Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hepatitis C virus and the kidney

Abstract

Hepatitis C virus (HCV) infection is more prevalent and is associated with higher mortality in patients receiving dialysis and in kidney transplant recipients than in the general population. Kidney transplant recipients who are HCV-positive are also at higher risk of allograft and liver failure than are HCV-negative recipients. Moreover, HCV infection is associated with a higher incidence and faster progression of diabetes mellitus and chronic kidney disease (CKD), as well as a higher incidence of systemic (especially cardiovascular) complications. The finding that these complications of HCV infection are attenuated in patients who achieve a sustained virologic response (SVR) emphasizes the need to treat patients with CKD who are HCV-positive with oral antiviral therapies. Fortunately, the available evidence suggests that a SVR can be achieved in >95% of patients with late-stage CKD and in kidney transplant recipients. According to international guidelines, all patients with CKD and HCV infection should be considered for treatment with direct acting antivirals (DAAs), prioritizing those with symptomatic cryoglobulinaemic vasculitis, extensive liver fibrosis and stage 4–5 CKD. DAA treatment can be delayed until after transplantation in recipients whose waiting time is markedly reduced by accepting an HCV-positive organ. An emerging issue is the long-term renal safety of DAAs, which requires a re-appraisal. Overall, the elimination of HCV from patients with CKD now seems to be achievable, provided that DAA treatment is coupled with reinforced hygienic precautions to prevent reinfections in dialysis units.

Key points

  • Hepatitis C virus (HCV) infection is more frequent in patients with chronic kidney disease (CKD) than in the general population; it is associated with a high risk of hepatic and extra-hepatic complications, including rapid CKD progression.

  • Patients with CKD and HCV infection should be considered for treatment with direct acting antivirals (DAAs).

  • Current DAA regimens lead to a sustained virologic response (SVR) in over 95% of patients with severe CKD.

  • Achieving a SVR decreases the risk of both hepatic and extra-hepatic complications; understanding the long-term effects of DAAs on kidney function requires additional follow-up studies.

  • Use of HCV-positive organs in HCV-negative kidney transplant candidates could reduce the waiting time for transplantation; HCV infection should then be treated after kidney transplantation.

  • Coupling antiviral treatment with reinforced hygienic precautions to prevent reinfections, especially in haemodialysis units, has the potential to eliminate HCV infection from the nephrology field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HCV infection is a systemic disease.
Fig. 2: Mechanisms of kidney damage following HCV infection.
Fig. 3: The HCV replication cycle and sites of action of direct acting antivirals.
Fig. 4: History of antiviral therapies for HCV infection.
Fig. 5: Therapeutic options for treating hepatitis C virus infection.

Similar content being viewed by others

References

  1. Polaris Observatory HCV Collaborators. Global prevalence and genotype distribution of hepatitis C virus infection in 2015: a modelling study. Lancet Gastroenterol. Hepatol. 2, 161–176 (2017).

    Google Scholar 

  2. Stanaway, J. et al. The global burden of viral hepatitis from 1990 to 2013: findings from the Global Burden of Disease Study 2013. Lancet 388, 1081–1088 (2016).

    PubMed  PubMed Central  Google Scholar 

  3. World Health Organization. Eliminate hepatitis (news release, Geneva). WHO http://www.who.int/news-room/detail/27-07-2017-eliminate-hepatitis-who (2017).

  4. Trinchet, J.-C. et al. Complications and competing risks of death in compensated viral cirrhosis (ANRS CO12 CirVir prospective cohort). Hepatology 62, 737–750 (2015).

    PubMed  Google Scholar 

  5. Pozzato, G. et al. Hepatitis C virus and non-Hodgkin’s lymphomas: meta-analysis of epidemiology data and therapy options. World J. Hepatol. 8, 107–116 (2016).

    PubMed  PubMed Central  Google Scholar 

  6. Vescovo, T. et al. Autophagy in HCV infection: keeping fat and inflammation at bay. Biomed. Res. Int. 2014, 265353 (2014).

    PubMed  PubMed Central  Google Scholar 

  7. Del Campo, J. et al. Role of inflammatory response in liver disease: therapeutic strategies. World J. Hepatol. 10, 1–7 (2018).

    PubMed  PubMed Central  Google Scholar 

  8. Muriel, P. Role of free radicals in liver diseases. Hepatol. Int. 3, 526–536 (2009).

    PubMed  PubMed Central  Google Scholar 

  9. García-Monzón, C. et al. Intrahepatic accumulation of nitrotyrosine in chronic viral hepatitis is associated with histological severity of liver disease. J. Hepatol. 32, 331–338 (2000).

    PubMed  Google Scholar 

  10. Fukui, M., Kitagawa, Y., Nakamura, N. & Yoshikawa, T. Hepatitis C virus and atherosclerosis in patients with type 2 diabetes. JAMA 289, 1245–1246 (2003).

