nieto, C. E. et al. Molecular cloning and characterization of NKT, a gene product related to the organic cation transporter family that is almost exclusively expressed in the kidney. J. Biol. Chem. 272, 6471–6478 (1997).

    CAS  PubMed  Google Scholar 

  102. Eraly, S. A. et al. Decreased renal organic anion secretion and plasma accumulation of endogenous organic anions in OAT1 knock-out mice. J. Biol. Chem. 281, 5072–5083 (2006).

    CAS  PubMed  Google Scholar 

  103. Sweeney, D. E. et al. Functional maturation of drug transporters in the developing, neonatal, and postnatal kidney. Mol. Pharmacol. 80, 147–154 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Nagle, M. A. et al. Analysis of three-dimensional systems for developing and mature kidneys clarifies the role of OAT1 and OAT3 in antiviral handling. J. Biol. Chem. 286, 243–251 (2011).

    CAS  PubMed  Google Scholar 

  105. Nagle, M. A., Wu, W., Eraly, S. A. & Nigam, S. K. Organic anion transport pathways in antiviral handling in choroid plexus in Oat1 (Slc22a6) and Oat3 (Slc22a8) deficient tissue. Neurosci. Lett. 534, 133–138 (2013).

    CAS  PubMed  Google Scholar 

  106. Truong, D. M., Kaler, G., Khandelwal, A., Swaan, P. W. & Nigam, S. K. Multi-level analysis of organic anion transporters 1, 3, and 6 reveals major differences in structural determinants of antiviral discrimination. J. Biol. Chem. 283, 8654–8663 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Vallon, V. et al. Overlapping in vitro and in vivo specificities of the organic anion transporters OAT1 and OAT3 for loop and thiazide diuretics. Am. J. Physiol. Renal Physiol. 294, F867–F873 (2008).

    CAS  PubMed  Google Scholar 

  108. VanWert, A. L., Gionfriddo, M. R. & Sweet, D. H. Organic anion transporters: discovery, pharmacology, regulation and roles in pathophysiology. Biopharm. Drug Dispos. 31, 1–71 (2010).

    CAS  PubMed  Google Scholar 

  109. Rubino, F. M. Toxicity of glutathione-binding metals: a review of targets and mechanisms. Toxics 3, 20–62 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Torres, A. M., Dnyanmote, A. V., Bush, K. T., Wu, W. & Nigam, S. K. Deletion of multispecific organic anion transporter Oat1/Slc22a6 protects against mercury-induced kidney injury. J. Biol. Chem. 286, 26391–26395 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Zalups, R. K. Molecular interactions with mercury in the kidney. Pharmacol. Rev. 52, 113–143 (2000).

    CAS  PubMed  Google Scholar 

  112. Wikoff, W. R. et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl Acad. Sci. USA 106, 3698–3703 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Liu, H. C. et al. Molecular properties of drugs interacting with SLC22 transporters OAT1, OAT3, OCT1, and OCT2: a machine-learning approach. J. Pharmacol. Exp. Ther. 359, 215–229 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Rhee, E. P. et al. Metabolite profiling identifies markers of uremia. J. Am. Soc. Nephrol. 21, 1041–1051 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Sun, C. Y. et al. A novel SNP in the 5’ regulatory region of organic anion transporter 1 is associated with chronic kidney disease. Sci. Rep. 8, 8085 (2018).

    PubMed  PubMed Central  Google Scholar 

  116. Schophuizen, C. M. et al. Cationic uremic toxins affect human renal proximal tubule cell functioning through interaction with the organic cation transporter. Pflugers Arch. 465, 1701–1714 (2013).

    CAS  PubMed  Google Scholar 

  117. Ahn, S. Y., Eraly, S. A., Tsigelny, I. & Nigam, S. K. Interaction of organic cations with organic anion transporters. J. Biol. Chem. 284, 31422–31430 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Sager, G., Smaglyukova, N. & Fuskevaag, O. M. The role of OAT2 (SLC22A7) in the cyclic nucleotide biokinetics of human erythrocytes. J. Cell. Physiol. 233, 5972–5980 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Dias, G. F. et al. Indoxyl sulfate, a uremic toxin, stimulates reactive oxygen species production and erythrocyte cell death supposedly by an organic anion transporter 2 (OAT2) and NADPH oxidase activity-dependent pathways. Toxins 10, E280 (2018).

    PubMed  Google Scholar 

  120. Toyohara, T. et al. SLCO4C1 transporter eliminates uremic toxins and attenuates hypertension and renal inflammation. J. Am. Soc. Nephrol. 20, 2546–2555 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Subramaniam, S. & Fletcher, C. Trimethylamine N-oxide: breathe new life. Br. J. Pharmacol. 175, 1344–1353 (2018).

    CAS  PubMed  Google Scholar 

  122. Tang, W. H. et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ. Res. 116, 448–455 (2015).

    CAS  PubMed  Google Scholar 

  123. Teft, W. A. et al. Identification and characterization of trimethylamine-N-oxide uptake and efflux transporters. Mol. Pharm. 14, 310–318 (2017).

    CAS  PubMed  Google Scholar 

  124. Masuda, S. et al. Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2. J. Am. Soc. Nephrol. 17, 2127–2135 (2006).

    CAS  PubMed  Google Scholar 

  125. Motohashi, H. & Inui, K. Organic cation transporter OCTs (SLC22) and MATEs (SLC47) in the human kidney. AAPS J. 15, 581–588 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Nies, A. T., Koepsell, H., Damme, K. & Schwab, M. Organic cation transporters (OCTs, MATEs), in vitroand in vivo evidence for the importance in drug therapy. Handb. Exp. Pharmacol. 201, 105–167 (2011).

    CAS  Google Scholar 

  127. Sato, T., Yamaguchi, H., Kogawa, T., Abe, T. & Mano, N. Organic anion transporting polypeptides 1B1 and 1B3 play an important role in uremic toxin handling and drug-uremic toxin interactions in the liver. J. Pharm. Pharm. Sci. 17, 475–484 (2014).

    PubMed  Google Scholar 

  128. Katsube, Y. et al. Cooperative inhibitory effects of uremic toxins and other serum components on OATP1B1-mediated transport of SN-38. Cancer Chemother. Pharmacol. 79, 783–789 (2017).

    CAS  PubMed  Google Scholar 

  129. Fu, Z. D., Selwyn, F. P., Cui, J. Y. & Klaassen, C. D. RNA-seq profiling of intestinal expression of xenobiotic processing genes in germ-free mice. Drug Metab. Dispos. 45, 1225–1238 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Selwyn, F. P., Cheng, S. L., Klaassen, C. D. & Cui, J. Y. Regulation of hepatic drug-metabolizing enzymes in germ-free mice by conventionalization and probiotics. Drug Metab. Dispos. 44, 262–274 (2016).

    PubMed  PubMed Central  Google Scholar 

  131. Selwyn, F. P. et al. Developmental regulation of drug-processing genes in livers of germ-free mice. Toxicol. Sci. 147, 84–103 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Claus, S. P. et al. Colonization-induced host–gut microbial metabolic interaction. mBio 2, e00271–10 (2011).

    PubMed  PubMed Central  Google Scholar 

  133. Meinl, W., Sczesny, S., Brigelius-Flohe, R., Blaut, M. & Glatt, H. Impact of gut microbiota on intestinal and hepatic levels of phase 2 xenobiotic-metabolizing enzymes in the rat. Drug Metab. Dispos. 37, 1179–1186 (2009).

    CAS  PubMed  Google Scholar 

  134. Jansen, J., Jankowski, J., Gajjala, P. R., Wetzels, J. F. M. & Masereeuw, R. Disposition and clinical implications of protein-bound uremic toxins. Clin. Sci. 131, 1631–1647 (2017).

    CAS  Google Scholar 

  135. Manley, H. J. et al. Medication prescribing patterns in ambulatory haemodialysis patients: comparisons of USRDS to a large not-for-profit dialysis provider. Nephrol. Dial. Transplant. 19, 1842–1848 (2004).

    PubMed  Google Scholar 

  136. Clayton, T. A., Baker, D., Lindon, J. C., Everett, J. R. & Nicholson, J. K. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc. Natl Acad. Sci. USA 106, 14728–14733 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Kong, F. et al. Increased plasma exposures of conjugated metabolites of morinidazole in renal failure patients: a critical role of uremic toxins. Drug Metab. Dispos. 45, 593–603 (2017).

    CAS  PubMed  Google Scholar 

  138. Cihlar, T. & Ho, E. S. Fluorescence-based assay for the interaction of small molecules with the human renal organic anion transporter 1. Anal. Biochem. 283, 49–55 (2000).

    CAS  PubMed  Google Scholar 

  139. Khamdang, S. et al. Interactions of human organic anion transporters and human organic cation transporters with nonsteroidal anti-inflammatory drugs. J. Pharmacol. Exp. Ther. 303, 534–539 (2002).

    CAS  PubMed  Google Scholar 

  140. Yu, C. P. et al. Effects of nonsteroidal anti-inflammatory drugs on the renal excretion of indoxyl sulfate, a nephro-cardiovascular toxin, in rats. Eur. J. Pharm. Sci. 101, 66–70 (2017).

    CAS  PubMed  Google Scholar 

  141. Morrissey, K. M., Stocker, S. L., Wittwer, M. B., Xu, L. & Giacomini, K. M. Renal transporters in drug development. Annu. Rev. Pharmacol. Toxicol. 53, 503–529 (2013).

    CAS  PubMed  Google Scholar 

  142. DiNatale, B. C. et al. Kynurenic acid is a potent endogenous aryl hydrocarbon receptor ligand thatsynergistically induces interleukin-6 in the presence of inflammatory signaling. Toxicol. Sci. 115, 89–97 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Wang, J. et al. Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J. Biol. Chem. 281, 22021–22028 (2006).

    CAS  PubMed  Google Scholar 

  144. Wirthgen, E., Hoeflich, A., Rebl, A. & Gunther, J. Kynurenic acid: the Janus-faced role of an immunomodulatory tryptophan metabolite and its link to pathological conditions. Front. Immunol. 8, 1957 (2017).

    PubMed  Google Scholar 

  145. Moroni, F., Cozzi, A., Sili, M. & Mannaioni, G. Kynurenic acid: a metabolite with multiple actions and multiple targets in brain and periphery. J. Neural Transm. 119, 133–139 (2012).

    CAS  PubMed  Google Scholar 

  146. Schwarcz, R., Bruno, J. P., Muchowski, P. J. & Wu, H. Q. Kynurenines in the mammalian brain: when physiology meets pathology. Nat. Rev. Neurosci. 13, 465–477 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Fujigaki, H., Yamamoto, Y. & Saito, K. L-Tryptophan-kynurenine pathway enzymes are therapeutic target for neuropsychiatric diseases: focus on cell type differences. Neuropharmacology 112, 264–274 (2017).

    CAS  PubMed  Google Scholar 

  148. Schwarcz, R. & Stone, T. W. The kynurenine pathway and the brain: challenges, controversies and promises. Neuropharmacology 112, 237–247 (2017).

    CAS  PubMed  Google Scholar 

  149. Mandi, Y. & Vecsei, L. The kynurenine system and immunoregulation. J. Neural Transm. 119, 197–209 (2012).

    CAS  PubMed  Google Scholar 

  150. Stone, T. W., Stoy, N. & Darlington, L. G. An expanding range of targets for kynurenine metabolites of tryptophan. Trends Pharmacol. Sci. 34, 136–143 (2013).

    CAS  PubMed  Google Scholar 

  151. Agudelo, L. Z. et al. Kynurenic acid and Gpr35 regulate adipose tissue energy homeostasis and inflammation. Cell Metab. 27, 378–392 (2018).

    CAS  PubMed  Google Scholar 

  152. Prentice, K. J. et al. CMPF, a metabolite formed upon prescription omega-3-acid ethyl ester supplementation, prevents and reverses steatosis. EBioMedicine 27, 200–213 (2018).

    PubMed  Google Scholar 

  153. Tanaka, H. et al. p-Cresyl sulfate induces osteoblast dysfunction through activating JNK and p38 MAPK pathways. Bone 56, 347–354 (2013).

    CAS  PubMed  Google Scholar 

  154. Yang, K. et al. Indoxyl sulfate induces oxidative stress and hypertrophy in cardiomyocytes by inhibiting the AMPK/UCP2 signaling pathway. Toxicol. Lett. 234, 110–119 (2015).

    CAS  PubMed  Google Scholar 

  155. Park, J. S., Choi, H. I., Bae, E. H., Ma, S. K. & Kim, S. W. Paricalcitol attenuates indoxyl sulfate-induced apoptosis through the inhibition of MAPK, Akt, and NF-kB activation in HK-2 cells. Korean J. Intern. Med. 34, 146–155 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Pegg, A. E. Functions of polyamines in mammals. J. Biol. Chem. 291, 14904–14912 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Ramani, D., De Bandt, J. P. & Cynober, L. Aliphatic polyamines in physiology and diseases. Clin. Nutr. 33, 14–22 (2014).

    CAS  PubMed  Google Scholar 

  158. Park, M. H., Nishimura, K., Zanelli, C. F. & Valentini, S. R. Functional significance of eIF5A and its hypusine modification in eukaryotes. Amino Acids 38, 491–500 (2010).

    CAS  PubMed  Google Scholar 

  159. Weiger, T. M. & Hermann, A. Cell proliferation, potassium channels, polyamines and their interactions: a mini review. Amino Acids 46, 681–688 (2014).

    CAS  PubMed  Google Scholar 

  160. Tassone, E. J. et al. Uric acid impairs insulin signaling by promoting ENPP1 binding to insulin receptor in human umbilical vein endothelial cells. Front. Endocrinol. 9, 98 (2018).

    Google Scholar 

  161. Spiga, R. et al. Uric acid is associated with inflammatory biomarkers and induces inflammation via activating the NF-κB signaling pathway in HepG2 cells. Arterioscler. Thromb. Vasc. Biol. 37, 1241–1249 (2017).

    CAS  PubMed  Google Scholar 

  162. Liang, W. Y. et al. Uric acid promotes chemokine and adhesion molecule production in vascular endothelium via nuclear factor-κB signaling. Nutr. Metab. Cardiovasc. Dis. 25, 187–194 (2015).

    CAS  PubMed  Google Scholar 

  163. Filiopoulos, V., Hadjiyannakos, D. & Vlassopoulos, D. New insights into uric acid effects on the progression and prognosis of chronic kidney disease. Ren. Fail. 34, 510–520 (2012).

    CAS  PubMed  Google Scholar 

  164. Kielstein, J. T., Fliser, D. & Veldink, H. Asymmetric dimethylarginine and symmetric dimethylarginine: axis of evil or useful alliance? Semin. Dial. 22, 346–350 (2009).

    PubMed  Google Scholar 

  165. De Deyn, P. P., Vanholder, R. & D’Hooge, R. Nitric oxide in uremia: effects of several potentially toxic guanidino compounds. Kidney Int. Suppl. 84, S25–S28 (2003).

    Google Scholar 

  166. De Deyn, P. P., D’Hooge, R., Van Bogaert, P. P. & Marescau, B. Endogenous guanidino compounds as uremic neurotoxins. Kidney Int. Suppl. 78, S77–S83 (2001).

    PubMed  Google Scholar 

  167. Chen, J. Y. et al. Nitric oxide bioavailability dysfunction involves in atherosclerosis. Biomed. Pharmacother. 97, 423–428 (2018).

    CAS  PubMed  Google Scholar 

  168. Velenosi, T. J. et al. Untargeted plasma and tissue metabolomics in rats with chronic kidney disease given AST-120. Sci. Rep. 6, 22526 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Hsiao, E. Y. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155, 1451–1463 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Lafaye, A. et al. Profiling of sulfoconjugates in urine by using precursor ion and neutral loss scans in tandem mass spectrometry. Application to the investigation of heavy metal toxicity in rats. J. Mass Spectrom. 39, 655–664 (2004).

    CAS  PubMed  Google Scholar 

  171. John, G. K. et al. Dietary alteration of the gut microbiome and its impact on weight and fat mass: a systematic review and meta-analysis. Genes 9, E167 (2018).

    PubMed  Google Scholar 

  172. Yamaguchi, J., Tanaka, T. & Inagi, R. Effect of AST-120 in chronic kidney disease treatment: still a controversy? Nephron 135, 201–206 (2017).

    CAS  PubMed  Google Scholar 

  173. Masereeuw, R. et al. The kidney and uremic toxin removal: glomerulus or tubule? Semin. Nephrol. 34, 191–208 (2014).

    CAS  PubMed  Google Scholar 

  174. Lowenstein, J. & Grantham, J. J. The rebirth of interest in renal tubular function. Am. J. Physiol. Renal Physiol. 310, F1351–F1355 (2016).

    CAS  PubMed  Google Scholar 

  175. Wang, K. & Kestenbaum, B. Proximal tubular secretory clearance: a neglected partner of kidney function. Clin. J. Am. Soc. Nephrol. 13, 1291–1296 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Leong, S. C. et al. Residual function effectively controls plasma concentrations of secreted solutes in patients on twice weekly hemodialysis. J. Am. Soc. Nephrol. 29, 1992–1999 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Bhatnagar, V. et al. Analyses of 5′ regulatory region polymorphisms in human SLC22A6 (OAT1) and SLC22A8 (OAT3). J. Hum. Genet. 51, 575–580 (2006).

    CAS  PubMed  Google Scholar 

  178. Xu, G. et al. Analyses of coding region polymorphisms in apical and basolateral human organic anion transporter (OAT) genes [OAT1 (NKT), OAT2, OAT3, OAT4, URAT (RST)]. Kidney Int. 68, 1491–1499 (2005).

    CAS  PubMed  Google Scholar 

  179. Stanley, L. A. in Pharmacognosy (ed. Delgoda, R.) 527–545 (Academic, 2017).

  180. Almazroo, O. A., Miah, M. K. & Venkataramanan, R. Drug metabolism in the liver. Clin. Liver Dis. 21, 1–20 (2017).

    PubMed  Google Scholar 

  181. Ishikawa, T. The ATP-dependent glutathione S-conjugate export pump. Trends Biochem. Sci. 17, 463–468 (1992).

    CAS  PubMed  Google Scholar 

  182. Döring, B. & Petzinger, E. Phase 0 and phase III transport in various organs: combined concept of phases in xenobiotic transport and metabolism. Drug Metab. Rev. 46, 261–282 (2014).

    PubMed  Google Scholar 

  183. Petzinger, E. & Geyer, J. Drug transporters in pharmacokinetics. Naunyn Schmiedebergs Arch. Pharmacol. 372, 465–475 (2006).

    CAS  PubMed  Google Scholar 

  184. Eraly, S. A. et al. Multiple organic anion transporters contribute to net renal excretion of uric acid. Physiol. Genomics 33, 180–192 (2008).

    CAS  PubMed  Google Scholar 

  185. Vallon, V. et al. A role for the organic anion transporter OAT3 in renal creatinine secretion in mice. Am. J. Physiol. Renal Physiol. 302, F1293–F1299 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors’ work referred to in this Review was partly supported by US National Institutes of Health grants DK109392 and HD090259 (U54) to S.K.N.

Reviewer information

Nature Reviews Nephrology thanks T. D. Nolin and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, contributed substantially to discussions of the article content, wrote the manuscript and participated in the review or editing of the manuscript before submission.

Corresponding author

Correspondence to Sanjay K. Nigam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nigam, S.K., Bush, K.T. Uraemic syndrome of chronic kidney disease: altered remote sensing and signalling. Nat Rev Nephrol 15, 301–316 (2019). https://doi.org/10.1038/s41581-019-0111-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-019-0111-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research