Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The changing landscape of HIV-associated kidney disease

Abstract

The HIV epidemic has devastated millions of people globally, with approximately 40 million deaths since its start. The availability of antiretroviral therapy (ART) has transformed the prognosis of millions of individuals infected with HIV such that a diagnosis of HIV infection no longer automatically confers death. However, morbidity and mortality remain substantial among people living with HIV. HIV can directly infect the kidney to cause HIV-associated nephropathy (HIVAN) — a disease characterized by podocyte and tubular damage and associated with an increased risk of kidney failure. The reports of HIVAN occurring primarily in those of African ancestry led to the discovery of its association with APOL1 risk alleles. The advent of ART has led to a substantial decrease in the prevalence of HIVAN; however, reports have emerged of an increase in the prevalence of other kidney pathology, such as focal segmental glomerulosclerosis and pathological conditions associated with co-morbidities of ageing, such as hypertension and diabetes mellitus. Early initiation of ART also results in a longer cumulative exposure to medications, increasing the likelihood of nephrotoxicity. A substantial body of literature supports the use of kidney transplantation in people living with HIV, demonstrating significant survival benefits compared with that of people undergoing chronic dialysis, and similar long-term allograft and patient survival compared with that of HIV-negative kidney transplant recipients.

Key points

  • The widespread use of antiretroviral therapy has led to a change in the histological pattern of kidney disease in people living with HIV (PLWH) away from HIV-associated nephropathy and towards comorbid diseases of ageing and antiretroviral therapy-related nephrotoxicity.

  • Biopsy remains crucial for the appropriate management of an array of kidney diseases in PLWH; the current classification of kidney histology is based on the major tissue compartments affected, and is aimed at reducing heterogeneity in the biopsy definitions of HIV-related kidney disease and encouraging awareness of potential secondary causes of disease.

  • The new race-neutral creatinine-based equation for estimating the glomerular filtration rate identified more Black individuals with a lower estimated glomerular filtration rate than previously recognized, and exposed a subgroup of Black individuals living with HIV who are at an increased risk of chronic kidney disease progression.

  • The presence of APOL1 risk alleles influences the pattern of kidney disease in PLWH, its response to therapy and its outcomes; clinical trials are investigating therapeutic options to reduce APOL1 protein and/or its activity, which may ameliorate its potential harm.

  • Kidney transplantation in PLWH from both HIV-negative and HIV-positive donors is highly successful, and the donation of organs from PLWH may be an option for increasing the number of organs available for transplantation; however, this approach requires further evaluation before being adopted as standard clinical practice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global HIV prevalence amongst adults and children in 2022.
Fig. 2: Pathological classification of HIV-associated kidney disease.
Fig. 3: Proposed major mechanisms by which HIV infection promotes kidney injury.

Similar content being viewed by others

References

  1. UNAIDS. In Danger: UNAIDS Global AIDS Update 2022 https://www.unaids.org/en/resources/documents/2022/in-danger-global-aids-update (Joint United Nations Programme on HIV/AIDS, 2022).

  2. Rao, T. K. et al. Associated focal and segmental glomerulosclerosis in the acquired immunodeficiency syndrome. N. Engl. J. Med. 310, 669–673 (1984).

    Article  CAS  PubMed  Google Scholar 

  3. D’Agati, V., Suh, J. I., Carbone, L., Cheng, J. T. & Appel, G. Pathology of HIV-associated nephropathy: a detailed morphologic and comparative study. Kidney Int. 35, 1358–1370 (1989).

    Article  PubMed  Google Scholar 

  4. Kudose, S. et al. The spectrum of kidney biopsy findings in HIV-infected patients in the modern era. Kidney Int. 97, 1006–1016 (2020).

    Article  PubMed  Google Scholar 

  5. Diana, N. E. et al. Clinicopathological correlation of kidney disease in HIV infection pre- and post-ART rollout. PLoS One 17, e0269260 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Achhra, A. C. et al. Impact of early versus deferred antiretroviral therapy of estimated glomerular filtration rate in HIV-positive individuals in the START trial. Int. J. Antimicrob. Agents 50, 453–460 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stock, P. G. et al. Outcomes of kidney transplantation in HIV-infected recipients. N. Engl. J. Med. 18, 363 (2010). Erratum in: N Engl J Med. 364, 1082 (2011).

    Google Scholar 

  8. Muller, E. et al. Kidney transplantation in HIV-positive patients: current practice and management strategies. Transplantation 105, 1492–1501 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kimmel, P. L., Barisoni, L. & Kopp, J. B. Pathogenesis and treatment of HIV-associated renal diseases: lessons from clinical and animal studies, molecular pathologic correlations, and genetic investigations. Ann. Intern. Med. 139, 214–226 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Lescure, F. X. et al. HIV-associated kidney glomerular diseases: changes with time and HAART. Nephrol. Dial. Transpl. 27, 2349–2355 (2012).

    Article  Google Scholar 

  11. Swanepoel, C. R. et al. Kidney disease in the setting of HIV infection: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) controversies conference. Kidney Int. 93, 545–559 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wearne, N. et al. The evolving spectrum of kidney histology in HIV positive patients in South Africa. Kidney Int. Rep. 8, 1087–1096 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mallipattu, S. K., Salem, F. & Wyatt, C. M. The changing epidemiology of HIV-related chronic kidney disease in the era of antiretroviral therapy. Kidney Int. 86, 259–265 (2014).