    PubMed  Google Scholar 

  11. Adinolfi, L. E. et al. Chronic HCV infection is a risk of atherosclerosis. Role of HCV and HCV-related steatosis. Atherosclerosis 221, 496–502 (2012).

    CAS  PubMed  Google Scholar 

  12. Mostafa, A. et al. Hepatitis C infection and clearance: impact on atherosclerosis and cardiometabolic risk factors. Gut 59, 1135–1340 (2010).

    CAS  PubMed  Google Scholar 

  13. Petta, S., Macaluso, F. S. & Craxi, A. Cardiovascular diseases and HCV infection: a simple association or more? Gut 63, 369–375 (2014).

    PubMed  Google Scholar 

  14. Pol, S., Vallet-Pichard, A. & Hermine, O. Extrahepatic cancers and chronic HCV infection. Nat. Rev. Gastroenterol. Hepatol. 15, 283–290 (2018).

    PubMed  Google Scholar 

  15. Allison, R. D. et al. Increased incidence of cancer and cancer-related mortality among persons with chronic hepatitis C infection, 2006–2010. J. Hepatol. 63, 822–828 (2015).

    PubMed  PubMed Central  Google Scholar 

  16. Fiorino, S. et al. Possible association between hepatitis C virus and malignancies different from hepatocellular carcinoma: a systematic review. World J. Gastroenterol. 21, 12896–12953 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mahale, P. et al. Hepatitis C virus infection and the risk of cancer among elderly US adults: a registry-based case-control study. Cancer 123, 1202–1211 (2017).

    PubMed  PubMed Central  Google Scholar 

  18. Mills, K. T. et al. A systematic analysis of worldwide population-based data on the global burden of chronic kidney disease in 2010. Kidney Int. 88, 950–957 (2015).

    PubMed  PubMed Central  Google Scholar 

  19. Li, L. et al. A within-patient analysis for time-varying risk factors of CKD progression. J. Am. Soc. Nephrol. 25, 606–613 (2014).

    CAS  PubMed  Google Scholar 

  20. Fissell, R. B. et al. Patterns of hepatitis C prevalence and seroconversion in hemodialysis units from three continents: the DOPPS. Kidney Int. 65, 2335–2342 (2004).

    PubMed  Google Scholar 

  21. Lee, M. H. et al. Chronic hepatitis C virus infection increases mortality from hepatic and extrahepatic diseases: a community-based long-term prospective study. J. Infect. Dis. 206, 469–477 (2012).

    PubMed  Google Scholar 

  22. Park, H. et al. A meta-analytic assessment of the risk of chronic kidney disease in patients with chronic hepatitis C virus infection. J. Viral Hepat. 22, 897–905 (2015).

    CAS  PubMed  Google Scholar 

  23. Tarantino, A. et al. Long-term predictors of survival in essential mixed cryoglobulinemic glomerulonephritis. Kidney Int. 47, 618–623 (1995).

    CAS  PubMed  Google Scholar 

  24. Su, F. H. et al. Association of hepatitis C virus infection with risk of ESRD: a population-based study. Am. J. Kidney Dis. 60, 553–560 (2012).

    PubMed  Google Scholar 

  25. Al-Rabadi, L. et al. Rationale for treatment of hepatitis C virus infection in end-stage renal disease patients who are not kidney transplant candidates. Hemodial. Int. 22, S45–S52 (2018).

    PubMed  Google Scholar 

  26. Hsu, Y. C. et al. Association between antiviral treatment and extrahepatic outcomes in patients with hepatitis C virus infection. Gut 64, 495–503 (2015).

    CAS  PubMed  Google Scholar 

  27. Fabrizi, F., Dixit, V. & Messa, P. Impact of hepatitis C on survival in dialysis patients: a link with cardiovascular mortality? J. Viral Hepat. 19, 601–607 (2012).

    CAS  PubMed  Google Scholar 

  28. Pol, S. et al. Chronic hepatitis in kidney allograft recipients. Lancet 335, 878–880 (1990).

    CAS  PubMed  Google Scholar 

  29. Mathurin, P. et al. Impact of hepatitis B and C virus on kidney transplantation outcome. Hepatology 29, 257–263 (1999).

    CAS  PubMed  Google Scholar 

  30. Bruchfeld, A., Wilczek, H. & Elinder, C. G. Hepatitis C infection, time in renal-replacement therapy, and outcome after kidney transplantation. Transplantation 78, 745–750 (2004).

    PubMed  Google Scholar 

  31. Scott, D. R. et al. Adverse impact of hepatitis C virus infection on renal replacement therapy and renal transplant patients in Australia and New Zealand. Transplantation 90, 1165–1171 (2010).

    PubMed  Google Scholar 

  32. Fabrizi, F., Martin, P., Dixit, V., Bunnapradist, S. & Dulai, G. Hepatitis C virus antibody status and survival after renal transplantation: meta-analysis of observational studies. Am. J. Transplant. 5, 1452–1461 (2005).

    CAS  PubMed  Google Scholar 

  33. AASLD–IDSA. HCV guidance: recommendations for testing, managing, and treating hepatitis C. HCV Guidelines http://www.hcvguidelines.org (2017).

  34. European Association for the Study of the Liver. EASL recommendations on treatment of hepatitis C 2016. J. Hepatol. 66, 153–194 (2017).

    Google Scholar 

  35. Jadoul, M. et al. Executive summary of the 2018 KDIGO hepatitis C in CKD guideline: welcoming advances in evaluation and management. Kidney Int. 94, 663–673 (2018).

    PubMed  Google Scholar 

  36. Jadoul, M. et al. Transmission routes of HCV infection in dialysis. Nephrol. Dial. Transplant. 11, 36–38 (1996).

    PubMed  Google Scholar 

  37. Isnard-Bagnis, C. et al. Epidemiology update for HCV and HBV in ESRD in France (REIN registry). Liver Int. 37, 820–826 (2017).

    PubMed  Google Scholar 

  38. Sauné, K. et al. Decreased prevalence and incidence of HCV markers in haemodialysis units: a multicentric French survey. Nephrol. Dial. Transplant. 26, 2309–2316 (2011).

    PubMed  Google Scholar 

  39. Goodkin, D. A. & Bieber, B. International prevalence of hepatitis C positivity among hemodialysis patients awaiting transplantation. Kidney Int. 93, 1249 (2018).

    PubMed  Google Scholar 

  40. Thursz, M. & Fontanet, A. HCV transmission in industrialized countries and resource-constrained areas. Nat. Rev. Gastroenterol. Hepatol. 11, 28–35 (2014).

    CAS  PubMed  Google Scholar 

  41. Goodkin, D. A. et al. Mortality, hospitalization, and quality of life among patients with hepatitis C infection on hemodialysis. Clin. J. Am. Soc. Nephrol. 12, 287–297 (2017).

    PubMed  Google Scholar 

  42. Baid-Agrawal, S. et al. Prevalence of occult hepatitis C infection in chronic hemodialysis and kidney transplant patients. J. Hepatol. 60, 928–933 (2014).

    PubMed  Google Scholar 

  43. Fontaine, H. et al. Reassessment of prognostic impact of infection by hepatitis C and B virus in kidney allograft recipients [C-30]. Presented at the 75th Annual Meeting of the French Association for the Study of Liver in Lille, France (2–5 October 2013).

  44. Boerekamp, A. et al. Declining hepatitis C virus (HCV) incidence in Dutch human immunodeficiency virus-positive men who have sex with men after unrestricted access to HCV therapy. Clin. Infect. Dis. 66, 1360–1365 (2018).

    Google Scholar 

  45. Ozkok, A. & Yildiz, A. Hepatitis C virus associated glomerulopathies. World J. Gastroenterol. 20, 7544–7554 (2014).

    PubMed  PubMed Central  Google Scholar 

  46. Zignego, A. L., Gianini, C. & Gragnani, L. HCV and lymphoproliferation. Clin. Dev. Immunol. 2012, 980–942 (2012).

    Google Scholar 

  47. Sethi, S. & Fervenza, F. C. Membranoproliferative glomerulonephritis-a new look at an old entity. N. Engl. J. Med. 366, 1119–1131 (2012).

    CAS  PubMed  Google Scholar 

  48. Sabry, A. et al. HCV associated glomerulopathy in Egyptian patients: clinicopathological analysis. Virology 334, 10–16 (2005).

    CAS  PubMed  Google Scholar 

  49. Sansonno, D. et al. Hepatitis C virus-related proteins in kidney tissue from hepatitis C virus-infected patients with cryoglobulinemic membranoproliferative glomerulonephritis. Hepatology 25, 1237–1244 (1997).

    CAS  PubMed  Google Scholar 

  50. Negro, F. et al. Extrahepatic morbidity and mortality of chronic hepatitis C. Gastroenterology 149, 1345–1360 (2015).

    PubMed  Google Scholar 

  51. Fabrizi, F. et al. Hepatitis C virus infection, mixed cryoglobulinemia, and kidney disease. Am. J. Kidney Dis. 61, 623–637 (2013).

    PubMed  Google Scholar 

  52. Koutsoudakis, G. et al. The level of CD81 cell surface expression is a key determinant for productive entry of hepatitis C virus into host cells. J. Virol. 81, 588–598 (2007).

    CAS  PubMed  Google Scholar 

  53. Rosa, D. et al. Activation of B lymphocytes via CD81, a pathogenic mechanism for hepatitis C virus-associated B lymphocytes disorders. Proc. Natl Acad. Sci. USA 102, 18544–18549 (2005).

    CAS  PubMed  Google Scholar 

  54. Fletcher, N. F. et al. Hepatitis C virus infects the endothelial cells of the blood-brain barrier. Gastroenterology 142, 634–643 (2012).

    CAS  PubMed  Google Scholar 

  55. Balasubramanian, A. et al. Structural proteins of hepatitis C virus induce interleukin 8 production and apoptosis in human endothelial cells. J. Gen. Virol. 86, 3291–3305 (2005).

    CAS  PubMed  Google Scholar 

  56. Wörnle, M. et al. Novel role of toll-like receptor 3 in hepatitis C-associated glomerulonephritis. Am. J. Pathol. 168, 370–385 (2006).

    PubMed  PubMed Central  Google Scholar 

  57. Abou-Zeid, A. A. & El-Sayegh, H. K. Toll-like receptor 3 gene expression in Egyptian patients with glomerulonephritis and hepatitis C virus infection. Scan. J. Clin. Lab. Invest. 71, 456–461 (2011).

    CAS  Google Scholar 

  58. Hwang, J. C. et al. Impact of HCV infection on diabetes patients for the risk of end-stage renal failure. Medicine 95, e2431 (2016).

    PubMed  PubMed Central  Google Scholar 

  59. Kohli, H. S. et al. Treatment related acute renal failure in the elderly: a hospital-based prospective study. Nephrol. Dial. Transplant. 15, 212–217 (2000).

    CAS  PubMed  Google Scholar 

  60. Naughton, C. A. Drug-induced nephrotoxicity. Am. Fam. Physician 78, 743–750 (2008).

    PubMed  Google Scholar 

  61. Zignego, A. L. et al. Genome-wide association study of Hepatitis C virus- and cryoglobulin-related vasculitis. Genes Immun. 15, 500–505 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Cusato, J. et al. Pharmacogenetic analysis of hepatits C virus related mixed cryoglobulinemia. Pharmacogenomics 18, 607–611 (2017).

    CAS  PubMed  Google Scholar 

  63. Wang, M., Liu, Q. & Liu, C. Correlation of CCR5 and NRLP3 gene polymorphisms with renal damage due to hepatits C virus-related cryoglobulinemia. Exp. Ther. Med. 16, 3055–3059 (2018).

    PubMed  PubMed Central  Google Scholar 

  64. Satapathy, S. K. et al. Higher prevalence of chronic kidney disease and shorter renal survival in patients with chronic hepatitis C virus infection. Hepatol. Int. 6, 369–378 (2012).

    PubMed  Google Scholar 

  65. Park, H. et al. Chronic hepatitis C virus (HCV) increases the risk of chronic kidney disease (CKD) while effective HCV treatment decreases the incidence of CKD. Hepatology 67, 492–504 (2017).

    PubMed Central  Google Scholar 

  66. Molnar, M. Z. et al. Association of hepatitis C viral infection with incidence and progression of chrnonic kidney disease in a large cohort of US veterans. Hepatology 61, 1495–1502 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Fontaine, H. et al. Cross-sectional study of chronic kidney disease prevalence in association with monoinfected patients hepatitis C virus in ANRS CO-22 Hepather cohort [abstract 798]. Hepatology 64, 393 (2016).

    Google Scholar 

  68. Cacoub, P., Desbois, A. C., Comarmond, C. & Saadoun, D. Impact of sustained virological response on the extrahepatic manifestations of chronic hepatitis C: a meta-analysis. Gut 67, 2025–2034 (2018).

    CAS  PubMed  Google Scholar 

  69. Nahon, P. et al. Eradication of hepatitis C virus infection in patients with cirrhosis reduces risk of liver and non-liver complications. Gastroenterology 152, 142–156 (2017).

    PubMed  Google Scholar 

  70. Ioannou, G. N., Green, P. K. & Berry, K. HCV eradication induced by direct-acting antiviral agents reduces the risk of hepatocellular carcinoma. J. Hepatol. 68, 25–32 (2017).

    Google Scholar 

  71. Mallet, V. et al. Brief communication: the relationship of regression of cirrhosis to outcome in chronic hepatitis C. Ann. Intern. Med. 149, 399–403 (2008).

    PubMed  Google Scholar 

  72. Buhler, S. & Bartenschlager, R. New targets for antiviral therapy of chronic hepatitis C. Liver Int. 32, 9–16 (2012).

    PubMed  Google Scholar 

  73. Fontaine, H. et al. Recovery from chronic hepatitis C in long-term responders to ribavirin plus interferon alfa. Lancet 356, 41 (2000).

    CAS  PubMed  Google Scholar 

  74. Pol, S. et al. The negative impact of HBV/HCV coinfection on cirrhosis and its consequences. Aliment. Pharmacol. Ther. 46, 1054–1060 (2017).

    CAS  PubMed  Google Scholar 

  75. Pol, S. et al. Reversibility of hepatitis C virus-related cirrhosis. Hum. Pathol. 35, 107–112 (2004).

    CAS  PubMed  Google Scholar 

  76. Hermine, O. et al. Regression of splenic lymphoma with lymphocytes after treatment of hepatitis C virus infection. N. Engl. J. Med. 347, 89–94 (2002).

    CAS  PubMed  Google Scholar 

  77. Simmons, B., Saleem, J., Hill, A., Riley, R. D. & Cooke, G. S. Risk of late relapse or reinfection with hepatitis C virus after achieving a sustained virological response: a systematic review and meta-analysis. Clin. Infect. Dis. 15, 68394 (2016).

    Google Scholar 

  78. Söderholm, J. et al. Higher risk of renal disease in chronic hepatitis C patients: antiviral therapy survival benefit in patients on hemodialysis. J. Hepatol. 68, 904–911 (2018).

    PubMed  Google Scholar 

  79. Bruchfeld, A. et al. Elbasvir plus grazoprevir in patients with hepatitis C virus infection and stage 4–5 chronic kidney disease: clinical, virological, and health-related quality-of-life outcomes from a phase 3, multicentre, randomised, double-blind, placebo-controlled trial. Lancet Gastroenterol. Hepatol. 2, 585–594 (2017).

    PubMed  Google Scholar 

  80. Cosconea, S. et al. Benefits associated with antiviral treatment in kidney allograft recipents with hepatitis B chronic infection. J. Hepatol. 57, 55–60 (2012).

    CAS  PubMed  Google Scholar 

  81. Liang, T. J. & Ghany, M. G. Therapy of hepatitis C — back to the future. N. Engl. J. Med. 22, 2043–2047 (2014).

    Google Scholar 

  82. Pawlotsky, J. M., Feld, J. J., Zeuzem, S. & Hoofnagle, J. H. From non-A, non-B hepatitis to hepatitis C virus cure. Hepatology 62, S87–S99 (2015).

    CAS  Google Scholar 

  83. Roth, D. et al. Grazoprevir plus elbasvir in treatment-naïve and treatment-experienced patients with hepatitis C virus genotype 1 infection and stage 4–5 chronic kidney disease (the C-SURFER study): a combination phase 3 study. Lancet 386, 1537–1545 (2015).

    CAS  PubMed  Google Scholar 

  84. Pockros, P. J. et al. Efficacy of direct-acting antiviral combination for patients with hepatitis C virus genotype 1 infection and severe renal impairment or end-stage renal disease. Gastroenterology 150, 1590–1598 (2016).

    CAS  PubMed  Google Scholar 

  85. Carrat, F. et al. Clinical outcomes in patients with chronic hepatitis C following direct-acting antiviral therapy: a prospective cohort study. Lancet (in the press).

  86. Mchutchison, J. G. et al. Peginterferon alfa-2b or alfa-2a with ribavirin for treatement of hepatitis C infection. N. Engl. J. Med. 361, 580–593 (2009).

    CAS  PubMed  Google Scholar 

  87. Manns, M. P. et al. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet 358, 958–965 (2001).

    CAS  PubMed  Google Scholar 

  88. Kidney Disease: Improving Global Outcomes (KDIGO). KDIGO clinical practice guidelines for the prevention, diagnosis, evaluation, and treatment of hepatitis C in chronic kidney disease. Kidney Int. 109, S1–S99 (2008).

    Google Scholar 

  89. Zeuzem, S. et al. Glecaprevir–pibrentasvir for 8 or 12 weeks in HCV genotype 1 or 3 infection. N. Engl. J. Med. 378, 354–369 (2018).

    CAS  PubMed  Google Scholar 

  90. Jacobson, I. M. et al. Efficacy of 8 weeks of sofosbuvir, velpatasvir, and voxilaprevir in patients with chronic HCV infection: 2 phase 3 randomized trials. Gastroenterology 153, 113–122 (2017).

    CAS  PubMed  Google Scholar 

  91. Kwo, P. et al. High SVR rates upon 8- or 12-week treatment with glecaprevir and pibrentasvir in patients with chronic HCV genotype 1–6 infection without cirrhosis. J. Hepatol. 67, 263–271 (2017).

    CAS  PubMed  Google Scholar 

  92. Vogel, M. & Rockstroh, J. K. Hepatotoxicity and liver disease in the context of HIV therapy. Curr. Opin. HIV AIDS 2, 306–313 (2007).

    PubMed  Google Scholar 

  93. Hezode, C. et al. Triple therapy in treatment-experienced patients with HCV-cirrhosis in a multicentre cohort of the French Early Access Programme (ANRS CO20-CUPIC) — NCT01514890. J. Hepatol. 59, 434–441 (2013).

    PubMed  Google Scholar 

  94. Gane, E. et al. RUBY-II: efficacy and safety of a ribavirin-free ombitasvir/paritaprevir/ritonavir ± dasabuvir regimen in patients with severe renal impairment or end-stage renal disease and HCV genotype 1a or 4 infection. Presented at the 2016 AASLD Meeting in Boston, USA (11–15 Nov 2016).

  95. Gane, E. et al. Glecaprevir and pibrentasvir in patients with HCV and severe renal impairment. N. Engl. J. Med. 377, 1448–1455 (2017).

    CAS  PubMed  Google Scholar 

  96. Persico, M. et al. Efficacy and safety of glecaprevir/pibrentasvir in renally-impaired patients with chronic hepatitis C virus genotype 1–6 infection [abstract THU-363]. J. Hepatol. 68, S292 (2018).

    Google Scholar 

  97. Puoti, M. et al. High SVR12 with 8-week and 12-week glecaprevir/pibrentasvir therapy: an integrated analysis of HCV genotype 1–6 patients without cirrhosis. J. Hepatol. 69, 293–300 (2018).

    CAS  PubMed  Google Scholar 

  98. Pol, S. et al. Safety and efficacy of glecaprevir/pibrentasvir in adults with chronic hepatitis C virus infection genotype 1–6 and chronic kidney disease: an integrated analysis [abstract SAT-273]. J. Hepatol. 66, S738 (2018).

    Google Scholar 

  99. Reddy, K. R. et al. Elbasvir/grazoprevir does not worsen renal function in patients with hepatitis C virus infection and pre-existing renal disease. Hepatol. Res. 47, 1340–1345 (2017).

    CAS  PubMed  Google Scholar 

  100. Abergel, A. et al. High efficacy and safety of grazoprevir and elbasvir for 8 weeks in treatment-naive, non-severe fibrosis HCV GT1b-infected patients: interim results of the STREAGER study [abstract LBP-010]. J. Hepatol. 68, S110 (2018).

    Google Scholar 

  101. Asselah, T. et al. Efficacy and safety of 8 weeks of elbasvir/grazoprevir in HCV GT4-infected treatment-naive participants [abstract GS-006]. J. Hepatol. 68, S3–S4 (2018).

    Google Scholar 

  102. Sharma, S., Mukherjee, D., Nair, R. K., Datt, B. & Rao, A. Role of direct antiviral agents in treatment of chronic hepatitis C infection in renal transplant recipients. J. Transplant. 28, 7579689 (2018).

    Google Scholar 

  103. Colombo, M. et al. Treatment with ledipasvir-sofosbuvir for 12 or 24 weeks in kidney transplant recipients with chronic hepatitis C virus genotype 1 or 4 infection: a randomized trial. Ann. Intern. Med. 166, 109–117 (2017).

    PubMed  Google Scholar 

  104. Reau, N. et al. Glecaprevir/pibrentasvir treatment in liver or kidney transplant patients with hepatitis C virus infection. Hepatology 68, 1298–1307 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Gane, E. J. et al. Safety, and anti-viral efficacy and pharmacokinetics (PK) of sofosbuvir (SOF) in patients with severe renal impairment [abstract 966]. Hepatology 60 (Suppl), 133A (2014).

    Google Scholar 

  106. Mehta, D. A. et al. Effect of hepatitis C treatment with ombitasvir/paritaprevir/R + dasabuvir on renal, cardiovascular and metabolic extrahepatic manifestations: a post-hoc analysis of phase 3 clinical trials. Infect. Dis. Ther. 6, 515–529 (2017).

    PubMed  PubMed Central  Google Scholar 

  107. Saxena, V. et al. Safety and efficacy of current direct-acting antiviral regimens in kidney and liver transplant recipients with hepatitis C: results from the HCV-TARGET study. Hepatology 66, 1090–1101 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Maan, R. et al. The frequency of acute kidney injury in patients with chronic hepatitis C virus infection treated with sofosbuvir-based regimens. Aliment. Pharmacol. Ther. 46, 46–55 (2017).

    CAS  PubMed  Google Scholar 

  109. Desnoyer, A. et al. Pharmacokinetics, safety and efficacy of a full dose sofosbuvir-based regimen given daily in hemodialysis patients with chronic hepatitis C. J. Hepatol. 65, 40–47 (2016).

    CAS  PubMed  Google Scholar 

  110. Sise, M. E. et al. Effect of sofosbuvir-based hepatitis C virus therapy on kidney function in patients with CKD. Clin. J. Am. Soc. Nephrol. 12, 1615–1623 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Li, T. et al. Efficacy and safety of direct-acting antivirals-based antiviral therapies for hepatitis C virus patients with stage 4–5 chronic kidney disease: a meta-analysis. Liver Int. 37, 974–981 (2017).

    CAS  PubMed  Google Scholar 

  112. Kamar, N. et al. Efficacy and safety of sofosbuvir-based antiviral therapy to treat hepatitis C virus infection after kidney transplantation. Am. J. Transplant. 16, 1474–1479 (2016).

    CAS  PubMed  Google Scholar 

  113. Fernandez, I. et al. Efficacy and tolerability of interferon-free antiviral therapy in kidney transplant recipients with chronic hepatitis C. J. Hepatol. 66, 718–723 (2017).

    CAS  PubMed  Google Scholar 

  114. Kumar, M., Nayak, S. L., Gupta, E., Kataria, A. & Sarin, S. K. Generic sofosbuvir based direct-acting antivirals in hepatitis C virus infected patients with chronic kidney disease. Liver Int. https://doi.org/10.1111/liv.13863 (2018).

    Article  PubMed  Google Scholar 

  115. Gilead Sciences Inc. Sovaldi [package insert]. Gilead.com http://www.gilead.com/~/media/Files/pdfs/medicines/liver-disease/sovaldi/sovaldi_pi.pdf (2017).

  116. Bourliere, M. et al. Sofosbuvir, velpatasvir, and voxilaprevir for previously treated HCV infection. N. Engl. J. Med. 376, 2134–2146 (2017).

    CAS  PubMed  Google Scholar 

  117. Mallet, V. et al. Estimated glomerular filtration rate variations and direct acting antivirals treatment for chronic hepatitis C: a retrospective longitudinal study. J. Hepatol. 68, S22 (2018).

    Google Scholar 

  118. Strazzulla, A. et al. Evolution of glomerular filtration rates and neutrophil gelatinase-associated lipocalin during treatment with direct acting antivirals. Clin. Mol. Hepatol. 24, 151–162 (2018).

    PubMed  PubMed Central  Google Scholar 

  119. Ho, E. S., Lin, D. C., Mendel, D. B. & Cihlar, T. Cytotoxicity of antiviral nucleotides adefovir and cidofovir is induced by the expression of human renal organic anion transporter 1. J. Am. Soc. Nephrol. 11, 383–393 (2000).

    CAS  PubMed  Google Scholar 

  120. Kohler, J. J. et al. Tenofovir renal proximal tubular toxicity is regulated by OAT1 and MRP4 transporters. Lab. Invest. 91, 852–858 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Tong, X. & Spradling, P. R. Increase in nonhepatic diagnoses among persons with hepatitis C hospitalized for any cause, United States, 2004–2011. J. Viral Hepat. 22, 906–913 (2015).

    CAS  PubMed  Google Scholar 

  122. Butt, A. A., Wang, X. & Fried, L. F. HCV infection and the incidence of CKD. Am. J. Kidney Dis. 57, 396–402 (2011).

    PubMed  Google Scholar 

  123. Lazarus, J. V. et al. Micro-elimination — a path to global elimination of hepatitis C. J. Hepatol. 67, 665–666 (2017).

    PubMed  Google Scholar 

  124. Razavi, H. et al. Hepatitis C virus prevalence and level of intervention required to achieve the WHO targets for elimination in the European Union by 2030: a modelling study. Lancet Gastroenterol. Hepatol. 2, 325–336 (2017).

    Google Scholar 

  125. de Franchis, R. & Baveno, V.I.Faculty. Expanding consensus in portal hypertension: report of the Baveno VI consensus workshop: stratifying risk and individualizing care for portal hypertension. J. Hepatol. 63, 743–752 (2015).

    PubMed  Google Scholar 

  126. Jadoul, M. & Horsmans, Y. Towards eradication of hepatitis C virus from dialysis units. Lancet 38, 1514–1515 (2015).

    Google Scholar 

  127. Jadoul, M. The prevention of hepatitis C virus transmission to hemodialysis patients and staff members. Hemodial. Int. 22, S104–S109 (2018).

    PubMed  Google Scholar 

  128. O’Shaughnessy, M. M. et al. Re-infection following sustained virological response with a different hepatitis C virus genotype: implications for infection control policy. Clin. Kidney J. 5, 250–253 (2012).

    PubMed  PubMed Central  Google Scholar 

  129. US Department of Health & Human Services. Organ procurement and transplantation network. HRSA.gov https://optn.transplant.hrsa.gov/ (2018).

  130. Haute Autorité de Santé. HAS homepage [French]. HAS https://www.has-sante.fr/ (2018).

  131. Roth, D. & Ladino, M. Transplantation of kidneys from HCV-positive donors: how to best use a scarce resource. J. Am. Soc. Nephrol. 28, 3139–3141 (2017).

    PubMed  PubMed Central  Google Scholar 

  132. Gupta, G. et al. Long-term outcomes and transmission rates in hepatitis C virus-positive donor to hepatitis C virus-negative kidney transplant recipients: analysis of United States national data. Clin. Transplant. 31, e13055 (2017).

    Google Scholar 

  133. Kadatz, M., Klarenbach, S., Gill, J. & Gill, J. S. Cost-effectiveness of using kidneys from hepatitis C nucleic acid test positive donors for transplantation in hepatitis C negative recipients. Am. J. Transplant. 18, 2457–2464 (2018).

    PubMed  Google Scholar 

  134. Goldberg, D. S., Abt, P. L. & Reese, P. P. Transplanting HCV-infected kidneys into uninfected recipients. N. Engl. J. Med. 377, 1105 (2017).

    PubMed  Google Scholar 

  135. Reese, P. P. et al. Twelve-month outcomes after transplant of hepatitis C–infected kidneys into uninfected recipients. Ann. Intern. Med. 169, 273–281 (2018).

    PubMed  Google Scholar 

  136. Durand, C. et al. EXPANDER-1: exploring renal transplants using hepatitis-C infected donors for HCV-negative recipients [abstract 2]. Am. J. Transplant. 17 (Suppl. 3), 207 (2017).

    Google Scholar 

  137. Parlati, L. et al. Evidence of HCV recovery after therapy of hepatitis C virus infection by direct acting antivirals. Clin. Res. Hepatol. Gastroenterol. https://doi.org/10.1016/j.clinre.2018.09.002 (2018).

    Article  PubMed  Google Scholar 

  138. Mehra, M. R. et al. The drug-intoxication epidemic and solid-organ transplantation. N. Engl. J. Med. 378, 1943–1945 (2018).

    PubMed  Google Scholar 

Download references

Reviewer information

Nature Reviews Nephrology thanks L. Rostaing, M. Sise and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching data for the article, discussions of the article’s content, writing the article, and review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Stanislas Pol.

Ethics declarations

Competing interests

S.P. has acted as a speaker or board member for Bristol-Myers Squibb, Boehringer Ingelheim, Janssen, Gilead, Roche, MSD and Abbvie, and has received grants from Bristol-Myers Squibb, Gilead, Roche, Abbvie and MSD. M.J. has acted as a speaker for MSD and Abbvie, and as a Board Member for MSD. He has also received a grant from MSD. He co-chaired the 2018 update of the HCV and CKD KDIGO Guideline and is co-chair elect of KDIGO. L.P. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Variceal haemorrhage

Haematemesis or melena caused by esophageal or gastric varices rupture due to portal hypertension (associated with cirrhosis or non-cirrhotic portal hypertension).

Ascites

Transudate abdominal effusion caused by the combination of portal hypertension and liver failure (hypoalbuminaemia) in cirrhosis.

Cryoglobulinaemia

The presence of proteins (mostly immunoglobulins) that precipitate and become insoluble at low temperatures (<37 °C).

Non-Hodgkin lymphoma

A group of blood cancers that develop in lymphocytes and include all types of lymphoma except Hodgkin lymphoma. Risk factors for developing non-Hodgkin lymphoma include hepatitis C virus infection, Epstein Barr virus infection, Helicobacter pylori infection and autoimmune disease.

Sustained virologic response

(SVR). Defined by undetectable levels of hepatitis C virus RNA in the serum 12 or 24 weeks after the end of antiviral treatment and corresponds to virologic cure.

Complement

A component of the innate immune system that promotes phagocytosis through opsonization of antigens and inflammation through the attraction of macrophages and neutrophils and the destruction of pathogenic cell membranes.

Fibrinoid necrosis

A form of necrosis that is characterized by the accumulation of a proteinaceous material in the matrix in response to an inflammatory stimulus. It is typical of immune vasculitis.

Cryoglobulins

Proteins (mostly immunoglobulins) that precipitate and become insoluble at low temperatures (<37 °C)

Crescents

Histological manifestations of glomerulonephritis that are caused by the proliferation of parietal epithelial cells lining the Bowman capsule in response to an inflammatory stimulus.

Tubular casts

The result of the intraluminal precipitation of Tamm–Horsfall mucoproteins, which are secreted by renal tubular cells. Cast formation is favoured by low flow, concentrated salts and low pH.

Enzyme immunoassay

(EIA). A biochemical test that measures the presence and/or concentration of a protein or enzyme in a solution (serum or urine) through the use of a specific antibody.

Ritonavir boost

Ritonavir is an efficient anti-HIV agent but is toxic at therapeutic doses. It is now used as a ‘booster’, to enhance the efficacy of protease inhibitors, thereby enabling the use of lower doses and reducing their putative toxicity.

Second-generation DAAs

Direct-acting antivirals (DAAs) available from 2013, including sofosbuvir, simeprevir, daclatasvir, ledipasvir, paritaprevir, ritonavir, ombitasvir, dasabuvir, elbasvir and grazoprevir.

Pangenotypic

Refers to direct-acting antivirals with established efficacy regardless of the hepatitis C virus genotype.

Decompensated cirrhosis

Refers to cirrhosis with ascites, variceal bleeding or hepatic encephalopathy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pol, S., Parlati, L. & Jadoul, M. Hepatitis C virus and the kidney. Nat Rev Nephrol 15, 73–86 (2019). https://doi.org/10.1038/s41581-018-0081-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-018-0081-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing