Review Article | Published:

Central nervous system neuroplasticity and the sensitization of hypertension

Nature Reviews Nephrology (2018) | Download Citation


The causes of essential hypertension remain an enigma. Interactions between genetic and external factors are generally recognized to act as aetiological mechanisms that trigger the pathogenesis of high blood pressure. However, the questions of which genes and factors are involved, and when and where such interactions occur, remain unresolved. Emerging evidence indicates that the hypertensive response to pressor stimuli, like many other physiological and behavioural adaptations, can become sensitized to particular stimuli. Studies in animal models show that, similarly to other response systems controlled by the brain, hypertensive response sensitization (HTRS) is mediated by neuroplasticity. The brain circuitry involved in HTRS controls the sympathetic nervous system. This Review outlines evidence supporting the phenomenon of HTRS and describes the range of physiological and psychosocial stressors that can produce a sensitized hypertensive state. Also discussed are the cellular and molecular changes in the brain neural network controlling sympathetic tone involved in long-term storage of information relating to stressors, which could serve to maintain a sensitized state. Finally, this Review concludes with a discussion of why a sensitized hypertensive response might previously have been beneficial and increased biological fitness under some environmental conditions and why today it has become a health-related liability.

Key points

  • The aetiology of essential hypertension is still unknown.

  • Emerging evidence has shown that the hypertensive response can undergo sensitization.

  • Hypertensive response sensitization (HTRS) involves neuroplasticity induced by a wide range of physiological and behavioural challenges (stressors) occurring throughout life.

  • The cellular and molecular changes that mediate HTRS are located and maintained in the central neural network that controls sympathetic nervous system activity.

  • The neuroplasticity of the sympathetic nervous system provides adaptive blood pressure control, such that an increased hypertensive response (to physiological or psychosocial stressors) is learned and subsequently remembered.

  • Recognition of HTRS and the centrally mediated mechanisms driving the sensitized state provides a new paradigm for understanding essential hypertension and developing new strategies for its prevention and treatment.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Xue, B., Zhang, Z., Johnson, R. F. & Johnson, A. K. Sensitization of slow pressor angiotensin II (Ang II)-initiated hypertension: induction of sensitization by prior Ang II treatment. Hypertension 59, 459–466 (2012).

  2. 2.

    Xue, B., Zhang, Z., Roncari, C. F., Guo, F. & Johnson, A. K. Aldosterone acting through the central nervous system sensitizes angiotensin II-induced hypertension. Hypertension 60, 1023–1030 (2012).

  3. 3.

    Cannon, W. B. The Wisdom of the Body (W. W. Norton & Company, Inc., 1932).

  4. 4.

    Cannon, W. B. The interrelations of emotions as suggested by recent physiological researches. Am. J. Psychol. 25, 256–282 (1914).

  5. 5.

    Cannon, W. B. Bodily Changes in Pain, Hunger, Fear and Rage (D. Appleton and Company, 1929).

  6. 6.

    Hess, W. R. & Brugger, M. Das subkortikale Zentrum der affektiven Abewehrreaktion [German]. Helv. Physiol. Pharmacol. Acta 1, 33–52 (1943).

  7. 7.

    Ranson, S. W. Some functions of the hypothalamus — Harvey lecture, December 17, 1936. Bull. NY Acad. Med. 13, 241–271 (1937).

  8. 8.

    Hilton, S. M. & Zbrozyna, A. W. Amygdaloid region for defence reactions and its efferent pathway to the brain stem. J. Physiol. 165, 160–173 (1963).

  9. 9.

    Abrahams, V. C., Hilton, S. M. & Zbrozyna, A. Active muscle vasodilatation produced by stimulation of the brain stem: its significance in the defence reaction. J. Physiol. 154, 491–513 (1960).

  10. 10.

    Selye, H. Stress and the general adaptation syndrome. BMJ 1, 1383–1392 (1950).

  11. 11.

    Selye, H. The physiology and pathology of exposure to stress, a treatise based on the concepts of the general-adaptation syndrome and the diseases of adaptation. JAMA 144, 1414 (1950).

  12. 12.

    Szabo, S., Tache, Y. & Somogyi, A. The legacy of Hans Selye and the origins of stress research: a retrospective 75 years after his landmark brief “letter” to the editor of Nature. Stress 15, 472–478 (2012).

  13. 13.

    Herman, J. P. & Cullinan, W. E. Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci. 20, 78–84 (1997).

  14. 14.

    Pacak, K. & Palkovits, M. Stressor specificity of central neuroendocrine responses: implications for stress-related disorders. Endocr. Rev. 22, 502–548 (2001).

  15. 15.

    Sawchenko, P. E., Li, H. Y. & Ericsson, A. Circuits and mechanisms governing hypothalamic responses to stress: a tale of two paradigms. Prog. Brain Res. 122, 61–78 (2000).

  16. 16.

    Esler, M. et al. Chronic mental stress is a cause of essential hypertension: presence of biological markers of stress. Clin. Exp. Pharmacol. Physiol. 35, 498–502 (2008).

  17. 17.

    Folkow, B. Physiological aspects of primary hypertension. Physiol. Rev. 62, 347–504 (1982).

  18. 18.

    Folkow, B. Psychosocial and central nervous influences in primary hypertension. Circulation 76, I10–I19 (1987).

  19. 19.

    Folkow, B. Mental “stress” and hypertension — evidence from animal and experimental studies. Integr. Physiol. Behav. Sci. 26, 305–308 (1991).

  20. 20.

    Forouzanfar, M. H. et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115mmHg, 1990–2015. JAMA 317, 165–182 (2017).

  21. 21.

    Lim, S. S. et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2224–2260 (2012).

  22. 22.

    NCD Risk Factor Collaboration. Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million participants. Lancet 389, 37–55 (2017).

  23. 23.

    Chow, C. K. et al. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA 310, 959–968 (2013).

  24. 24.

    Whelton, P. K. et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Hypertension 71, 1269–1324 (2018).

  25. 25.

    Chobanian, A. V. et al. Seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 42, 1206–1252 (2003).

  26. 26.

    Page, I. H. Pathogenesis of arterial hypertension. J. Am. Med. Assoc. 140, 451–458 (1949).

  27. 27.

    Mayet, J. & Hughes, A. Cardiac and vascular pathophysiology in hypertension. Heart 89, 1104–1109 (2003).

  28. 28.

    Mulvany, M. J. Small artery remodelling in hypertension. Basic Clin. Pharmacol. Toxicol. 110, 49–55 (2012).

  29. 29.

    Page, I. H. The mosaic theory of arterial hypertension — its interpretation. Perspect. Biol. Med. 10, 325–333 (1967).

  30. 30.

    Sambhi, M. P. Fundamental Fault in Hypertension (Nijhoff, 1984).

  31. 31.

    Carretero, O. A. & Oparil, S. Essential hypertension: part II: treatment. Circulation 101, 446–453 (2000).

  32. 32.

    Cowley, A. W. Jr. et al. Report of the National Heart, Lung, and Blood Institute working group on epigenetics and hypertension. Hypertension 59, 899–905 (2012).

  33. 33.

    Guyton, A. C., Coleman, T. G. & Granger, H. J. Circulation: overall regulation. Annu. Rev. Physiol. 34, 13–46 (1972).

  34. 34.

    Guyton, A. C., Coleman, T. G., Young, D. B., Lohmeier, T. E. & DeClue, J. W. Salt balance and long-term blood pressure control. Annu. Rev. Med. 31, 15–27 (1980).

  35. 35.

    Guyton, A. C. et al. Integration and control of circulatory function. Int. Rev. Physiol. 9, 341–385 (1976).

  36. 36.

    Guyton, A. C. The relationship of cardiac output and arterial pressure control. Circulation 64, 1079–1088 (1981).

  37. 37.

    Cowley, A. W. Jr & Guyton, A. C. Baroreceptor reflex effects on transient and steady-state hemodynamics of salt-loading hypertension in dogs. Circ. Res. 36, 536–546 (1975).

  38. 38.

    Liard, J. F. et al. Renin, aldosterone, body fluid volumes, and the baroreceptor reflex in the development and reversal of Goldblatt hypertension in conscious dogs. Circ. Res. 34, 549–560 (1974).

  39. 39.

    Folkow, B. Sympathetic nervous control of blood pressure — role in primary hypertension. Am. J. Hypertens. 2, S103–S111 (1989).

  40. 40.

    Grassi, G. & Ram, V. S. Evidence for a critical role of the sympathetic nervous system in hypertension. J. Am. Soc. Hypertens. 10, 457–466 (2016).

  41. 41.

    Julius, S. & Majahalme, S. The changing face of sympathetic overactivity in hypertension. Ann. Med. 32, 365–370 (2000).

  42. 42.

    Mancia, G. & Grassi, G. The autonomic nervous system and hypertension. Circ. Res. 114, 1804–1814 (2014).

  43. 43.

    DiBona, G. F. Sympathetic nervous system and hypertension. Hypertension 61, 556–560 (2013).

  44. 44.

    Grassi, G., Mark, A. & Esler, M. The sympathetic nervous system alterations in human hypertension. Circ. Res. 116, 976–990 (2015).

  45. 45.

    Mancia, G., Grassi, G., Giannattasio, C. & Seravalle, G. Sympathetic activation in the pathogenesis of hypertension and progression of organ damage. Hypertension 34, 724–728 (1999).

  46. 46.

    Esler, M., Lambert, E. & Schlaich, M. Point: chronic activation of the sympathetic nervous system is the dominant contributor to systemic hypertension. J. Appl. Physiol. 109, 1996–1998 (1985).

  47. 47.

    Dampney, R. A. Functional organization of central pathways regulating the cardiovascular system. Physiol. Rev. 74, 323–364 (1994).

  48. 48.

    Guyenet, P. G. The sympathetic control of blood pressure. Nat. Rev. Neurosci. 7, 335–346 (2006).

  49. 49.

    Dampney, R. A. Central neural control of the cardiovascular system: current perspectives. Adv. Physiol. Educ. 40, 283–296 (2016).

  50. 50.

    Spyer, K. M. Annual review prize lecture. Central nervous mechanisms contributing to cardiovascular control. J. Physiol. 474, 1–19 (1994).

  51. 51.

    Johnson, A. K. & Gross, P. M. Sensory circumventricular organs and brain homeostatic pathways. FASEB J. 7, 678–686 (1993).

  52. 52.

    Johnson, A. K. & Thunhorst, R. L. The neuroendocrinology of thirst and salt appetite: visceral sensory signals and mechanisms of central integration. Front. Neuroendocrinol. 18, 292–353 (1997).

  53. 53.

    Dampney, R. A. Central mechanisms regulating coordinated cardiovascular and respiratory function during stress and arousal. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R429–R443 (2015).

  54. 54.

    Phelps, E. A. & LeDoux, J. E. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48, 175–187 (2005).

  55. 55.

    Smith, O. A., Astley, C. A., DeVito, J. L., Stein, J. M. & Walsh, K. E. Functional analysis of hypothalamic control of the cardiovascular responses accompanying emotional behavior. Fed. Proc. 39, 2487–2494 (1980).

  56. 56.

    Smith, O. A., DeVito, J. L. & Astley, C. A. Neurons controlling cardiovascular responses to emotion are located in lateral hypothalamus-perifornical region. Am. J. Physiol. 259, R943–R954 (1990).

  57. 57.

    Iwata, J., LeDoux, J. E. & Reis, D. J. Destruction of intrinsic neurons in the lateral hypothalamus disrupts the classical conditioning of autonomic but not behavioral emotional responses in the rat. Brain Res. 368, 161–166 (1986).

  58. 58.

    LeDoux, J. E., Iwata, J., Cicchetti, P. & Reis, D. J. Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J. Neurosci. 8, 2517–2529 (1988).

  59. 59.

    DiMicco, J. A., Samuels, B. C., Zaretskaia, M. V. & Zaretsky, D. V. The dorsomedial hypothalamus and the response to stress: part renaissance, part revolution. Pharmacol. Biochem. Behav. 71, 469–480 (2002).

  60. 60.

    Stotz-Potter, E. H., Willis, L. R. & DiMicco, J. A. Muscimol acts in dorsomedial but not paraventricular hypothalamic nucleus to suppress cardiovascular effects of stress. J. Neurosci. 16, 1173–1179 (1996).

  61. 61.

    Tigerstedt, R. & Bergmann, P. G. Niere und Kreislauf. Skand. Arch. Physiol. 8, 223 (1898).

  62. 62.

    Bader, M. Tissue renin–angiotensin–aldosterone systems: targets for pharmacological therapy. Annu. Rev. Pharmacol. Toxicol. 50, 439–465 (2010).

  63. 63.

    Ferrario, C. M. New physiological concepts of the renin–angiotensin system from the investigation of precursors and products of angiotensin I metabolism. Hypertension 55, 445–452 (2010).

  64. 64.

    Santos, R. A. & Ferreira, A. J. Angiotensin1–7 and the renin–angiotensin system. Curr. Opin. Nephrol. Hypertens. 16, 122–128 (2007).

  65. 65.

    Fischer-Ferraro, C., Nahmod, V. E., Goldstein, D. J. & Finkielman, S. Angiotensin and renin in rat and dog brain. J. Exp. Med. 133, 353–361 (1971).

  66. 66.

    Ganten, D. et al. Angiotensin-forming enzyme in brain tissue. Science 173, 64–65 (1971).

  67. 67.

    de Morais, S. D. B., Shanks, J. & Zucker, I. H. Integrative physiological aspects of brain RAS in hypertension. Curr. Hypertens. Rep. 20, 10 (2018).

  68. 68.

    Grobe, J. L., Xu, D. & Sigmund, C. D. An intracellular renin–angiotensin system in neurons: fact, hypothesis, or fantasy. Physiology 23, 187–193 (2008).

  69. 69.

    Jackson, L., Eldahshan, W., Fagan, S. C. & Ergul, A. Within the brain: the renin angiotensin system. Int. J. Mol. Sci. 19, 876 (2018).

  70. 70.

    Lavoie, J. L. & Sigmund, C. D. Minireview: overview of the renin–angiotensin system—an endocrine and paracrine system. Endocrinology 144, 2179–2183 (2003).

  71. 71.

    Wright, J. W. & Harding, J. W. The brain renin–angiotensin system: a diversity of functions and implications for CNS diseases. Pflugers Arch. 465, 133–151 (2013).

  72. 72.

    Johnson, A. K. The periventricular anteroventral third ventricle (AV3V): its relationship with the subfornical organ and neural systems involved in maintaining body fluid homeostasis. Brain Res. Bull. 15, 595–601 (1985).

  73. 73.

    Lind, R. W. & Johnson, A. K. in The Renin Angiotensin System in the Brain (eds Stober, T., Schimrigk, K., Ganten, D. & Sherman, D. G.) 353–364 (Springer, Boston, MA, 1982).

  74. 74.

    Lind, R. W. & Johnson, A. K. Subfornical organ–median preoptic connections and drinking and pressor responses to angiotensin II. J. Neurosci. 2, 1043–1051 (1982).

  75. 75.

    Smith, P. M. & Ferguson, A. V. Circulating signals as critical regulators of autonomic state — central roles for the subfornical organ. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R405–R415 (2010).

  76. 76.

    de Kloet, A. D., Liu, M., Rodriguez, V., Krause, E. G. & Sumners, C. Role of neurons and glia in the CNS actions of the renin-angiotensin system in cardiovascular control. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R444–R458 (2015).

  77. 77.

    Marina, N., Teschemacher, A. G., Kasparov, S. & Gourine, A. V. Glia, sympathetic activity and cardiovascular disease. Exp. Physiol. 101, 565–576 (2016).

  78. 78.

    Felder, R. B. Mineralocorticoid receptors, inflammation and sympathetic drive in a rat model of systolic heart failure. Exp. Physiol. 95, 19–25 (2010).

  79. 79.

    Winklewski, P. J., Radkowski, M., Wszedybyl-Winklewska, M. & Demkow, U. Brain inflammation and hypertension: the chicken or the egg? J. Neuroinflamm. 12, 85 (2015).

  80. 80.

    Shi, P., Raizada, M. K. & Sumners, C. Brain cytokines as neuromodulators in cardiovascular control. Clin. Exp. Pharmacol. Physiol. 37, e52–e57 (2010).

  81. 81.

    Sriramula, S., Haque, M., Majid, D. S. & Francis, J. Involvement of tumor necrosis factor-α in angiotensin II-mediated effects on salt appetite, hypertension, and cardiac hypertrophy. Hypertension 51, 1345–1351 (2008).

  82. 82.

    Shi, P. et al. Brain microglial cytokines in neurogenic hypertension. Hypertension 56, 297–303 (2010).

  83. 83.

    Shen, X. Z. et al. Microglia participate in neurogenic regulation of hypertension. Hypertension 66, 309–316 (2015).

  84. 84.

    Wei, S. G., Yu, Y. & Felder, R. B. Blood-borne interleukin-1β acts on the subfornical organ to upregulate the sympathoexcitatory milieu of the hypothalamic paraventricular nucleus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 314, R447–R458 (2018).

  85. 85.

    Wei, S. G., Yu, Y., Zhang, Z. H. & Felder, R. B. Proinflammatory cytokines upregulate sympathoexcitatory mechanisms in the subfornical organ of the rat. Hypertension 65, 1126–1133 (2015).

  86. 86.

    Wei, S. G. et al. Subfornical organ mediates sympathetic and hemodynamic responses to blood-borne proinflammatory cytokines. Hypertension 62, 118–125 (2013).

  87. 87.

    DeFelipe, J. Brain plasticity and mental processes: Cajal again. Nat. Rev. Neurosci. 7, 811–817 (2006).

  88. 88.

    Hebb, D. O. The Organization of Behavior: A Neuropsychological Theory (Wiley, 1949).

  89. 89.

    Bliss, T. V. & Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232, 331–356 (1973).

  90. 90.

    Malenka, R. C. & Bear, M. F. LTP and LTD: an embarrassment of riches. Neuron 44, 5–21 (2004).

  91. 91.

    Nicoll, R. A. A brief history of long-term potentiation. Neuron 93, 281–290 (2017).

  92. 92.

    Alkadhi, K. A., Alzoubi, K. H. & Aleisa, A. M. Plasticity of synaptic transmission in autonomic ganglia. Prog. Neurobiol. 75, 83–108 (2005).

  93. 93.

    Cifuentes, F., Arias, E. R. & Morales, M. A. Long-term potentiation in mammalian autonomic ganglia: an inclusive proposal of a calcium-dependent, trans-synaptic process. Brain Res. Bull. 97, 32–38 (2013).

  94. 94.

    Kandel, E. R., Dudai, Y. & Mayford, M. R. The molecular and systems biology of memory. Cell 157, 163–186 (2014).

  95. 95.

    Rahn, E. J., Guzman-Karlsson, M. C. & David Sweatt, J. Cellular, molecular, and epigenetic mechanisms in non-associative conditioning: implications for pain and memory. Neurobiol. Learn. Mem. 105, 133–150 (2013).

  96. 96.

    Latremoliere, A. & Woolf, C. J. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J. Pain 10, 895–926 (2009).

  97. 97.

    Ren, K. & Dubner, R. Central nervous system plasticity and persistent pain. J. Orofac. Pain 13, 155–163 (1999).

  98. 98.

    Ren, K. & Dubner, R. Pain facilitation and activity-dependent plasticity in pain modulatory circuitry: role of BDNF–TrkB signaling and NMDA receptors. Mol. Neurobiol. 35, 224–235 (2007).

  99. 99.

    Hyman, S. E., Malenka, R. C. & Nestler, E. J. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu. Rev. Neurosci. 29, 565–598 (2006).

  100. 100.

    Robinson, M. J., Fischer, A. M., Ahuja, A., Lesser, E. N. & Maniates, H. Roles of “wanting” and “liking” in motivating behavior: gambling, food, and drug addictions. Curr. Top. Behav. Neurosci. 27, 105–136 (2016).

  101. 101.

    Steketee, J. D. & Kalivas, P. W. Drug wanting: behavioral sensitization and relapse to drug-seeking behavior. Pharmacol. Rev. 63, 348–365 (2011).

  102. 102.

    Wolf, M. E. The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog. Neurobiol. 54, 679–720 (1998).

  103. 103.

    Hurley, S. W., Thunhorst, R. L. & Johnson, A. K. in Neurobiology of Body Fluid Homeostasis: Transduction and Integration (eds De Luca, L. A. Jr, Menani, J. V. & Johnson, A. K.) 279–301 (CRC Press, 2013).

  104. 104.

    Na, E. S., Morris, M. J., Johnson, R. F., Beltz, T. G. & Johnson, A. K. The neural substrates of enhanced salt appetite after repeated sodium depletions. Brain Res. 1171, 104–110 (2007).

  105. 105.

    Kline, D. D. Plasticity in glutamatergic NTS neurotransmission. Respir. Physiol. Neurobiol. 164, 105–111 (2008).

  106. 106.

    Mifflin, S. W. Short-term potentiation of carotid sinus nerve inputs to neurons in the nucleus of the solitary tract. Respir. Physiol. 110, 229–236 (1997).

  107. 107.

    Pinsker, H. M., Hening, W. A., Carew, T. J. & Kandel, E. R. Long-term sensitization of a defensive withdrawal reflex in aplysia. Science 182, 1039–1042 (1973).

  108. 108.

    Barnett, W. H. et al. Chemoreception and neuroplasticity in respiratory circuits. Exp. Neurol. 287, 153–164 (2017).

  109. 109.

    Cunningham, J. T., Knight, W. D., Mifflin, S. W. & Nestler, E. J. An essential role for ΔFosB in the median preoptic nucleus in the sustained hypertensive effects of chronic intermittent hypoxia. Hypertension 60, 179–187 (2012).

  110. 110.

    Dempsey, J. A. et al. Role of chemoreception in cardiorespiratory acclimatization to, and deacclimatization from, hypoxia. J. Appl. Physiol. 116, 858–866 (1985).

  111. 111.

    Lovett-Barr, M. R. et al. Repetitive intermittent hypoxia induces respiratory and somatic motor recovery after chronic cervical spinal injury. J. Neurosci. 32, 3591–3600 (2012).

  112. 112.

    Herman, J. P. Regulation of hypothalamo-pituitary-adrenocortical responses to stressors by the nucleus of the solitary tract/dorsal vagal complex. Cell. Mol. Neurobiol. 38, 25–35 (2018).

  113. 113.

    McCarty, R. Learning about stress: neural, endocrine and behavioral adaptations. Stress 19, 449–475 (2016).

  114. 114.

    Michelini, L. C. & Stern, J. E. Exercise-induced neuronal plasticity in central autonomic networks: role in cardiovascular control. Exp. Physiol. 94, 947–960 (2009).

  115. 115.

    Mueller, P. J. Exercise training and sympathetic nervous system activity: evidence for physical activity dependent neural plasticity. Clin. Exp. Pharmacol. Physiol. 34, 377–384 (2007).

  116. 116.

    Johnson, A. K. et al. The roles of sensitization and neuroplasticity in the long-term regulation of blood pressure and hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R1309–R1325 (2015).

  117. 117.

    Houk, J. C. Control strategies in physiological systems. FASEB J. 2, 97–107 (1988).

  118. 118.

    Korner, P. I. Essential Hypertension and Its Causes: Neural and Non-Neural Mechanisms (Oxford Univ. Press, 2007).

  119. 119.

    Dickinson, C. J. & Yu, R. The progressive pressor response to angiotensin in the rabbit. J. Physiol. 190, 91–99 (1967).

  120. 120.

    Dickinson, D. M., Lawrence, J. R. & Adelaide, M. B. A slowly developing pressor response to small concentrations of angiotensin: its bearing on the pathogenesis of chronic renal hyeprtension. Lancet 281, 1354–1356 (1963).

  121. 121.

    McCubbin, J. W., DeMoura, R. S., Page, I. H. & Olmsted, F. Arterial hypertension elicited by subpressor amounts of angiotensin. Science 149, 1394–1395 (1965).

  122. 122.

    Brown, A. J., Casals-Stenzel, J., Gofford, S., Lever, A. F. & Morton, J. J. Comparison of fast and slow pressor effects of angiotensin II in the conscious rat. Am. J. Physiol. 241, H381–H388 (1981).

  123. 123.

    Kawada, N., Imai, E., Karber, A., Welch, W. J. & Wilcox, C. S. A mouse model of angiotensin II slow pressor response: role of oxidative stress. J. Am. Soc. Nephrol. 13, 2860–2868 (2002).

  124. 124.

    Hood, S. G., Cochrane, T., McKinley, M. J. & May, C. N. Investigation of the mechanisms by which chronic infusion of an acutely subpressor dose of angiotensin II induces hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1893–R1899 (2007).

  125. 125.

    Ames, R. P., Borkowski, A. J., Sicinski, A. M. & Laragh, J. H. Prolonged infusions of angiotensin II and norepinephrine and blood pressure, electrolyte balance, and aldosterone and cortisol secretion in normal man and in cirrhosis with ascites. J. Clin. Invest. 44, 1171–1186 (1965).

  126. 126.

    Bohr, D. F. in Angiotensin: Handbook of Experimental Pharmacology Vol. 37 (eds Bumpus, F. M., Page, I. H. & Allmann, D.) 424 (Springer-Verlag, 1974).

  127. 127.

    Godfraind, T. Angiotensin auto-potentiation. Br. J. Pharmacol. 40, 542P–543P (1970).

  128. 128.

    Skulan, T. W., Brousseau, A. C. & Leonard, K. A. Accelerated induction to two-kidney hypertension in rats and renin-angiotensin sensitivity. Circ. Res. 35, 734–741 (1974).

  129. 129.

    ten Berg, R. & de Jong, W. Mechanism of enhanced blood pressure rise after reclipping following removal of a renal artery clip in rats. Hypertension 2, 4–13 (1980).

  130. 130.

    Aoki, K. & Masson, G. M. Pressor responsiveness to renin and angiotensin in renal hypertensive rats. Nephron 6, 484–497 (1969).

  131. 131.

    Xue, B. et al. Central renin–angiotensin system activation and inflammation induced by high-fat diet sensitize angiotensin II-elicited hypertension. Hypertension 67, 163–170 (2016).

  132. 132.

    Xue, B. et al. Post-traumatic stress sensitizes the angiotensin II-elicited hypertensive response [abstract]. FASEB J. 31, S866.2 (2017).

  133. 133.

    Xue, B. et al. Post-traumatic stress-induced sensitization of angiotensin II hypertension is reversed by blockade of angiotensin-converting enzyme or tumor necrosis factor-α. Hypertension 404, 389 (2017).

  134. 134.

    Xue, B. et al. Leptin mediates high-fat diet sensitization of angiotensin II-elicited hypertension by upregulating the brain renin–angiotensin system and inflammation. Hypertension 67, 970–976 (2016).

  135. 135.

    Zhang, Y. P. et al. Maternal high-fat diet acts on the brain to induce baroreflex dysfunction and sensitization of angiotensin II-induced hypertension in adult offspring. Am. J. Physiol. Heart Circ. Physiol. 314, H1061–H1069 (2018).

  136. 136.

    Barth, S. W. & Gerstberger, R. Differential regulation of angiotensinogen and AT1A receptor mRNA within the rat subfornical organ during dehydration. Brain Res. Mol. Brain Res. 64, 151–164 (1999).

  137. 137.

    Charron, G., Laforest, S., Gagnon, C., Drolet, G. & Mouginot, D. Acute sodium deficit triggers plasticity of the brain angiotensin type 1 receptors. FASEB J. 16, 610–612 (2002).

  138. 138.

    Chen, Y., da Rocha, M. J. & Morris, M. Osmotic regulation of angiotensin AT1 receptor subtypes in mouse brain. Brain Res. 965, 35–44 (2003).

  139. 139.

    Moellenhoff, E. et al. Effect of repetitive icv injections of ANG II on c-Fos and AT1-receptor expression in the rat brain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R1095–R1104 (2001).

  140. 140.

    Nunes, F. C. & Braga, V. A. Chronic angiotensin II infusion modulates angiotensin II type I receptor expression in the subfornical organ and the rostral ventrolateral medulla in hypertensive rats. J. Renin Angiotensin Aldosterone Syst. 12, 440–445 (2011).

  141. 141.

    Sanvitto, G. L., Johren, O., Hauser, W. & Saavedra, J. M. Water deprivation upregulates ANG II AT1 binding and mRNA in rat subfornical organ and anterior pituitary. Am. J. Physiol. 273, E156–E163 (1997).

  142. 142.

    Wilson, K. M., Sumners, C. & Fregly, M. J. Effects of increased circulating angiotensin II (AII) on fluid exchange and binding of AII in the brain. Brain Res. Bull. 20, 493–501 (1988).

  143. 143.

    King, S. J., Harding, J. W. & Moe, K. E. Elevated salt appetite and brain binding of angiotensin II in mineralocorticoid-treated rats. Brain Res. 448, 140–149 (1988).

  144. 144.

    Shelat, S. G., Flanagan-Cato, L. M. & Fluharty, S. J. Glucocorticoid and mineralocorticoid regulation of angiotensin II type 1 receptor binding and inositol triphosphate formation in WB cells. J. Endocrinol. 162, 381–391 (1999).

  145. 145.

    Shelat, S. G., King, J. L., Flanagan-Cato, L. M. & Fluharty, S. J. Mineralocorticoids and glucocorticoids cooperatively increase salt intake and angiotensin II receptor binding in rat brain. Neuroendocrinology 69, 339–351 (1999).

  146. 146.

    Wilson, K. M., Sumners, C., Hathaway, S. & Fregly, M. J. Mineralocorticoids modulate central angiotensin II receptors in rats. Brain Res. 382, 87–96 (1986).

  147. 147.

    Laragh, J. H. & Sealey, J. E. The plasma renin test reveals the contribution of body sodium-volume content (V) and renin-angiotensin (R) vasoconstriction to long-term blood pressure. Am. J. Hypertens. 24, 1164–1180 (2011).

  148. 148.

    McAreavey, D. & Robertson, J. I. Angiotensin converting enzyme inhibitors and moderate hypertension. Drugs 40, 326–345 (1990).

  149. 149.

    Castellucci, V. & Kandel, E. R. Presynaptic facilitation as a mechanism for behavioral sensitization in aplysia. Science 194, 1176–1178 (1976).

  150. 150.

    Clayton, S. C., Zhang, Z., Beltz, T., Xue, B. & Johnson, A. K. CNS neuroplasticity and salt-sensitive hypertension induced by prior treatment with subpressor doses of ANG II or aldosterone. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306, R908–R917 (2014).

  151. 151.

    Huang, B. S., Ahmadi, S., Ahmad, M., White, R. A. & Leenen, F. H. Central neuronal activation and pressor responses induced by circulating ANG II: role of the brain aldosterone-”ouabain” pathway. Am. J. Physiol. Heart Circ. Physiol. 299, H422–H430 (2010).

  152. 152.

    Xue, B. et al. Central interactions of aldosterone and angiotensin II in aldosterone- and angiotensin II-induced hypertension. Am. J. Physiol. Heart Circ. Physiol. 300, H555–H564 (2011).

  153. 153.

    de Git, K. C. & Adan, R. A. Leptin resistance in diet-induced obesity: the role of hypothalamic inflammation. Obes. Rev. 16, 207–224 (2015).

  154. 154.

    Hall, J. E., do Carmo, J. M., da Silva, A. A., Wang, Z. & Hall, M. E. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ. Res. 116, 991–1006 (2015).

  155. 155.

    Kalupahana, N. S. & Moustaid-Moussa, N. The renin–angiotensin system: a link between obesity, inflammation and insulin resistance. Obes. Rev. 13, 136–149 (2012).

  156. 156.

    Sriramula, S., Cardinale, J. P. & Francis, J. Inhibition of TNF in the brain reverses alterations in RAS components and attenuates angiotensin II-induced hypertension. PLOS ONE 8, e63847 (2013).

  157. 157.

    Yu, Y. et al. Early interference with p44/42 mitogen-activated protein kinase signaling in hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension. Hypertension 61, 842–849 (2013).

  158. 158.

    Heart Outcomes Prevention Evaluation (HOPE) Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet 355, 253–259 (2000).

  159. 159.

    Alonso-Galicia, M., Brands, M. W., Zappe, D. H. & Hall, J. E. Hypertension in obese Zucker rats. Role of angiotensin II and adrenergic activity. Hypertension 28, 1047–1054 (1996).

  160. 160.

    Armitage, J. A. et al. Rapid onset of renal sympathetic nerve activation in rabbits fed a high-fat diet. Hypertension 60, 163–171 (2012).

  161. 161.

    Lim, K., Burke, S. L. & Head, G. A. Obesity-related hypertension and the role of insulin and leptin in high-fat-fed rabbits. Hypertension 61, 628–634 (2013).

  162. 162.

    Prior, L. J. et al. Exposure to a high-fat diet alters leptin sensitivity and elevates renal sympathetic nerve activity and arterial pressure in rabbits. Hypertension 55, 862–868 (2010).

  163. 163.

    Maric, T., Woodside, B. & Luheshi, G. N. The effects of dietary saturated fat on basal hypothalamic neuroinflammation in rats. Brain. Behav. Immun. 36, 35–45 (2014).

  164. 164.

    Hall, J. E., Crook, E. D., Jones, D. W., Wofford, M. R. & Dubbert, P. M. Mechanisms of obesity-associated cardiovascular and renal disease. Am. J. Med. Sci. 324, 127–137 (2002).

  165. 165.

    Tchernof, A. & Despres, J. P. Pathophysiology of human visceral obesity: an update. Physiol. Rev. 93, 359–404 (2013).

  166. 166.

    Harlan, S. M. et al. Ablation of the leptin receptor in the hypothalamic arcuate nucleus abrogates leptin-induced sympathetic activation. Circ. Res. 108, 808–812 (2011).

  167. 167.

    Shi, Z., Li, B. & Brooks, V. L. Role of the paraventricular nucleus of the hypothalamus in the sympathoexcitatory effects of leptin. Hypertension 66, 1034–1041 (2015).

  168. 168.

    Young, C. N., Morgan, D. A., Butler, S. D., Mark, A. L. & Davisson, R. L. The brain subfornical organ mediates leptin-induced increases in renal sympathetic activity but not its metabolic effects. Hypertension 61, 737–744 (2013).

  169. 169.

    Gao, Y. et al. Hormones and diet, but not body weight, control hypothalamic microglial activity. Glia 62, 17–25 (2014).

  170. 170.

    de Kloet, A. D. et al. Obesity induces neuroinflammation mediated by altered expression of the renin–angiotensin system in mouse forebrain nuclei. Physiol. Behav. 136, 31–38 (2014).

  171. 171.

    Hilzendeger, A. M. et al. A brain leptin–renin angiotensin system interaction in the regulation of sympathetic nerve activity. Am. J. Physiol. Heart Circ. Physiol. 303, H197–H206 (2012).

  172. 172.

    Zhang, X. et al. Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity. Cell 135, 61–73 (2008).

  173. 173.

    Fraser, A., Nelson, S. M., Macdonald-Wallis, C., Sattar, N. & Lawlor, D. A. Hypertensive disorders of pregnancy and cardiometabolic health in adolescent offspring. Hypertension 62, 614–620 (2013).

  174. 174.

    Himmelmann, A., Svensson, A. & Hansson, L. Five-year follow-up of blood pressure and left ventricular mass in children with different maternal histories of hypertension: the Hypertension in Pregnancy Offspring Study. J. Hypertens. 12, 89–95 (1994).

  175. 175.

    Himmelmann, A., Svensson, A. & Hansson, L. Relation of maternal blood pressure during pregnancy to birth weight and blood pressure in children. The Hypertension in Pregnancy Offspring Study. J. Intern. Med. 235, 347–352 (1994).

  176. 176.

    Lazdam, M. et al. Elevated blood pressure in offspring born premature to hypertensive pregnancy: is endothelial dysfunction the underlying vascular mechanism? Hypertension 56, 159–165 (2010).

  177. 177.

    Staley, J. R. et al. Associations of blood pressure in pregnancy with offspring blood pressure trajectories during childhood and adolescence: findings from a prospective study. J. Am. Heart Assoc. 4, e001422 (2015).

  178. 178.

    Tenhola, S., Rahiala, E., Halonen, P., Vanninen, E. & Voutilainen, R. Maternal preeclampsia predicts elevated blood pressure in 12-year-old children: evaluation by ambulatory blood pressure monitoring. Pediatr. Res. 59, 320–324 (2006).

  179. 179.

    Kajantie, E., Eriksson, J. G., Osmond, C., Thornburg, K. & Barker, D. J. Pre-eclampsia is associated with increased risk of stroke in the adult offspring: the Helsinki birth cohort study. Stroke 40, 1176–1180 (2009).

  180. 180.

    Liang, M., Cowley, A. W. Jr, Mattson, D. L., Kotchen, T. A. & Liu, Y. Epigenomics of hypertension. Semin. Nephrol. 33, 392–399 (2013).

  181. 181.

    Lopes, H. F. et al. Increased sympathetic activity in normotensive offspring of malignant hypertensive parents compared to offspring of normotensive parents. Braz. J. Med. Biol. Res. 41, 849–853 (2008).

  182. 182.

    Washburn, L. K. et al. The renin–angiotensin–aldosterone system in adolescent offspring born prematurely to mothers with preeclampsia. J. Renin Angiotensin Aldosterone Syst. 16, 529–538 (2015).

  183. 183.

    Alexander, B. T., Hendon, A. E., Ferril, G. & Dwyer, T. M. Renal denervation abolishes hypertension in low-birth-weight offspring from pregnant rats with reduced uterine perfusion. Hypertension 45, 754–758 (2005).

  184. 184.

    de Almeida Chaves Rodrigues, A. F. et al. Increased renal sympathetic nerve activity leads to hypertension and renal dysfunction in offspring from diabetic mothers. Am. J. Physiol. Renal Physiol. 304, F189–F197 (2013).

  185. 185.

    Intapad, S. et al. Renal denervation abolishes the age-dependent increase in blood pressure in female intrauterine growth-restricted rats at 12 months of age. Hypertension 61, 828–834 (2013).

  186. 186.

    Langley-Evans, S. C. & Jackson, A. A. Captopril normalises systolic blood pressure in rats with hypertension induced by fetal exposure to maternal low protein diets. Comp. Biochem. Physiol. A Physiol. 110, 223–228 (1995).

  187. 187.

    Mansuri, A., Elmaghrabi, A., Legan, S. K., Gattineni, J. & Baum, M. Transient exposure of enalapril normalizes prenatal programming of hypertension and urinary angiotensinogen excretion. PLOS ONE 10, e0146183 (2015).

  188. 188.

    Mizuno, M., Lozano, G., Siddique, K., Baum, M. & Smith, S. A. Enalapril attenuates the exaggerated sympathetic response to physical stress in prenatally programmed hypertensive rats. Hypertension 63, 324–329 (2014).

  189. 189.

    Mizuno, M., Siddique, K., Baum, M. & Smith, S. A. Prenatal programming of hypertension induces sympathetic overactivity in response to physical stress. Hypertension 61, 180–186 (2013).

  190. 190.

    Pladys, P. et al. Role of brain and peripheral angiotensin II in hypertension and altered arterial baroreflex programmed during fetal life in rat. Pediatr. Res. 55, 1042–1049 (2004).

  191. 191.

    Xue, B. et al. Maternal gestational hypertension-induced sensitization of angiotensin II hypertension in offspring and its reversal by renal denervation or angiotensin converting enzyme inhibition in rats. Hypertension 69, 669–677 (2017).

  192. 192.

    Xue, B., Beltz, T. G., Guo, F. & Johnson, A. K. Sex differences in maternal gestational hypertension-induced sensitization of angiotensin II hypertension in rat offspring: the protective effect of estrogen. Am. J. Physiol. Regul. Integr. Comp. Physiol. 314, R274–R281 (2018).

  193. 193.

    Xue, B. et al. Estrogen regulation of the brain renin–angiotensin system in protection against angiotensin II-induced sensitization of hypertension. Am. J. Physiol. Heart Circ. Physiol. 307, H191–H198 (2014).

  194. 194.

    Alexander, B. T., Dasinger, J. H. & Intapad, S. Fetal programming and cardiovascular pathology. Compr. Physiol. 5, 997–1025 (2015).

  195. 195.

    Dong, M., Zheng, Q., Ford, S. P., Nathanielsz, P. W. & Ren, J. Maternal obesity, lipotoxicity and cardiovascular diseases in offspring. J. Mol. Cell. Cardiol. 55, 111–116 (2013).

  196. 196.

    Gademan, M. G. et al. Maternal prepregnancy body mass index and their children’s blood pressure and resting cardiac autonomic balance at age 5 to 6 years. Hypertension 62, 641–647 (2013).

  197. 197.

    Reynolds, R. M. et al. Maternal obesity during pregnancy and premature mortality from cardiovascular event in adult offspring: follow-up of 1 323 275 person years. BMJ 347, f4539 (2013).

  198. 198.

    Prior, L. J. et al. Exposure to a high-fat diet during development alters leptin and ghrelin sensitivity and elevates renal sympathetic nerve activity and arterial pressure in rabbits. Hypertension 63, 338–345 (2014).

  199. 199.

    Cesar, H. C. & Pisani, L. P. Fatty-acid-mediated hypothalamic inflammation and epigenetic programming. J. Nutr. Biochem. 42, 1–6 (2017).

  200. 200.

    Deng, Y. et al. Prenatal inflammation-induced NF-κB dyshomeostasis contributes to renin–angiotensin system over-activity resulting in prenatally programmed hypertension in offspring. Sci. Rep. 6, 21692 (2016).

  201. 201.

    Samuelsson, A. M. et al. Evidence for sympathetic origins of hypertension in juvenile offspring of obese rats. Hypertension 55, 76–82 (2010).

  202. 202.

    Levine, S. & Mullins, R. F. Jr. Hormonal influences on brain organization in infant rats. Science 152, 1585–1592 (1966).

  203. 203.

    Scott, J. P. Critical periods in behavioral development. Science 138, 949–958 (1962).

  204. 204.

    Viken, R. J., Johnson, A. K. & Knutson, J. F. Blood pressure, heart rate, and regional resistance in behavioral defense. Physiol. Behav. 50, 1097–1101 (1991).

  205. 205.

    Finnell, J. E. & Wood, S. K. Neuroinflammation at the interface of depression and cardiovascular disease: evidence from rodent models of social stress. Neurobiol. Stress 4, 1–14 (2016).

  206. 206.

    Michopoulos, V., Powers, A., Gillespie, C. F., Ressler, K. J. & Jovanovic, T. Inflammation in fear- and anxiety-based disorders: PTSD, GAD, and beyond. Neuropsychopharmacology 42, 254–270 (2017).

  207. 207.

    Brudey, C. et al. Autonomic and inflammatory consequences of posttraumatic stress disorder and the link to cardiovascular disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R315–R321 (2015).

  208. 208.

    Park, J. et al. Baroreflex dysfunction and augmented sympathetic nerve responses during mental stress in veterans with post-traumatic stress disorder. J. Physiol. 595, 4893–4908 (2017).

  209. 209.

    Edmondson, D. et al. The association of posttraumatic stress disorder with clinic and ambulatory blood pressure in healthy adults. Psychosom. Med. 80, 55–61 (2018).

  210. 210.

    Kibler, J. L., Joshi, K. & Ma, M. Hypertension in relation to posttraumatic stress disorder and depression in the US National Comorbidity Survey. Behav. Med. 34, 125–132 (2009).

  211. 211.

    Paulus, E. J., Argo, T. R. & Egge, J. A. The impact of posttraumatic stress disorder on blood pressure and heart rate in a veteran population. J. Trauma. Stress 26, 169–172 (2013).

  212. 212.

    Roy, S. S., Foraker, R. E., Girton, R. A. & Mansfield, A. J. Posttraumatic stress disorder and incident heart failure among a community-based sample of US veterans. Am. J. Public Health 105, 757–763 (2015).

  213. 213.

    Khoury, N. M. et al. The renin–angiotensin pathway in posttraumatic stress disorder: angiotensin-converting enzyme inhibitors and angiotensin receptor blockers are associated with fewer traumatic stress symptoms. J. Clin. Psychiatry 73, 849–855 (2012).

  214. 214.

    Levkovitz, Y., Fenchel, D., Kaplan, Z., Zohar, J. & Cohen, H. Early post-stressor intervention with minocycline, a second-generation tetracycline, attenuates post-traumatic stress response in an animal model of PTSD. Eur. Neuropsychopharmacol. 25, 124–132 (2015).

  215. 215.

    Elijovich, F. et al. Salt sensitivity of blood pressure: a scientific statement from the American Heart Association. Hypertension 68, e7–e46 (2016).

  216. 216.

    He, F. J. & MacGregor, G. A. Salt and sugar: their effects on blood pressure. Pflugers Arch. 467, 577–586 (2015).

  217. 217.

    MacGregor, G. A. & de Wardener, H. E. Salt, Diet, and Health (Cambridge Univ. Press, 1998).

  218. 218.

    Dahl, L. K., Heine, M. & Tassinari, L. Role of genetic factors in susceptibility to experimental hypertension due to chronic excess salt ingestion. Nature 194, 480–482 (1962).

  219. 219.

    Denton, D. et al. The effect of increased salt intake on blood pressure of chimpanzees. Nat. Med. 1, 1009–1016 (1995).

  220. 220.

    Weinberger, M. H., Miller, J. Z., Luft, F. C., Grim, C. E. & Fineberg, N. S. Definitions and characteristics of sodium sensitivity and blood pressure resistance. Hypertension 8, II127–II134 (1986).

  221. 221.

    Kanbay, M., Chen, Y., Solak, Y. & Sanders, P. W. Mechanisms and consequences of salt sensitivity and dietary salt intake. Curr. Opin. Nephrol. Hypertens. 20, 37–43 (2011).

  222. 222.

    Brooks, V. L., Scrogin, K. E. & McKeogh, D. F. The interaction of angiotensin II and osmolality in the generation of sympathetic tone during changes in dietary salt intake. Ann. NY Acad. Sci. 940, 380–394 (2001).

  223. 223.

    Huang, B. S., Amin, M. S. & Leenen, F. H. The central role of the brain in salt-sensitive hypertension. Curr. Opin. Cardiol. 21, 295–304 (2006).

  224. 224.

    Oki, K., Gomez-Sanchez, E. P. & Gomez-Sanchez, C. E. Role of mineralocorticoid action in the brain in salt-sensitive hypertension. Clin. Exp. Pharmacol. Physiol. 39, 90–95 (2012).

  225. 225.

    Osborn, J. W., Fink, G. D., Sved, A. F., Toney, G. M. & Raizada, M. K. Circulating angiotensin II and dietary salt: converging signals for neurogenic hypertension. Curr. Hypertens. Rep. 9, 228–235 (2007).

  226. 226.

    Florin, M., Lo, M., Liu, K. L. & Sassard, J. Salt sensitivity in genetically hypertensive rats of the Lyon strain. Kidney Int. 59, 1865–1872 (2001).

  227. 227.

    Lo, M., Liu, K. L., Clemitson, J. R., Sassard, J. & Samani, N. J. Chromosome 1 blood pressure QTL region influences renal function curve and salt sensitivity in SHR. Physiol. Genomics 8, 15–21 (2002).

  228. 228.

    Netea, M. G. et al. Trained immunity: a program of innate immune memory in health and disease. Science 352, aaf1098 (2016).

  229. 229.

    Haley, M. J., Brough, D., Quintin, J. & Allan, S. M. Microglial priming as trained immunity in the brain. Neuroscience (2017).

  230. 230.

    Beldade, P., Mateus, A. R. & Keller, R. A. Evolution and molecular mechanisms of adaptive developmental plasticity. Mol. Ecol. 20, 1347–1363 (2011).

  231. 231.

    Trinkaus, E. Late Pleistocene adult mortality patterns and modern human establishment. Proc. Natl Acad. Sci. USA 108, 1267–1271 (2011).

  232. 232.

    Fournier, D., Luft, F. C., Bader, M., Ganten, D. & Andrade-Navarro, M. A. Emergence and evolution of the renin–angiotensin–aldosterone system. J. Mol. Med. 90, 495–508 (2012).

  233. 233.

    Saavedra, J. M. & Benicky, J. Brain and peripheral angiotensin II play a major role in stress. Stress 10, 185–193 (2007).

  234. 234.

    Syvalahti, E., Lammintausta, R. & Pekkarinen, A. Effect of psychic stress of examination on serum growth hormone, serum insulin, and plasma renin activity. Acta Pharmacol. Toxicol. 38, 344–352 (1976).

  235. 235.

    Sigg, E. B., Keim, K. L. & Sigg, T. D. On the mechanism of renin release by restraint stress in rats. Pharmacol. Biochem. Behav. 8, 47–50 (1978).

  236. 236.

    Golin, R. M., Gotoh, E., Said, S. I. & Ganong, W. F. Pharmacological evidence that the sympathetic nervous system mediates the increase in renin secretion produced by immobilization and head-up tilt in rats. Neuropharmacology 27, 1209–1213 (1988).

  237. 237.

    Blair, M. L., Feigl, E. O. & Smith, O. A. Elevation of plasma renin activity during avoidance performance in baboons. Am. J. Physiol. 231, 772–776 (1976).

  238. 238.

    Bozovic, L. & Castenfors, J. Effect of ganglionic blocking on plasma renin activity in exercising and pain-stressed rats. Acta Physiol. Scand. 70, 290–292 (1967).

  239. 239.

    Otsuka, K., Assaykeen, T. A., Goldfien, A. & Ganong, W. F. Effect of hypoglycemia on plasma renin activity in dogs. Endocrinology 87, 1306–1317 (1970).

  240. 240.

    Grippo, A. J., Francis, J., Beltz, T. G., Felder, R. B. & Johnson, A. K. Neuroendocrine and cytokine profile of chronic mild stress-induced anhedonia. Physiol. Behav. 84, 697–706 (2005).

  241. 241.

    Xue, B., Beltz, T. G., Guo, F., Thunhorst, R. L. & Johnson, A. K. Controlled hypotensive hemorrhage sensitizes angiotensin II-elicited hypertension. FASEB J. 30, 1234.2 (2016).

  242. 242.

    Xue, B., Beltz, T. G., Fuo, F. & Johnson, A. K. Blockade of glutamate receptors abolishes the sensitization of the angiotensin II-elicited hypertensive response in rats. FASEB J. 32, 732.1 (2018).

Download references


The authors thank M. Dennis of the Department of Psychological and Brain Sciences at the University of Iowa for help in preparing the manuscript. The authors’ work described in this Review was supported by US National Institutes of Health (NIH) grants HL14388, MH080241, HL73986, HL84027 and HL139575 (to A.K.J.) and HL98207 (to A.K.J. and B.X.).

Author information


  1. Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA

    • Alan Kim Johnson
    •  & Baojian Xue
  2. Department of Health and Human Physiology, University of Iowa, Iowa City, IA, USA

    • Alan Kim Johnson
  3. Department of Pharmacology, University of Iowa, Iowa City, IA, USA

    • Alan Kim Johnson
  4. The François M. Abboud Cardiovascular Center, Iowa City, IA, USA

    • Alan Kim Johnson
    •  & Baojian Xue


  1. Search for Alan Kim Johnson in:

  2. Search for Baojian Xue in:


Both authors contributed to discussions of the article content, researched data for the article and drafted and edited the manuscript before submission.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Alan Kim Johnson.


Response sensitization

Sensitization is operationally defined and occurs when repeated administration of a stimulus results in an increase in the magnitude of a response.

General adaptation syndrome

A term describing the three predictable stages of behavioural and physiological responses to stressors. The ‘alarm reaction’ stage provides a burst of energy to deal with the onset of a stressor. In the ‘resistance’ stage, the body attempts to overcome or adapt to the stressor. Maintenance of the resistance stage is hypothesized to lead to ‘exhaustion’, with depletion of bodily resources, morbidity and mortality.


A threatening or noxious stimulus that produces a stress response and is associated with the state defined as stress (that is, an inferred state or hypothetical construct).

Classical or Pavlovian conditioning

A learning paradigm first developed by the physiologist Ivan Pavlov. A biologically potent stimulus (such as food or an electric shock) is paired with a previously neutral stimulus (such as a tone or light). Pairing produces an association between the two stimuli, such that the neutral stimulus comes to elicit a response similar to that originally produced by a prepotent stimulus.

Limbic system

An extensive set of phylogenetically old, interconnected brain structures located in the rostral part of the nervous system (forebrain). The limbic system was originally identified as a functional system related to emotion. Today, limbic structures are implicated in the control of many physiological, behavioural and cognitive functions.

Lamina terminalis

The single layer of ependymal cells that forms the rostral wall of the third cerebral ventricle. Four structures — the subfornical organ, median preoptic nucleus, the organum vasculosum of the lamina terminalis and the anterior commissure — lie immediately rostral to the lamina terminalis and are often, albeit technically erroneously, commonly referred to as the lamina terminalis.


A substance released by neurons that acts to increase or decrease the actions of neurotransmitters. Neuromodulators affect large numbers of neurons by acting in a diffuse paracrine fashion, which is in contrast to the tight coupling between neurons using synaptic neurotransmitters to communicate.


Proteins that are important in autocrine, paracrine and endocrine signalling, particularly in the immune system. Pro-inflammatory cytokines promote inflammation, whereas anti-inflammatory cytokines reduce inflammation. Adipokines are cytokines secreted by adipose tissue.

Long-term potentiation

The strengthening of synapses that results from increased neural activity. Long-term potentiation facilitates synaptic transmission between adjacent neurons.

Operant conditioning

Also known as instrumental conditioning. A type of learning in which a response is modified by positive or negative reinforcement, that is, by association with the presentation of either a reward (such as food) or a punishment (such as electric shock).

About this article

Publication history