    Article  PubMed  Google Scholar 

  14. Wyatt, C. M., Klotman, P. E. & DÁgati, V. D. HIV-associated nephropathy: clinical presentation, pathology and epidemiology in the era of antiretroviral therapy. Semin. Nephrol. 28, 513–522 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Alfano, G. et al. Kidney disease in HIV infection. J. Clin. Med. 8, 1254 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Remark, R. et al. In-depth tissue profiling using multiplexed immunohistochemical consecutive staining on single slide. Sci. Immunol. 1, aaf6925 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Xu, G. J. et al. Viral immunology. Comprehensive serological profiling of human populations using a synthetic human virome. Science 348, aaa0698 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kimmel, P. L. et al. Brief report: idiotypic IgA nephropathy in patients with human immunodeficiency virus infection. N. Engl. J. Med. 327, 702–706 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Kimmel, P. L. et al. HIV-associated immune-mediated renal disease. Kidney Int. 44, 1327–1340 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Gerntholtz, T. E., Goetsch, S. J. & Katz, I. HIV-related nephropathy: a South African perspective. Kidney Int. 69, 1885–1891 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Vermeulen, A. et al. Patterns of renal disease: a 30-year renal biopsy study at Chris Hani Baragwanath Academic Hospital, Soweto, Johannesburg, South Africa. S Afr. Med. J. 109, 486–492 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Nair, R., Walker, P. D. & Is, I. G. A nephropathy the commonest primary glomerulopathy among your adults in the USA? Kidney Int. 69, 1455–1458 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Fabrizi, F. et al. Hepatitis C virus increases the risk of kidney disease among HIV-positive patients: systematic review and meta-analysis. J. Med. Virol. 88, 487–497 (2016).

    Article  PubMed  Google Scholar 

  24. Mocroft, A. et al. Hepatitis B and co-infection are independent predictors of progressive kidney disease in HIV-positive, antiretroviral-treated adults. PLoS One 7, e40245 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Davidson, B. et al. Granulomatous interstitial nephritis on renal biopsy in human immunodeficiency virus positive patients: prevalence and causes in Cape Town, South Africa. Nephrology 24, 681–688 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Kearns, A., Gordon, J., Burdo, T. H. & Qin, X. HIV-1-associated atherosclerosis: unraveling the missing link. J. Am. Coll. Cardiol. 69, 3084–3098 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ipp, H. & Zemlin, A. The paradox of the immune response in HIV infection: when inflammation becomes harmful. Clin. Chim. Acta 416, 96–99 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Kelesidis, T., Kendall, M. A., Yang, O. O., Hodis, H. N. & Currier, J. S. Biomarkers of microbial translocation and macrophage activation: association with progression of subclinical atherosclerosis in HIV-1 infection. J. Infect. Dis. 206, 1558–1567 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alcaide, M. L. et al. Immune activation in HIV-infected aging women on antiretrovirals-implications for age-associated comorbidities: a cross-sectional pilot study. PLoS One 8, e63804 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ma, R., Yang, L., Niu, F. & Buch, S. HIV Tat-mediated induction of human brain microvascular endothelial cell apoptosis involves endoplasmic reticulum stress and mitochondrial dysfunction. Mol. Neurobiol. 53, 132–142 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Guo, H., Gao, J., Taxman, D. J., Ting, J. P. & Su, L. HIV-1 infection induces interleukin-1β production via TLR8 protein-dependent and NLRP3 inflammasome mechanisms in human monocytes. J. Biol. Chem. 289, 21716–21726 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hernandez, J. C., Latz, E. & Urcuqui-Inchima, S. HIV-1 induces the first signal to activate the NLRP3 inflammasome in monocyte-derived macrophages. Intervirology 57, 36–42 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Brown, T. T. et al. Antiretroviral therapy and the prevalence and incidence of diabetes mellitus in the multicenter AIDS cohort study. Arch. Intern. Med. 165, 1179–1184 (2005).

    Article  PubMed  Google Scholar 

  34. Heron, J. E. et al. The prevalence and risk of non-infectious comorbidities in HIV infected and non-HIV infected men attending general practice in Australia. PLoS One 14, e0223224 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Høgh, J. et al. HIV infection as associated with type 2 diabetes mellitus. J. Acquir. Immune Defic. Syndr. 88, e32–e35 (2021).

    Article  PubMed  Google Scholar 

  36. Noubissi, E. C., Katte, J. C. & Sobngwi, E. Diabetes and HIV. Curr. Diab Rep. 18, 125 (2018).

    Article  PubMed  Google Scholar 

  37. Mallipattu, S. K. et al. Expression of HIV transgene aggravates kidney injury in diabetic mice. Kidney Int. 83, 626–634 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gooden, T. E. et al. A matched cohort study investigating premature, accentuated, and accelerated aging in people living with HIV. HIV Med. 24, 640–647 (2023).

    Article  PubMed  Google Scholar 

  39. Cohen, S. & Kimmel, P. Renal biopsy is necessary for the diagnosis of HIV-associated renal diseases. Nat. Rev. Nephrol. 5, 22–23 (2009).

    Article  Google Scholar 

  40. Soler-García, A. A., Rakhmanina, N. Y., Mattison, P. C. & Ray, P. E. A urinary biomarker profile for children with HIV-associated renal diseases. Kidney Int. 76, 207–214 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Paragas, N. et al. Urinary NGAL marks cystic disease in HIV-associated nephropathy. J. Am. Soc. Nephrol. 20, 1687–1692 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sola-Del Valle, D. A. et al. Urinary NGAL is a useful clinical biomarker of HIV-associated nephropathy. Nephrol. Dial. Transpl. 26, 2387–2390 (2011).

    Article  CAS  Google Scholar 

  43. Naicker, S. et al. Profiling biomarkers in HIV glomerular disease — potential for the non-invasive diagnosis of HIVAN? Int. J. Nephrol. Renovasc Dis. 14, 427–440 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Griffin, B. R., Faubel, S. & Edelstein, C. L. Biomarkers of drug-induced kidney toxicity. Ther. Drug. Monit. 41, 213–226 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fiseha, T. & Gebreweld, A. Urinary markers of tubular injury in HIV-infected patients. Biochem. Res. Int. 2016, 1501785 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Shlipak, M. G. et al. Urinary markers of kidney injury and kidney function decline in HIV-infected women. J. Acquir. Immune Defic. Syndr. 61, 565–573 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Inker, L. A. et al. Performance of creatinine and cystatin C GFR estimating equations in an HIV population on antiretrovirals. J. Acquir. Immune Defic. Syndr. 61, 302–309 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gagneux-Brunon, A. et al. Performance of creatinine and cystatin C-based glomerular filtration rate estimation equations in a European HIV-positive cohort. AIDS 27, 1573–1581 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. European AIDS Clinical Society guidelines Oct 2021. https://www.eacsociety.org/guidelines/eacs-guidelines/ (accessed January 2023).

  50. Levey, A. S. et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med 150, 604–612 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Degado, C. et al. Reassessing the inclusion of race in diagnosing kidney diseases: an interim report from the NKF-ASN Task Force. Am. J. Kidney Dis. 78, 103–115 (2021).

    Article  Google Scholar 

  52. Degado, C. et al. A unifying approach for GFR estimation: recommendations of the NKF-ASN task force on reassessing the inclusion of race in diagnosing kidney disease. Am. J. Kidney Dis. 79, 268–288.e1 (2022).

    Article  Google Scholar 

  53. Muiru, A. N. et al. Effect of adopting the new race-free 2021 chronic kidney disease epidemiology collaboration estimated glomerular filtration rate creatinine equation on racial differences in kidney disease progression among people with human immunodeficiency virus: an observational study. Clin. Infect. Dis. 76, 461–468 (2023).

    Article  CAS  PubMed  Google Scholar 

  54. Fabian, J. et al. Measurement of kidney function in Malawi, South Africa, and Uganda: a multicenter cohort study. Lancet Glob. Health 10, e1159–e1169 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Inker, L. A. et al. New creatinine-and cystatin C–based equations to estimate GFR without race. N. Engl. J. Med. 385, 1737–1749 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bhasin, B. et al. Correction: HIV viremia and T-cell activation differentially affect the performance of glomerular filtration rate equations based on creatinine and cystatin C. PLoS One 14, e0215630 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bruggeman, L. A. et al. Renal epithelium is a previously unrecognized site of HIV-1 infection. J. Am. Soc. Nephrol. 11, 2079–2087 (2000).

    Article  PubMed  Google Scholar 

  58. Marras, D. et al. Replication and compartmentalization of HIV-1 in kidney epithelium of patients with HIV-associated nephropathy. Nat. Med. 8, 522–526 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Payne, E. H., Ramalingam, D., Fox, D. T. & Klotman, M. E. Polyploidy and mitotic cell death are two distinct HIV-1 Vpr-driven outcomes in renal tubule epithelial cells. J. Virol. 92, e01718–17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bruggeman, L. A. et al. Nephropathy in human immunodeficiency virus-1 transgenic mice is due to renal transgene expression. J. Clin. Invest. 100, 84–92 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Husain, M. et al. HIV-1 Nef induces proliferation and anchorage-independent growth in podocytes. J. Am. Soc. Nephrol. 13, 1806–1815 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Dickie, P. et al. HIV-associated nephropathy in transgenic mice expressing HIV-1 genes. Virology 185, 109–119 (1991).

    Article  CAS  PubMed  Google Scholar 

  63. Zuo, Y. et al. HIV-1 genes vpr and nef synergistically damage podocytes, leading to glomerulosclerosis. J. Am. Soc. Nephrol. 17, 2832–2843 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Conaldi, P. G. et al. Human immunodeficiency virus-1 tat induces hyperproliferation and dysregulation of renal glomerular epithelial cells. Am. J. Pathol. 61, 53–61 (2002).

    Article  Google Scholar 

  65. Winston, J. A. et al. Nephropathy and establishment of a renal reservoir of HIV type 1 during primary infection. N. Engl. J. Med. 344, 1979–1984 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Pierson, T., McArthur, J. & Siliciano, R. F. Reservoirs for HIV-1: mechanisms for viral persistence in the presence of antiviral immune responses and antiretroviral therapy. Annu. Rev. Immunol. 18, 665–708 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Cohen, A. H., Sun, N. C., Shapshak, P. & Imagawa, D. T. Demonstration of human immunodeficiency virus in renal epithelium in HIV-associated nephropathy. Mod. Pathol. 2, 125–128 (1989).

    CAS  PubMed  Google Scholar 

  68. Blasi, M. et al. Identification of HIV-1 genitourinary tract compartmentalization by analyzing the env gene sequences in urine. AIDS 29, 1651–1657 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Mzingwane, M. L. et al. Detection and molecular characterization of urinary tract HIV-1 populations. Ann. Clin. Microbiol. Antimicrob. 18, 27 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Canaud, G. et al. The kidney as a reservoir for HIV-1 after renal transplantation. J. Am. Soc. Nephrol. 25, 407–419 (2014).

    Article  PubMed  Google Scholar 

  71. Blasi, M. et al. Detection of donor’s HIV strain in HIV-positive kidney transplant recipient. N. Engl. J. Med. 382, 195–197 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Dufour, C. et al. Near full-length HIV sequencing in multiple tissues collected postmortem reveals shared clonal expansions across distinct reservoirs during ART. Cell Rep. 42, 113053 (2023).

    Article  CAS  PubMed  Google Scholar 

  73. Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tzur, S. et al. Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene. Hum. Genet. 128, 345–350 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Daneshpajouhnejad, P., Kopp, J. B., Winkler, C. A. & Rosenberg, A. Z. The evolving story of apolipoprotein L1 nephropathy: the end of the beginning. Nat. Rev. Nephrol. 18, 307–320 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dummer, P. D. et al. APOL1 kidney disease risk variants: an evolving landscape. Semin. Nephrol. 35, 222–236 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kopp, J. B. et al. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J. Am. Soc. Nephrol. 22, 2129–2137 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kasembeli, A. N. et al. APOL1 risk variants are strongly associated with HIV-associated nephropathy in black South Africans. J. Am. Soc. Nephrol. 26, 2882–2890 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Atta, M. G. et al. Association of APOL1 genotype with renal histology among black HIV-positive patients undergoing kidney biopsy. Clin. J. Am. Soc. Nephrol. 11, 262–270 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Abdu, A. et al. High risk APOL1 genotypes and kidney disease among treatment naïve HIV patients at Kano, Nigeria. PLoS One 17, e0275949 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hung, R. K. Y. et al. Genetic variants of APOL1 are major determinants of kidney failure in people of African ancestry with HIV. Kidney Int. Rep. 7, 786–796 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Waziri, B., Raji, Y. E., Ekrikpo, U. E. & Naicker, S. Apolipoprotein L1 gene variants and kidney disease in patients with HIV: a systematic review and meta-analysis. J. Nephrol. 36, 1119–1134 (2023).

    Article  CAS  PubMed  Google Scholar 

  83. Fine, D. M. et al. APOL1 risk variants predict histopathology and progression to ESRD in HIV-related kidney disease. J. Am. Soc. Nephrol. 23, 343–350 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Purswani et al. Pediatric HIVAIDS Cohort Study. Brief report: APOL1 renal risk variants are associated with chronic kidney disease in children and youth with perinatal HIV infection. J. Acquir. Immune Defic. Syndr. 73, 63–68 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ekulu, P. M. et al. APOL1 risk genotypes are associated with early kidney damage in children in Sub-Saharan Africa. Kidney Int. Rep. 4, 930–938 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Behar, D. M. et al. Absence of APOL1 risk variants protects against HIV-associated nephropathy in the Ethiopian population. Am. J. Nephrol. 34, 452–459 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Rosset, S., Tzur, S., Behar, D. M., Wasser, W. G. & Skorecki, K. The population genetics of chronic kidney disease: insights from the MYH9-APOL1 locus. Nat. Rev. Nephrol. 7, 313–326 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Johnstone, D. B. et al. APOL1 null alleles from a rural village in India do not correlate with glomerulosclerosis. PLoS One 7, e51546 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Friedman, D. J. A brief history of APOL1: a gene evolving. Semin. Nephrol. 37, 508–513 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Olabisi, O. A. et al. APOL1 kidney disease risk variants cause cytotoxicity by depleting cellular potassium and inducing stress-activated protein kinases. Proc. Natl Acad. Sci. USA 113, 830–837 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Rednor, S. J. & Ross, M. J. Molecular mechanisms of injury in HIV-associated nephropathy. Front. Med. 5, 177 (2018).

    Article  Google Scholar 

  92. Beckerman, P. et al. Transgenic expression of human APOL1 risk variants in podocytes induces kidney disease in mice. Nat. Med. 23, 429–438 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. McCarthy, G. M. et al. Recessive, gain-of-function toxicity in an APOL1 BAC transgenic mouse model mirrors human APOL1 kidney disease. Dis. Model. Mech. 14, dmm048952 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kalayjian, R. C. The treatment of HIV-associated nephropathy. Adv. Chronic Kidney Dis. 17, 59–71 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Estrella, M. M. et al. The association between APOL1 risk alleles and longitudinal kidney function differs by HIV viral suppression status. Clin. Infect. Dis. 60, 646–652 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Freedman, B. I. & Skorecki, K. Gene-gene and gene-environment interactions in apolipoprotein L1 gene-associated nephropathy. Clin. J. Am. Soc. Nephrol. 9, 2006–2013 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Danwang, C., Noubiap, J. J., Robert, A. & Yombi, J. C. Outcomes of patients with HIV and COVID-19 co-infection: a systematic review and meta-analysis. AIDS Res. Ther. 19, 3 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bertagnolio, S. et al. Clinical features of, and risk factors for, severe or fatal COVID-19 among people living with HIV admitted to hospital: analysis of data from the WHO Global Clinical Platform of COVID-19. Lancet HIV. 9, e486–e495 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. May, R. M. et al. A multi-center retrospective cohort study defines the spectrum of kidney pathology in Coronavirus 2019 Disease (COVID-19). Kidney Int. 100, 1303–1315 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Velez, J. C., Caza, T. & Larsen, C. COVAN is the new HIVAN: the re-emergence of collapsing glomerulopathy with COVID-19. Nat. Rev. Nephrol. 16, 565–567 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shetty, A. A. et al. COVID-19-associated glomerular disease. J. Am. Soc. Nephrol. 32, 33 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Wu, H. L. et al. Acute kidney injury and collapsing glomerulopathy associated with COVID-19 and APOL1 high risk genotype. J. Am. Soc. Nephrol. 31, 1688–1695 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Giannini, G. et al. Renal prognosis of COVID-19 associated nephropathy. Kidney Int. Rep. 7, 2722–2725 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Kudose, S. et al. Longitudinal outcomes of COVID-19-associated collapsing glomerulopathy and other podocytopathies. J. Am. Soc. Nephrol. 32, 2958–2969 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. World Health Organization. Consolidated guidelines on HIV prevention, testing, treatment, service delivery and monitoring: recommendations for a public health approach. https://www.who.int/publications/i/item/9789240031593 (World Health Organization, 2021; accessed January 2023).

  106. Acquah, R., Graham, H. & Winter, A. Quantifying polypharmacy in a large HIV-infected cohort. HIV Med. 16, 583–584 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Bastida, C. et al. Polypharmacy and potential drug-drug interactions in an HIV-infected elderly population. Farm. Hosp. 41, 618–624 (2017).

    PubMed  Google Scholar 

  108. Cohen, S. D., Kopp, J. B. & Kimmel, P. L. Kidney diseases associated with human immunodeficiency virus infection. N. Engl. J. Med. 14, 377 (2017). Erratum in: N. Engl. J. Med. 378, 1657 (2018).

    Google Scholar 

  109. Hamzah, L. et al. Treatment-limiting renal tubulopathy in patients treated with tenofovir disoproxil fumarate. J. Infect. 74, 492–500 (2017).

    Article  CAS  PubMed  Google Scholar 

  110. Irizarry-Alvarado, J. M., Dwyer, J. P., Brumble, L. M., Alvarez, S. & Mensez, J. C. Proximal tubular dysfunction associated with tenofovir and didanosine causing Fanconi syndrome and diabetes insipidus: a report of 3 cases. AIDS Read. 19, 114–121 (2009).

    PubMed  Google Scholar 

  111. Iwata, K., Nagata, M., Watanabe, S. & Nishi, S. Distal renal tubular acidosis without renal impairment after use of tenofovir: a case report. BMC Pharm. Toxicol. 17, 52 (2016).

    Article  Google Scholar 

  112. Fernandez-Fernandez, B. et al. Tenofovir nephrotoxicity: 2011 update. AIDS Res. Treat. 2011, 354908 (2011).

    PubMed  PubMed Central  Google Scholar 

  113. Mocroft, A. et al. Cumulative and current exposure to potentially nephrotoxic antiretrovirals and development of chronic kidney disease in HIV-positive individuals with a normal baseline estimated glomerular filtration rate: a prospective international Cohort Study. Lancet HIV. 3, e23–e32 (2016).

    Article  PubMed  Google Scholar 

  114. Cooper, R. D. et al. Systematic review and meta-analysis: renal safety of tenofovir disoproxil fumarate in HIV-infected patients. Clin. Infect. Dis. 51, 496–505 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Stray, K. M. et al. Tenofovir alafenamide (TAF) does not deplete mitochondrial DNA in human T-cell lines at intracellular concentrations exceeding clinically relevant drug exposures. Antivir. Res. 140, 116–120 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Novick, T. K. et al. Tenofovir alafenamide nephrotoxicity in an HIV-positive patient: a case report. Medicine 96, e8046 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Bahr, N. C. & Yarlagadda, S. G. Fanconi syndrome and tenofovir alafenamide: a case report. Ann. Intern. Med. 170, 814 (2019).

    Article  PubMed  Google Scholar 

  118. Post, F. A. et al. Brief report: switching to tenofovir alafenamide, coformulated with elvitegravir, cobicistat, and emtricitabine, in HIV-infected adults with renal impairment: 96-week results from a single-arm, multicenter, open-label phase 3 study. J. Acquir. Immune Defic. Syndr. 74, 180 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pilkington, V. et al. Tenofovir alafenamide vs. tenofovir disoproxil fumarate: an updated meta-analysis of 14894 patients across 14 trials. AIDS 34, 2259–2268 (2020).

    Article  PubMed  Google Scholar 

  120. Burgos, J., Ribera, E. & Falco, V. Antiretroviral therapy in advanced HIV disease: which is the best regimen? AIDS Rev. 20, 3–13 (2018).

    Article  PubMed  Google Scholar 

  121. Achhra, A. C., Nugent, M., Mocroft, A., Ryom, L. & Wyatt, C. M. Chronic kidney disease and antiretroviral therapy in HIV-positive individuals: recent developments. Curr. HIV/AIDS Rep. 13, 149–157 (2016).

    Article  PubMed  Google Scholar 

  122. Chughlay, M. F. et al. Acute interstitial nephritis caused by lopinavir/ritonavir in a surgeon receiving antiretroviral postexposure prophylaxis. AIDS 29, 503–504 (2015).

    Article  PubMed  Google Scholar 

  123. Hamada, Y. et al. High incidence of renal stones among HIV-infected patients on ritonavir-boosted atazanavir than in those receiving other protease inhibitor-containing antiretroviral therapy. Clin. Infect. Dis. 55, 1262–1269 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Schmid, S. et al. Acute interstitial nephritis of HIV positive patients under atazanavir and tenofovir therapy in a retrospective analysis of kidney biopsies. Virchows Arch. 450, 665–670 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Jose, S. et al. Improved kidney function in patients who switch their protease inhibitor from atazanavir or lopinavir to darunavir. AIDS 31, 485–492 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Gupta, S. K., Mi, D., Moe, S. M., Dubé, M. P. & Liu, Z. Effects of switching from efavirenz to raltegravir on endothelial function, bone mineral metabolism, inflammation, and renal function: a randomized, controlled trial. J. Acquir. Immune Defic. Syndr. 64, 279–283 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Milburn, J., Jones, R. & Levy, J. B. Renal effects of novel antiretroviral drugs. Nephrol. Dial. Transpl. 32, 434–439 (2016).

    Google Scholar 

  128. Deeks, E. D. Cobicistat: a review of its use as a pharmacokinetic enhancer of atazanavir and darunavir in patients with HIV-1 infection. Drugs 74, 195–206 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Spagnuolo, V., Castagna, A. & Lazzarin, A. Bictegravir. Curr. Opin. HIV AIDS 13, 326–333 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Yin, J. & Wang, J. Renal drug transporters and their significance in drug–drug interactions. Acta Pharm. Sin. B 6, 363–373 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Raffi, F. et al. Once-daily dolutegravir versus raltegravir in antiretroviral-naive adults with HIV-1 infection: 48 week results from the randomised, double-blind, non-inferiority SPRING-2 study. Lancet 381, 735–743 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Galizzi, N. et al. Glomerular filtration rate estimated by cystatin C formulas in HIV-1 patients treated with dolutegravir, rilpivirine or cobicistat. N. Microbiol. 41, 256–261 (2018).

    CAS  Google Scholar 

  133. Gallant, J. E. et al. Tenofovir DF, emtricitabine, and efavirenz vs. zidovudine, lamivudine, and efavirenz for HIV. N. Engl. J. Med. 354, 251–260 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Cutrell, J. & Bedimo, R. Single-tablet regimens in the treatment of HIV-1 infection. Fed. Pract. 33, 24S–30S (2016).

    PubMed  PubMed Central  Google Scholar 

  135. Truong, W. R., Schafer, J. J. & Short, W. R. Once-daily, single-tablet regimens for the treatment of HIV-1 infection. P T 40, 44–55 (2015).

    PubMed  PubMed Central  Google Scholar 

  136. Michienzi, S. M., Schriever, C. A. & Badowski, M. E. Abacavir/lamivudine/dolutegravir single tablet regimen in patients with human immunodeficiency virus and end-stage renal disease on hemodialysis. Int. J. STD AIDS 30, 181–187 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. Eron, J. J. et al. Safety of elvitegravir, cobicistat, emtricitabine, and tenofovir alafenamide in HIV-1-infected adults with end-stage renal disease on chronic haemodialysis: an open-label, single-arm, multicentre, phase 3B trial. Lancet HIV. 6, e15–e24 (2019).

    Article  Google Scholar 

  138. Guidelines for the use of antiretroviral agents in adults and adolescents with HIV. https://clinicalinfo.hiv.gov/en/guidelines/hiv-clinical-guidelines-adult-and-adolescent-arv/whats-new (accessed March 2023).

  139. Cahn, P. et al. Durable efficacy of dolutegravir plus lamivudine in antiretroviral treatment-naive adults with HIV-1 infection: 96-week results from the GEMINI-1 and GEMINI-2 randomized clinical trials. J. Acquir. Immune Defic. Syndr. 83, 310–318 (2020). Erratum in: J Acquir Immune Defic Syndr. 84, e21 (2020).

    Article  PubMed  Google Scholar 

  140. van Welzen, B. J., Oomen, P. G. A. & Hoepelman, A. I. M. Dual antiretroviral therapy-all quiet beneath the surface? Front. Immunol. 12, 12 (2021).

    Google Scholar 

  141. Pérez-González, A., Suárez-García, I., Ocampo, A. & Poveda, E. Two-drug regimens for HIV-current evidence, research gaps and future challenges. Microorganisms 10, 433 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Palmer, C. S. et al. Emerging role and characterization of immunometabolism: relevance to HIV pathogenesis, serious non-AIDS events, and a cure. J. Immunol. 196, 4437–4444 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Greene, M., Steinman, M. A., McNicholl, I. R. & Valcour, V. Polypharmacy, drug-drug interactions, and potentially inappropriate medications in older adults with human immunodeficiency virus infection. J. Am. Geriatr. Soc. 62, 447–453 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Wei, A. et al. Long-term renal survival in HIV-associated nephropathy with angiotensin-converting enzyme inhibition. Kidney Int. 64, 1462–1471 (2003).

    Article  CAS  PubMed  Google Scholar 

  145. Wheeler, D. C. et al. Safety and efficacy of dapagliflozin in patients with focal segmental glomerulosclerosis: a prespecified analysis of the dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial. Nephrol. Dial. Transpl. 37, 1647–1656 (2022).

    Article  CAS  Google Scholar 

  146. Lipkowitz, M. S. et al. Apolipoprotein L1 gene variants associate with hypertension-attributed nephropathy and the rate of kidney function decline in African Americans. Kidney Int. 83, 114–120 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Freedman, B. I. & Cohen, A. H. Hypertension-attributed nephropathy: what’s in a name? Nat. Rev. Nephrol. 12, 27–36 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. Friedman, D. J., Ma, L. & Freedman, B. I. Treatment potential in APOL1-associated nephropathy. Curr. Opin. Nephrol. Hypertens. 31, 442–448 (2022).

    Article  CAS  PubMed  Google Scholar 

  149. Zimmerman B., Dakin L., Fortier A. Small molecule APOL1 inhibitors block APOL1 pore function and reduce proteinuria in an APOL1-mediated kidney disease mouse model. J. Am. Soc. Nephrol. 2021. (Kidney Week Edition Abstract):419.

  150. Egbuna, O. et al. Inaxaplin for proteinuric kidney disease in persons with two APOL1 variants. N. Engl. J. Med. 388, 969–979 (2023).

    Article  CAS  PubMed  Google Scholar 

  151. Falk, R. et al. Design of a phase 2/3 adaptive trail, AMPLITUDE, evaluating Inaxaplin in APOL1-mediated kidney disease. J. Am. Soc. Nephrol. (Suppl.) 33, Th-PO480 (2022).

  152. Nichols, B. et al. Innate immunity pathways regulate the nephropathy gene apolipoprotein L1. Kidney Int. 87, 332–342 (2015).

    Article  CAS  PubMed  Google Scholar 

  153. Bruggeman, L. A., Sedor, J. R. & O’Toole, J. F. Apolipoprotein L1 and mechanisms of kidney disease susceptibility. Curr. Opin. Nephrol. Hypertens. 30, 317–323 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Singh, J. A. Filgotinib, a JAK1 inhibitor, for treatment-resistant rheumatoid arthritis. JAMA 322, 309–311 (2019).

    Article  PubMed  Google Scholar 

  155. Aghajan, M. et al. Antisense oligonucleotide treatment ameliorates IFN-g-induced proteinuria in APOL1-transgenic mice. JCI Insight 4, e126124 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Health Resources and Services Administration (HRSA), Department of Health and Human Services (HHS). Organ procurement and transplantation: implementation of the HIV Organ Policy Equity Act. Final rule. Fed. Regist. 80, 26464–26467 (2015).

    PubMed  Google Scholar 

  157. Roland, M. E. et al. Survival in HIV-positive transplant recipients compared with transplant candidates and with HIV-negative controls. AIDS 30, 435–444 (2016).

    PubMed  Google Scholar 

  158. Zheng, X. et al. Kidney transplant outcomes in HIV-positive patients: a systematic review and meta-analysis. AIDS Res. Ther. 16, 37 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Zarinsefat et al. Long-term outcomes following kidney and liver transplant in recipients with HIV. JAMA Surg. 157, 240–247 (2022). Erratum in: JAMA Surg. (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Xia, Y. et al. Effect of HCV, HIV and coinfection in kidney transplant recipients: mate kidney analyses. Am. J. Transpl. 14, 2037–2047 (2014).

    Article  CAS  Google Scholar 

  161. Locke, J. E. et al. A national study of outcomes among HIV-infected kidney transplant recipients. J. Am. Soc. Nephrol. 26, 2222–2229 (2015) .

    Article  PubMed  PubMed Central  Google Scholar 

  162. Camargo, J. F. et al. Clinical outcomes in HIV+/HCV+ coinfected kidney transplant recipients in the pre- and post-direct-acting antiviral therapy eras: 10-Year single center experience. Clin. Transpl. 33, e13532 (2019).

    Article  Google Scholar 

  163. Locke, J. E. et al. Survival benefit of kidney transplantation in HIV-infected patients. Ann. Surg. 265, 604–608 (2017).

    Article  PubMed  Google Scholar 

  164. Muller, E., Kahn, D. & Mendelson, M. Renal transplantation between HIV-positive donors and recipients. N. Engl. J. Med. 362, 2336–2337 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Selhorst, P. et al. Longer-term outcomes of HIV-positive-to-HIV-positive renal transplantation. N. Engl. J. Med. 381, 1387–1389 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Muller, E. & Barday, Z. HIV-positive kidney donor selection for HIV-positive transplant recipients. J. Am. Soc. Nephrol. 29, 1090–1095 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Durand, C. M. et al. A prospective multicenter pilot study of HIV-positive deceased donor to HIV-positive recipient kidney transplantation: HOPE in action. Am. J. Transpl. 21, 1754–1764 (2021).

    Article  Google Scholar 

  168. Frassetto, L. et al. Changes in clearance, volume and bioavailability of immunosuppressants when given with HAART in HIV-1 infected liver and kidney transplant recipients. Biopharm. Drug. Dispos. 34, 442–451 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Flentge, C. A. et al. Synthesis and evaluation of inhibitors of cytochrome P450 3A (CYP3A) for pharmacokinetic enhancement of drugs. Bioorg. Med. Chem. Lett. 19, 5444–5448 (2009).

    Article  CAS  PubMed  Google Scholar 

  170. Hearps, A. C. et al. HIV infection and aging of the innate immune system. Sex. Health 8, 453–464 (2011).

    Article  PubMed  Google Scholar 

  171. Touzot, M. et al. Renal transplantation in HIV-infected patients: the Paris experience. Am. J. Transpl. 10, 2263–2269 (2010).

    Article  CAS  Google Scholar 

  172. Rodrigo, E. et al. Heterogeneity of induction therapy in Spain: changing patterns according to year, centre, indications and results. NDT Plus 3, ii9–ii14 (2010).

    PubMed  PubMed Central  Google Scholar 

  173. Chin-Hong, P. V. & Kwak, E. J. AST infectious diseases community of practice. human papillomavirus in solid organ transplantation. Am. J. Transpl. 13, 189–200 (2013).

    Article  CAS  Google Scholar 

  174. Jotwani, V., Li, Y., Grunfeld, C., Choi, A. I. & Shlipak, M. G. Risk factors for ESRD in HIV-infected individuals: traditional and HIV-related factors. Am. J. Kidney Dis. 59, 628–635 (2012).

    Article  PubMed  Google Scholar 

  175. Ryom, L. et al. Advanced chronic kidney disease, end-stage renal disease and renal death among HIV-positive individuals in Europe. HIV Med. 14, 503–508 (2013).

    Article  CAS  PubMed  Google Scholar 

  176. Muzaale, A. D. et al. Risk of end-stage renal disease in HIV-positive potential live kidney donors. Am. J. Transpl. 17, 1823–1832 (2017).

    Article  CAS  Google Scholar 

  177. Grupper, A. et al. In sickness and in health: living HIV positive kidney donation from a wife to her husband, with 7 years’ post-transplant follow-up. Transpl. Infect. Dis. 21, e13171 (2019).

    Article  PubMed  Google Scholar 

  178. Johns Hopkins Medicine. First living donor HIV-to-HIV kidney transplant in the U.S. https://www.hopkinsmedicine.org/news/newsroom/news-releases/first-ever-living-donor-hiv-to-hiv-kidney-transplant-in-the-US (2019).

  179. Kapuriya, M., Vaidya, A. & Rajkumar, V. Successful HIV-positive, live renal donor transplant. a unique method of expanding the donor pool. Transplantation 104, e140–e141 (2020).

    Article  PubMed  Google Scholar 

  180. Saldanha, N. et al. A preemptive living donor renal transplant in an HIV positive patient from an HIV positive donor. Indian J. Nephrol. 32, 375–377 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Doshi, M. D. et al. APOL1 genotype and renal function of black living donors. J. Am. Soc. Nephrol. 29, 1309–1316 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Reeves-Daniel, A. M. et al. The APOL1 gene and allograft survival after kidney transplantation. Am. J. Transpl. 11, 1025–1030 (2011).

    Article  CAS  Google Scholar 

  183. Okumi, M. et al. ABO-incompatible living kidney transplants: evolution of outcomes and immunosuppressive management. Am. J. Transpl. 16, 886–896 (2016).

    Article  CAS  Google Scholar 

  184. Katou, S. et al. ABO-incompatible living donor kidney transplantation in a human immunodeficiency virus-positive recipient from a human immunodeficiency virus-positive donor: a case report. Transpl. Proc. 52, 2739–2741 (2020).

    Article  Google Scholar 

  185. Campara, M. et al. ABO incompatible renal transplantation in an HIV-seropositive patient. Transplantation 86, 176–178 (2008).

    Article  PubMed  Google Scholar 

  186. Thornton, J. Expanding HIV-positive organ donation. Lancet 397, 184–185 (2021).

    Article  PubMed  Google Scholar 

  187. Botha, J. et al. Living donor liver transplant from an HIV-positive mother to her HIV-negative child: opening up new therapeutic options. AIDS 32, F13–F19 (2018).

    Article  PubMed  Google Scholar 

  188. Pereira, M. R. et al. HIV transmission through living donor kidney transplant: an 11-year follow-up on the recipient and donor. Transpl. Infect. Dis. 23, e13691 (2021).

    Article  PubMed  Google Scholar 

  189. Lin, S.-N. et al. Outcomes of solid organ transplantation from an HIV positive donor to negative recipients. Am J Transplant. https://atcmeetingabstracts.com/abstract/outcomes-of-solid-organ-transplantation-from-an-hiv-positive-donor-to-negative-recipients (2016).

  190. Mukhopadhyay, P. et al. Transmission of human immunodeficiency virus infection by renal transplantation. Indian. J. Nephrol. 22, 133–135 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Borchi, B. et al. Case report: HIV infection from a kidney transplant. Transpl. Proc. 42, 2267–2269 (2010).

    Article  CAS  Google Scholar 

  192. Fischetti, B. et al. Real-world experience with higher-than-recommended doses of lamivudine in patients with varying degrees of renal impairment. Open. Forum Infect. Dis. 5, ofy225 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Nina E. Diana.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks John He, Robert Kalyesubula and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diana, N.E., Naicker, S. The changing landscape of HIV-associated kidney disease. Nat Rev Nephrol 20, 330–346 (2024). https://doi.org/10.1038/s41581-023-00801-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-023-00801-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing