Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

White adipocyte dysfunction and obesity-associated pathologies in humans

A Publisher Correction to this article was published on 08 February 2024

This article has been updated

Abstract

The prevalence of obesity and associated chronic diseases continues to increase worldwide, negatively impacting on societies and economies. Whereas the association between excess body weight and increased risk for developing a multitude of diseases is well established, the initiating mechanisms by which weight gain impairs our metabolic health remain surprisingly contested. In order to better address the myriad of disease states associated with obesity, it is essential to understand adipose tissue dysfunction and develop strategies for reinforcing adipocyte health. In this Review we outline the diverse physiological functions and pathological roles of human white adipocytes, examining our current knowledge of why white adipocytes are vital for systemic metabolic control, yet poorly adapted to our current obesogenic environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Human adipose tissue in individuals who are lean and individuals with obesity.
Fig. 2: Characteristics of the obese white adipose tissue.
Fig. 3: Defects in adipose tissue lipid storage associated with obesity.
Fig. 4: Obesity-associated pathologies.

Similar content being viewed by others

Change history

References

  1. Dai, H. et al. The global burden of disease attributable to high body mass index in 195 countries and territories, 1990–2017: an analysis of the Global Burden of Disease Study. PLoS Med. 17, e1003198 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mann, J. P. & Savage, D. B. What lipodystrophies teach us about the metabolic syndrome. J. Clin. Invest. 129, 4009–4021 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zwick, R. K., Guerrero-Juarez, C. F., Horsley, V. & Plikus, M. V. Anatomical, physiological, and functional diversity of adipose tissue. Cell Metab. 27, 68–83 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lotta, L. A. et al. Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nat. Genet. 49, 17–26 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Stern, J. H., Rutkowski, J. M. & Scherer, P. E. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab. 23, 770–784 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cypess, A. M. Reassessing human adipose tissue. N. Engl. J. Med. 386, 768–779 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Shamsi, F., Wang, C. H. & Tseng, Y. H. The evolving view of thermogenic adipocytes — ontogeny, niche and function. Nat. Rev. Endocrinol. 17, 726–744 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carpentier, A. C., Blondin, D. P., Haman, F. & Richard, D. Brown adipose tissue — a translational perspective. Endocr. Rev. 44, 143–192 (2023).

    Article  PubMed  Google Scholar 

  9. Borgeson, E., Boucher, J. & Hagberg, C. E. Of mice and men: pinpointing species differences in adipose tissue biology. Front. Cell Dev. Biol. 10, 1003118 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kowaltowski, A. J. Cold exposure and the metabolism of mice, men, and other wonderful creatures. Physiology 37, 253–259 (2022).

    Article  CAS  Google Scholar 

  11. Chusyd, D. E., Wang, D., Huffman, D. M. & Nagy, T. R. Relationships between rodent white adipose fat pads and human white adipose fat depots. Front. Nutr. 3, 10 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Frayn, K. N. Adipose tissue as a buffer for daily lipid flux. Diabetologia 45, 1201–1210 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Sakers, A., De Siqueira, M. K., Seale, P. & Villanueva, C. J. Adipose-tissue plasticity in health and disease. Cell 185, 419–446 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Di Nicola, V. Omentum a powerful biological source in regenerative surgery. Regen. Ther. 11, 182–191 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. McQuaid, S. E. et al. Downregulation of adipose tissue fatty acid trafficking in obesity: a driver for ectopic fat deposition? Diabetes 60, 47–55 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Langin, D. et al. Adipocyte lipases and defect of lipolysis in human obesity. Diabetes 54, 3190–3197 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Verboven, K. et al. Abdominal subcutaneous and visceral adipocyte size, lipolysis and inflammation relate to insulin resistance in male obese humans. Sci. Rep. 8, 4677 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fryk, E. et al. Hyperinsulinemia and insulin resistance in the obese may develop as part of a homeostatic response to elevated free fatty acids: a mechanistic case–control and a population-based cohort study. EBioMedicine 65, 103264 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Klein, S., Gastaldelli, A., Yki-Jarvinen, H. & Scherer, P. E. Why does obesity cause diabetes? Cell Metab. 34, 11–20 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morigny, P., Boucher, J., Arner, P. & Langin, D. Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics. Nat. Rev. Endocrinol. 17, 276–295 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Valenzuela, P. L. et al. Obesity and the risk of cardiometabolic diseases. Nat. Rev. Cardiol. 20, 475–494 (2023).

    Article  PubMed  Google Scholar 

  22. Goodpaster, B. H., Bergman, B. C., Brennan, A. M. & Sparks, L. M. Intermuscular adipose tissue in metabolic disease. Nat. Rev. Endocrinol. 19, 285–298 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Driskell, R. R., Jahoda, C. A., Chuong, C. M., Watt, F. M. & Horsley, V. Defining dermal adipose tissue. Exp. Dermatol. 23, 629–631 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gerst, F. et al. Metabolic crosstalk between fatty pancreas and fatty liver: effects on local inflammation and insulin secretion. Diabetologia 60, 2240–2251 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Herz, C. T. & Kiefer, F. W. Adipose tissue browning in mice and humans. J. Endocrinol. 241, R97–R109 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Giralt, M. & Villarroya, F. White, brown, beige/brite: different adipose cells for different functions? Endocrinology 154, 2992–3000 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Reddy, P., Lent-Schochet, D., Ramakrishnan, N., McLaughlin, M. & Jialal, I. Metabolic syndrome is an inflammatory disorder: a conspiracy between adipose tissue and phagocytes. Clin. Chim. Acta 496, 35–44 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Neamat-Allah, J. et al. Validation of anthropometric indices of adiposity against whole-body magnetic resonance imaging — a study within the German European Prospective Investigation into Cancer and Nutrition (EPIC) cohorts. PLoS ONE 9, e91586 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Laforest, S., Labrecque, J., Michaud, A., Cianflone, K. & Tchernof, A. Adipocyte size as a determinant of metabolic disease and adipose tissue dysfunction. Crit. Rev. Clin. Lab. Sci. 52, 301–313 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Gustafson, B., Hedjazifar, S., Gogg, S., Hammarstedt, A. & Smith, U. Insulin resistance and impaired adipogenesis. Trends Endocrinol. Metab. 26, 193–200 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Kim, J. Y. et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J. Clin. Invest. 117, 2621–2637 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McLaughlin, T. et al. Adipose cell size and regional fat deposition as predictors of metabolic response to overfeeding in insulin-resistant and insulin-sensitive humans. Diabetes 65, 1245–1254 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, F., He, J., Wang, H., Zhu, D. & Bi, Y. Adipose morphology: a critical factor in regulation of human metabolic diseases and adipose tissue dysfunction. Obes. Surg. 30, 5086–5100 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Virtue, S. & Vidal-Puig, A. Adipose tissue expandability, lipotoxicity and the metabolic syndrome — an allostatic perspective. Biochim. Biophys. Acta 1801, 338–349 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Camastra, S. & Ferrannini, E. Role of anatomical location, cellular phenotype and perfusion of adipose tissue in intermediary metabolism: a narrative review. Rev. Endocr. Metab. Disord. 23, 43–50 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee, M. J., Wu, Y. & Fried, S. K. Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Mol. Asp. Med. 34, 1–11 (2013).

    Article  CAS  Google Scholar 

  37. Kolb, H. Obese visceral fat tissue inflammation: from protective to detrimental? BMC Med. 20, 494 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tchkonia, T. et al. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab. 17, 644–656 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lemieux, I. & Despres, J. P. Metabolic syndrome: past, present and future. Nutrients 12, 3501 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cinti, S. The adipose organ at a glance. Dis. Model. Mech. 5, 588–594 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. White, U. & Ravussin, E. Dynamics of adipose tissue turnover in human metabolic health and disease. Diabetologia 62, 17–23 (2019).

    Article  PubMed  Google Scholar 

  42. Rosen, E. D. & Spiegelman, B. M. What we talk about when we talk about fat. Cell 156, 20–44 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Matsuzawa, Y., Shimomura, I., Nakamura, T., Keno, Y. & Tokunaga, K. Pathophysiology and pathogenesis of visceral fat obesity. Ann. NY Acad. Sci. 748, 399–406 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Despres, J. P. & Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 444, 881–887 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Macotela, Y. et al. Intrinsic differences in adipocyte precursor cells from different white fat depots. Diabetes 61, 1691–1699 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Geer, E. B. & Shen, W. Gender differences in insulin resistance, body composition, and energy balance. Gend. Med. 6, 60–75 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Guglielmi, V. & Sbraccia, P. Obesity phenotypes: depot-differences in adipose tissue and their clinical implications. Eat. Weight Disord. 23, 3–14 (2018).

    Article  PubMed  Google Scholar 

  48. Singh, R. et al. Testosterone inhibits adipogenic differentiation in 3T3-L1 cells: nuclear translocation of androgen receptor complex with β-catenin and T-cell factor 4 may bypass canonical Wnt signaling to down-regulate adipogenic transcription factors. Endocrinology 147, 141–154 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Lacasa, D., Le Liepvre, X., Ferre, P. & Dugail, I. Progesterone stimulates adipocyte determination and differentiation 1/sterol regulatory element-binding protein 1c gene expression. Potential mechanism for the lipogenic effect of progesterone in adipose tissue. J. Biol. Chem. 276, 11512–11516 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Kuk, J. L., Saunders, T. J., Davidson, L. E. & Ross, R. Age-related changes in total and regional fat distribution. Ageing Res. Rev. 8, 339–348 (2009).

    Article  PubMed  Google Scholar 

  51. Pischon, T. et al. General and abdominal adiposity and risk of death in Europe. N. Engl. J. Med. 359, 2105–2120 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Ross, R. et al. Waist circumference as a vital sign in clinical practice: a consensus statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol. 16, 177–189 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhu, K. et al. DXA-derived vs standard anthropometric measures for predicting cardiometabolic risk in middle-aged Australian men and women. J. Clin. Densitom. 25, 299–307 (2022).

    Article  PubMed  Google Scholar 

  54. Konieczna, J. et al. Body adiposity indicators and cardiometabolic risk: cross-sectional analysis in participants from the PREDIMED-plus trial. Clin. Nutr. 38, 1883–1891 (2019).

    Article  PubMed  Google Scholar 

  55. Britton, K. A. & Fox, C. S. Ectopic fat depots and cardiovascular disease. Circulation 124, e837–e841 (2011).

    Article  PubMed  Google Scholar 

  56. Li, Q. & Spalding, K. L. Profiling hypertrophic adipocytes in humans, from transcriptomics to diagnostics. EBioMedicine 81, 104105 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Honecker, J. et al. Transcriptome and fatty-acid signatures of adipocyte hypertrophy and its non-invasive MR-based characterization in human adipose tissue. EBioMedicine 79, 104020 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rosenquist, K. J. et al. Visceral and subcutaneous fat quality and cardiometabolic risk. JACC Cardiovasc. Imaging 6, 762–771 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Antonopoulos, A. S. et al. Detecting human coronary inflammation by imaging perivascular fat. Sci. Transl Med. 9, eaal2658 (2017).

    Article  PubMed  Google Scholar 

  60. Spalding, K. L. et al. Dynamics of fat cell turnover in humans. Nature 453, 783–787 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Vishvanath, L. & Gupta, R. K. Contribution of adipogenesis to healthy adipose tissue expansion in obesity. J. Clin. Invest. 129, 4022–4031 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ye, R. Z., Richard, G., Gevry, N., Tchernof, A. & Carpentier, A. C. Fat cell size: measurement methods, pathophysiological origins, and relationships with metabolic dysregulations. Endocr. Rev. 43, 35–60 (2022).

    Article  PubMed  Google Scholar 

  63. Farnier, C. et al. Adipocyte functions are modulated by cell size change: potential involvement of an integrin/ERK signalling pathway. Int. J. Obes. Relat. Metab. Disord. 27, 1178–1186 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Skurk, T., Alberti-Huber, C., Herder, C. & Hauner, H. Relationship between adipocyte size and adipokine expression and secretion. J. Clin. Endocrinol. Metab. 92, 1023–1033 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Lundgren, M. et al. Fat cell enlargement is an independent marker of insulin resistance and ‘hyperleptinaemia’. Diabetologia 50, 625–633 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Acosta, J. R. et al. Increased fat cell size: a major phenotype of subcutaneous white adipose tissue in non-obese individuals with type 2 diabetes. Diabetologia 59, 560–570 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Ryden, M. & Arner, P. Cardiovascular risk score is linked to subcutaneous adipocyte size and lipid metabolism. J. Intern. Med. 282, 220–228 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Weyer, C., Foley, J. E., Bogardus, C., Tataranni, P. A. & Pratley, R. E. Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance. Diabetologia 43, 1498–1506 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Ledoux, S. et al. Traditional anthropometric parameters still predict metabolic disorders in women with severe obesity. Obesity 18, 1026–1032 (2010).

    Article  PubMed  Google Scholar 

  70. O’Connell, J. et al. The relationship of omental and subcutaneous adipocyte size to metabolic disease in severe obesity. PLoS ONE 5, e9997 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Boden, G., Cheung, P., Mozzoli, M. & Fried, S. K. Effect of thiazolidinediones on glucose and fatty acid metabolism in patients with type 2 diabetes. Metabolism 52, 753–759 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Franck, N. et al. Insulin-induced GLUT4 translocation to the plasma membrane is blunted in large compared with small primary fat cells isolated from the same individual. Diabetologia 50, 1716–1722 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Kim, J. I. et al. Lipid-overloaded enlarged adipocytes provoke insulin resistance independent of inflammation. Mol. Cell Biol. 35, 1686–1699 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kawai, T., Autieri, M. V. & Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 320, C375–C391 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Burhans, M. S., Hagman, D. K., Kuzma, J. N., Schmidt, K. A. & Kratz, M. Contribution of adipose tissue inflammation to the development of type 2 diabetes mellitus. Compr. Physiol. 9, 1–58 (2018).

    PubMed  PubMed Central  Google Scholar 

  76. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993).

    Article  CAS  PubMed  Google Scholar 

  79. Uysal, K. T., Wiesbrock, S. M., Marino, M. W. & Hotamisligil, G. S. Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature 389, 610–614 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Emont, M. P. et al. A single-cell atlas of human and mouse white adipose tissue. Nature 603, 926–933 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Whytock, K. L. et al. Single cell full-length transcriptome of human subcutaneous adipose tissue reveals unique and heterogeneous cell populations. iScience 25, 104772 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Massier, L. et al. An integrated single cell and spatial transcriptomic map of human white adipose tissue. Nat. Commun. 14, 1438 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cinti, S. et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46, 2347–2355 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Farb, M. G. et al. Reduced adipose tissue inflammation represents an intermediate cardiometabolic phenotype in obesity. J. Am. Coll. Cardiol. 58, 232–237 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Espinosa De Ycaza, A. E. et al. Adipose tissue inflammation is not related to adipose insulin resistance in humans. Diabetes 71, 381–393 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Ofei, F., Hurel, S., Newkirk, J., Sopwith, M. & Taylor, R. Effects of an engineered human anti-TNF-α antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM. Diabetes 45, 881–885 (1996).

    Article  PubMed  Google Scholar 

  87. Paquot, N., Castillo, M. J., Lefebvre, P. J. & Scheen, A. J. No increased insulin sensitivity after a single intravenous administration of a recombinant human tumor necrosis factor receptor: Fc fusion protein in obese insulin-resistant patients. J. Clin. Endocrinol. Metab. 85, 1316–1319 (2000).

    CAS  PubMed  Google Scholar 

  88. Martinez-Abundis, E., Reynoso-von Drateln, C., Hernandez-Salazar, E. & Gonzalez-Ortiz, M. Effect of etanercept on insulin secretion and insulin sensitivity in a randomized trial with psoriatic patients at risk for developing type 2 diabetes mellitus. Arch. Dermatol. Res. 299, 461–465 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Menne, J. et al. C–C motif-ligand 2 inhibition with emapticap pegol (NOX-E36) in type 2 diabetic patients with albuminuria. Nephrol. Dial. Transpl. 32, 307–315 (2017).

    CAS  Google Scholar 

  90. Banerjee, A. & Singh, J. Remodeling adipose tissue inflammasome for type 2 diabetes mellitus treatment: current perspective and translational strategies. Bioeng. Transl Med. 5, e10150 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Wernstedt Asterholm, I. et al. Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab. 20, 103–118 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Aouadi, M. et al. Lipid storage by adipose tissue macrophages regulates systemic glucose tolerance. Am. J. Physiol. Endocrinol. Metab. 307, E374–E383 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ioannidou, A., Fisher, R. M. & Hagberg, C. E. The multifaceted roles of the adipose tissue vasculature. Obes. Rev. 23, e13403 (2022).

    Article  PubMed  Google Scholar 

  94. Belligoli, A. et al. Characterization of subcutaneous and omental adipose tissue in patients with obesity and with different degrees of glucose impairment. Sci. Rep. 9, 11333 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Paavonsalo, S., Hariharan, S., Lackman, M. H. & Karaman, S. Capillary rarefaction in obesity and metabolic diseases — organ-specificity and possible mechanisms. Cells 9, 2683 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cifarelli, V. et al. Decreased adipose tissue oxygenation associates with insulin resistance in individuals with obesity. J. Clin. Invest. 130, 6688–6699 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sun, K., Li, X. & Scherer, P. E. Extracellular matrix (ECM) and fibrosis in adipose tissue: overview and perspectives. Compr. Physiol. 13, 4387–4407 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Lempesis, I. G., van Meijel, R. L. J., Manolopoulos, K. N. & Goossens, G. H. Oxygenation of adipose tissue: a human perspective. Acta Physiol. 228, e13298 (2020).

    Article  CAS  Google Scholar 

  99. DeBari, M. K. & Abbott, R. D. Adipose tissue fibrosis: mechanisms, models, and importance. Int. J. Mol. Sci. 21, 6030 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chun, S. Y. et al. Preparation and characterization of human adipose tissue-derived extracellular matrix, growth factors, and stem cells: a concise review. Tissue Eng. Regen. Med. 16, 385–393 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mariman, E. C. & Wang, P. Adipocyte extracellular matrix composition, dynamics and role in obesity. Cell Mol. Life Sci. 67, 1277–1292 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Guzman-Ruiz, R. et al. Adipose tissue depot-specific intracellular and extracellular cues contributing to insulin resistance in obese individuals. FASEB J. 34, 7520–7539 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. de Sousa Neto, I. V., Durigan, J. L. Q., da Silva, A. S. R. & de Cassia Marqueti, R. Adipose tissue extracellular matrix remodeling in response to dietary patterns and exercise: molecular landscape, mechanistic insights, and therapeutic approaches. Biology 11, 765 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Khan, T. et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol. Cell Biol. 29, 1575–1591 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Divoux, A. et al. Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes 59, 2817–2825 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Abdennour, M. et al. Association of adipose tissue and liver fibrosis with tissue stiffness in morbid obesity: links with diabetes and BMI loss after gastric bypass. J. Clin. Endocrinol. Metab. 99, 898–907 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Huang, A. et al. Inflammation-induced macrophage lysyl oxidase in adipose stiffening and dysfunction in obesity. Clin. Transl Med. 11, e543 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lackey, D. E. et al. Contributions of adipose tissue architectural and tensile properties toward defining healthy and unhealthy obesity. Am. J. Physiol. Endocrinol. Metab. 306, E233–E246 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Sotak, M. et al. Healthy subcutaneous and omental adipose tissue is associated with high expression of extracellular matrix components. Int. J. Mol. Sci. 23, 520 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lee, S. H. et al. Fibronectin gene expression in human adipose tissue and its associations with obesity-related genes and metabolic parameters. Obes. Surg. 23, 554–560 (2013).

    Article  PubMed  Google Scholar 

  111. Muir, L. A. et al. Adipose tissue fibrosis, hypertrophy, and hyperplasia: correlations with diabetes in human obesity. Obesity 24, 597–605 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Boyd, D. F. & Thomas, P. G. Towards integrating extracellular matrix and immunological pathways. Cytokine 98, 79–86 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Henegar, C. et al. Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity. Genome Biol. 9, R14 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Mileti, E. et al. Human white adipose tissue displays selective insulin resistance in the obese state. Diabetes 70, 1486–1497 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Valentine, J. M. et al. β3-Adrenergic receptor downregulation leads to adipocyte catecholamine resistance in obesity. J. Clin. Invest. 132, e153357 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fisher, F. M. et al. Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes 59, 2781–2789 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kiefer, L. S. et al. Distribution patterns of intramyocellular and extramyocellular fat by magnetic resonance imaging in subjects with diabetes, prediabetes and normoglycaemic controls. Diabetes Obes. Metab. 23, 1868–1878 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Unger, R. H. Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications. Diabetes 44, 863–870 (1995).

    Article  CAS  PubMed  Google Scholar 

  119. Moorhead, J. F., Chan, M. K., El-Nahas, M. & Varghese, Z. Lipid nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease. Lancet 2, 1309–1311 (1982).

    Article  CAS  PubMed  Google Scholar 

  120. Farnier, M., Zeller, M., Masson, D. & Cottin, Y. Triglycerides and risk of atherosclerotic cardiovascular disease: an update. Arch. Cardiovasc. Dis. 114, 132–139 (2021).

    Article  PubMed  Google Scholar 

  121. Hagberg, C. E. et al. Flow cytometry of mouse and human adipocytes for the analysis of browning and cellular heterogeneity. Cell Rep. 24, 2746–2756 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Arner, P., Andersson, D. P., Backdahl, J., Dahlman, I. & Ryden, M. Weight gain and impaired glucose metabolism in women are predicted by inefficient subcutaneous fat cell lipolysis. Cell Metab. 28, 45–54 (2018).

    Article  CAS  PubMed  Google Scholar 

  123. Mittendorfer, B., Magkos, F., Fabbrini, E., Mohammed, B. S. & Klein, S. Relationship between body fat mass and free fatty acid kinetics in men and women. Obesity 17, 1872–1877 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Karpe, F., Dickmann, J. R. & Frayn, K. N. Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes 60, 2441–2449 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Potts, J. L. et al. Impaired postprandial clearance of triacylglycerol-rich lipoproteins in adipose tissue in obese subjects. Am. J. Physiol. 268, E588–E594 (1995).

    CAS  PubMed  Google Scholar 

  126. Serra, M. C., Ryan, A. S., Sorkin, J. D., Favor, K. H. & Goldberg, A. P. High adipose LPL activity and adipocyte hypertrophy reduce visceral fat and metabolic risk in obese, older women. Obesity 23, 602–607 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Serra, M. C., Ryan, A. S. & Goldberg, A. P. Reduced LPL and subcutaneous lipid storage capacity are associated with metabolic syndrome in postmenopausal women with obesity. Obes. Sci. Pract. 3, 106–114 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. White, U. A., Fitch, M. D., Beyl, R. A., Hellerstein, M. K. & Ravussin, E. Racial differences in in vivo adipose lipid kinetics in humans. J. Lipid Res. 59, 1738–1744 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Allister, C. A. et al. In vivo 2H2O administration reveals impaired triglyceride storage in adipose tissue of insulin-resistant humans. J. Lipid Res. 56, 435–439 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Arner, P. et al. Dynamics of human adipose lipid turnover in health and metabolic disease. Nature 478, 110–113 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Arner, P. Is familial combined hyperlipidaemia a genetic disorder of adipose tissue? Curr. Opin. Lipidol. 8, 89–94 (1997).

    Article  CAS  PubMed  Google Scholar 

  132. de Graaf, J., Veerkamp, M. J. & Stalenhoef, A. F. Metabolic pathogenesis of familial combined hyperlipidaemia with emphasis on insulin resistance, adipose tissue metabolism and free fatty acids. J. R. Soc. Med. 95, 46–53 (2002).

    PubMed  PubMed Central  Google Scholar 

  133. Bohm, A. et al. Metabolic signatures of cultured human adipocytes from metabolically healthy versus unhealthy obese individuals. PLoS ONE 9, e93148 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Petrus, P. et al. Glutamine links obesity to inflammation in human white adipose tissue. Cell Metab. 31, 375–390 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Hanzu, F. A. et al. Obesity rather than regional fat depots marks the metabolomic pattern of adipose tissue: an untargeted metabolomic approach. Obesity 22, 698–704 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Bril, F. et al. Metabolic and histological implications of intrahepatic triglyceride content in nonalcoholic fatty liver disease. Hepatology 65, 1132–1144 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Bevilacqua, S. et al. Acute elevation of free fatty acid levels leads to hepatic insulin resistance in obese subjects. Metabolism 36, 502–506 (1987).

    Article  CAS  PubMed  Google Scholar 

  138. Glass, C. K. & Olefsky, J. M. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab. 15, 635–645 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Shapiro, H., Lutaty, A. & Ariel, A. Macrophages, meta-inflammation, and immuno-metabolism. ScientificWorldJournal 11, 2509–2529 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Smith, U., Li, Q., Ryden, M. & Spalding, K. L. Cellular senescence and its role in white adipose tissue. Int. J. Obes. 45, 934–943 (2021).

    Article  CAS  Google Scholar 

  141. Wiley, C. D. & Campisi, J. The metabolic roots of senescence: mechanisms and opportunities for intervention. Nat. Metab. 3, 1290–1301 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Xu, M. et al. Targeting senescent cells enhances adipogenesis and metabolic function in old age. eLife 4, e12997 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Gustafson, B., Nerstedt, A. & Smith, U. Reduced subcutaneous adipogenesis in human hypertrophic obesity is linked to senescent precursor cells. Nat. Commun. 10, 2757 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Shirakawa, K. et al. Obesity accelerates T cell senescence in murine visceral adipose tissue. J. Clin. Invest. 126, 4626–4639 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Hall, B. M. et al. Aging of mice is associated with p16Ink4a- and β-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells. Aging 8, 1294–1315 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Nerstedt, A. & Smith, U. The impact of cellular senescence in human adipose tissue. J. Cell Commun. Signal. 17, 563–573 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Liu, Z., Wu, K. K. L., Jiang, X., Xu, A. & Cheng, K. K. Y. The role of adipose tissue senescence in obesity- and ageing-related metabolic disorders. Clin. Sci. 134, 315–330 (2020).

    Article  CAS  Google Scholar 

  148. Li, Q. et al. Obesity and hyperinsulinemia drive adipocytes to activate a cell cycle program and senesce. Nat. Med. 27, 1941–1953 (2021).

    Article  CAS  PubMed  Google Scholar 

  149. Palmer, A. K., Tchkonia, T. & Kirkland, J. L. Targeting cellular senescence in metabolic disease. Mol. Metab. 66, 101601 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hickson, L. J. et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. EBioMedicine 47, 446–456 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Palmer, A. K. et al. Targeting senescent cells alleviates obesity-induced metabolic dysfunction. Aging Cell 18, e12950 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Bian, X. et al. Senescence marker activin A is increased in human diabetic kidney disease: association with kidney function and potential implications for therapy. BMJ Open. Diabetes Res. Care 7, e000720 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Pers, T. H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187–196 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Powell-Wiley, T. M. et al. Obesity and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 143, e984–e1010 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Wang, W. et al. Global Burden of Disease Study 2019 suggests that metabolic risk factors are the leading drivers of the burden of ischemic heart disease. Cell Metab. 33, 1943–1956 (2021).

    Article  CAS  PubMed  Google Scholar 

  158. Despres, J. P. Body fat distribution and risk of cardiovascular disease: an update. Circulation 126, 1301–1313 (2012).

    Article  PubMed  Google Scholar 

  159. Adiels, M., Olofsson, S. O., Taskinen, M. R. & Boren, J. Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 28, 1225–1236 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Heeren, J. & Scheja, L. Metabolic-associated fatty liver disease and lipoprotein metabolism. Mol. Metab. 50, 101238 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lauridsen, B. K. et al. Liver fat content, non-alcoholic fatty liver disease, and ischaemic heart disease: Mendelian randomization and meta-analysis of 279 013 individuals. Eur. Heart J. 39, 385–393 (2018).

    Article  CAS  PubMed  Google Scholar 

  162. Oikonomou, E. K. & Antoniades, C. The role of adipose tissue in cardiovascular health and disease. Nat. Rev. Cardiol. 16, 83–99 (2019).

    Article  PubMed  Google Scholar 

  163. Flegal, K. M., Kit, B. K., Orpana, H. & Graubard, B. I. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA 309, 71–82 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Lee, J. J., Pedley, A., Hoffmann, U., Massaro, J. M. & Fox, C. S. Association of changes in abdominal fat quantity and quality with incident cardiovascular disease risk factors. J. Am. Coll. Cardiol. 68, 1509–1521 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Sarin, S. et al. Clinical significance of epicardial fat measured using cardiac multislice computed tomography. Am. J. Cardiol. 102, 767–771 (2008).

    Article  PubMed  Google Scholar 

  166. Antoniades, C., Kotanidis, C. P. & Berman, D. S. State-of-the-art review article. Atherosclerosis affecting fat: what can we learn by imaging perivascular adipose tissue? J. Cardiovasc. Comput. Tomogr. 13, 288–296 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Huang Cao, Z. F., Stoffel, E. & Cohen, P. Role of perivascular adipose tissue in vascular physiology and pathology. Hypertension 69, 770–777 (2017).

    Article  PubMed  Google Scholar 

  168. Greenstein, A. S. et al. Local inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients. Circulation 119, 1661–1670 (2009).

    Article  CAS  PubMed  Google Scholar 

  169. Oikonomou, E. K. et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data. Lancet 392, 929–939 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Jastreboff, A. M. et al. Triple-hormone-receptor agonist retatrutide for obesity — a phase 2 trial. N. Engl. J. Med. 389, 514–526 (2023).

    Article  CAS  PubMed  Google Scholar 

  171. Walmsley, R. & Sumithran, P. Current and emerging medications for the management of obesity in adults. Med. J. Aust. 218, 276–283 (2023).

    Article  PubMed  Google Scholar 

  172. Lauby-Secretan, B. et al. Body fatness and cancer — viewpoint of the IARC Working Group. N. Engl. J. Med. 375, 794–798 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Bhaskaran, K. et al. Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5.24 million UK adults. Lancet 384, 755–765 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Fang, X. et al. Quantitative association between body mass index and the risk of cancer: a global meta-analysis of prospective cohort studies. Int. J. Cancer 143, 1595–1603 (2018).

    Article  CAS  PubMed  Google Scholar 

  175. Calle, E. E., Rodriguez, C., Walker-Thurmond, K. & Thun, M. J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med. 348, 1625–1638 (2003).

    Article  PubMed  Google Scholar 

  176. Balaban, S. et al. Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer Metab. 5, 1 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Rebeaud, M. et al. A novel 3D culture model for human primary mammary adipocytes to study their metabolic crosstalk with breast cancer in lean and obese conditions. Sci. Rep. 13, 4707 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Park, J. & Scherer, P. E. Adipocyte-derived endotrophin promotes malignant tumor progression. J. Clin. Invest. 122, 4243–4256 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Mubtasim, N., Moustaid-Moussa, N. & Gollahon, L. The complex biology of the obesity-induced, metastasis-promoting tumor microenvironment in breast cancer. Int. J. Mol. Sci. 23, 2480 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Lapeire, L. et al. Secretome analysis of breast cancer-associated adipose tissue to identify paracrine regulators of breast cancer growth. Oncotarget 8, 47239–47249 (2017).

    Article  PubMed  Google Scholar 

  181. Kolb, R. et al. Obesity-associated inflammation promotes angiogenesis and breast cancer via angiopoietin-like 4. Oncogene 38, 2351–2363 (2019).

    Article  CAS  PubMed  Google Scholar 

  182. Dirat, B. et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 71, 2455–2465 (2011).

    Article  CAS  PubMed  Google Scholar 

  183. Andarawewa, K. L. et al. Stromelysin-3 is a potent negative regulator of adipogenesis participating to cancer cell–adipocyte interaction/crosstalk at the tumor invasive front. Cancer Res. 65, 10862–10871 (2005).

    Article  CAS  PubMed  Google Scholar 

  184. Mukherjee, A., Bilecz, A. J. & Lengyel, E. The adipocyte microenvironment and cancer. Cancer Metastasis Rev. 41, 575–587 (2022).

    Article  CAS  PubMed  Google Scholar 

  185. Grant, R. W. & Stephens, J. M. Fat in flames: influence of cytokines and pattern recognition receptors on adipocyte lipolysis. Am. J. Physiol. Endocrinol. Metab. 309, E205–E213 (2015).

    Article  CAS  PubMed  Google Scholar 

  186. Beloribi-Djefaflia, S., Vasseur, S. & Guillaumond, F. Lipid metabolic reprogramming in cancer cells. Oncogenesis 5, e189 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Cao, Y. Adipocyte and lipid metabolism in cancer drug resistance. J. Clin. Invest. 129, 3006–3017 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Bowers, L. W., Rossi, E. L., O’Flanagan, C. H., deGraffenried, L. A. & Hursting, S. D. The role of the Insulin/IGF system in cancer: lessons learned from clinical trials and the energy balance–cancer link. Front. Endocrinol. 6, 77 (2015).

    Article  Google Scholar 

  189. Berger, E. R. & Iyengar, N. M. Obesity and energy balance considerations in triple-negative breast cancer. Cancer J. 27, 17–24 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Davison, Z., de Blacquiere, G. E., Westley, B. R. & May, F. E. Insulin-like growth factor-dependent proliferation and survival of triple-negative breast cancer cells: implications for therapy. Neoplasia 13, 504–515 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Zhang, A. M. Y., Wellberg, E. A., Kopp, J. L. & Johnson, J. D. Hyperinsulinemia in obesity, inflammation, and cancer. Diabetes Metab. J. 45, 285–311 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Levitsky, A. et al. Obesity is a strong predictor of worse clinical outcomes and treatment responses in early rheumatoid arthritis: results from the SWEFOT trial. RMD Open. 3, e000458 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Castillo, J. J. et al. Relationship between obesity and clinical outcome in adults with acute myeloid leukemia: a pooled analysis from four CALGB (alliance) clinical trials. Am. J. Hematol. 91, 199–204 (2016).

    Article  PubMed  Google Scholar 

  194. Calle, E. E. & Kaaks, R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer 4, 579–591 (2004).

    Article  CAS  PubMed  Google Scholar 

  195. Ruiz-Ojeda, F. J., Mendez-Gutierrez, A., Aguilera, C. M. & Plaza-Diaz, J. Extracellular matrix remodeling of adipose tissue in obesity and metabolic diseases. Int. J. Mol. Sci. 20, 4888 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Cascetta, P. et al. Pancreatic cancer and obesity: molecular mechanisms of cell transformation and chemoresistance. Int. J. Mol. Sci. 19, 3331 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Iyer, A., Fairlie, D. P., Prins, J. B., Hammock, B. D. & Brown, L. Inflammatory lipid mediators in adipocyte function and obesity. Nat. Rev. Endocrinol. 6, 71–82 (2010).

    Article  CAS  PubMed  Google Scholar 

  198. Manna, P. & Jain, S. K. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies. Metab. Syndr. Relat. Disord. 13, 423–444 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Incio, J. et al. Obesity promotes resistance to anti-VEGF therapy in breast cancer by up-regulating IL-6 and potentially FGF-2. Sci. Transl Med. 10, eaag0945 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Bochet, L. et al. Cancer-associated adipocytes promotes breast tumor radioresistance. Biochem. Biophys. Res. Commun. 411, 102–106 (2011).

    Article  CAS  PubMed  Google Scholar 

  201. Duong, M. N. et al. Adipose cells promote resistance of breast cancer cells to trastuzumab-mediated antibody-dependent cellular cytotoxicity. Breast Cancer Res. 17, 57 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Harbuzariu, A. & Gonzalez-Perez, R. R. Leptin–Notch axis impairs 5-fluorouracil effects on pancreatic cancer. Oncotarget 9, 18239–18253 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  203. AM, A. L., Syed, D. N. & Ntambi, J. M. Insights into stearoyl-CoA desaturase-1 regulation of systemic metabolism. Trends Endocrinol. Metab. 28, 831–842 (2017).

    Article  Google Scholar 

  204. Mohammadzadeh, F. et al. Fatty acid composition of tissue cultured breast carcinoma and the effect of stearoyl-CoA desaturase 1 inhibition. J. Breast Cancer 17, 136–142 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Scaglia, N., Caviglia, J. M. & Igal, R. A. High stearoyl-CoA desaturase protein and activity levels in simian virus 40 transformed-human lung fibroblasts. Biochim. Biophys. Acta 1687, 141–151 (2005).

    Article  CAS  PubMed  Google Scholar 

  206. Budhu, A. et al. Integrated metabolite and gene expression profiles identify lipid biomarkers associated with progression of hepatocellular carcinoma and patient outcomes. Gastroenterology 144, 1066–1075 (2013).

    Article  CAS  PubMed  Google Scholar 

  207. Guo, S., Wang, Y., Zhou, D. & Li, Z. Significantly increased monounsaturated lipids relative to polyunsaturated lipids in six types of cancer microenvironment are observed by mass spectrometry imaging. Sci. Rep. 4, 5959 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Tracz-Gaszewska, Z. & Dobrzyn, P. Stearoyl-CoA desaturase 1 as a therapeutic target for the treatment of cancer. Cancers 11, 948 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Sen, U., Coleman, C. & Sen, T. Stearoyl coenzyme A desaturase-1: multitasker in cancer, metabolism, and ferroptosis. Trends Cancer 9, 480–489 (2023).

    Article  CAS  PubMed  Google Scholar 

  210. Horsley, V. Adipocyte plasticity in tissue regeneration, repair, and disease. Curr. Opin. Genet. Dev. 76, 101968 (2022).

    Article  CAS  PubMed  Google Scholar 

  211. Shook, B. et al. The role of adipocytes in tissue regeneration and stem cell niches. Annu. Rev. Cell Dev. Biol. 32, 609–631 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Zhang, L. J. et al. Diet-induced obesity promotes infection by impairment of the innate antimicrobial defense function of dermal adipocyte progenitors. Sci. Transl Med. 13, eabb5280 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Zhang, L. J. et al. Innate immunity. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection. Science 347, 67–71 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Shook, B. A. et al. Dermal adipocyte lipolysis and myofibroblast conversion are required for efficient skin repair. Cell Stem Cell 26, 880–895 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Tadokoro, S. et al. Leptin promotes wound healing in the skin. PLoS ONE 10, e0121242 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Frank, S., Stallmeyer, B., Kampfer, H., Kolb, N. & Pfeilschifter, J. Leptin enhances wound re-epithelialization and constitutes a direct function of leptin in skin repair. J. Clin. Invest. 106, 501–509 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Murad, A. et al. Leptin is an autocrine/paracrine regulator of wound healing. FASEB J. 17, 1895–1897 (2003).

    Article  CAS  PubMed  Google Scholar 

  218. Salathia, N. S., Shi, J., Zhang, J. & Glynne, R. J. An in vivo screen of secreted proteins identifies adiponectin as a regulator of murine cutaneous wound healing. J. Invest. Dermatol. 133, 812–821 (2013).

    Article  CAS  PubMed  Google Scholar 

  219. Alma, A., Marconi, G. D., Rossi, E., Magnoni, C. & Paganelli, A. Obesity and wound healing: focus on mesenchymal stem cells. Life 13, 717 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Corvera, S. & Gealekman, O. Adipose tissue angiogenesis: impact on obesity and type-2 diabetes. Biochim. Biophys. Acta 1842, 463–472 (2014).

    Article  CAS  PubMed  Google Scholar 

  221. Zaadstra, B. M. et al. Fat and female fecundity: prospective study of effect of body fat distribution on conception rates. BMJ 306, 484–487 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Hall, L. F. & Neubert, A. G. Obesity and pregnancy. Obstet. Gynecol. Surv. 60, 253–260 (2005).

    Article  PubMed  Google Scholar 

  223. Nelson, S. M. & Fleming, R. F. The preconceptual contraception paradigm: obesity and infertility. Hum. Reprod. 22, 912–915 (2007).

    Article  PubMed  Google Scholar 

  224. Michalakis, K., Mintziori, G., Kaprara, A., Tarlatzis, B. C. & Goulis, D. G. The complex interaction between obesity, metabolic syndrome and reproductive axis: a narrative review. Metabolism 62, 457–478 (2013).

    Article  CAS  PubMed  Google Scholar 

  225. Mathew, H., Castracane, V. D. & Mantzoros, C. Adipose tissue and reproductive health. Metabolism 86, 18–32 (2018).

    Article  CAS  PubMed  Google Scholar 

  226. Dennett, C. C. & Simon, J. The role of polycystic ovary syndrome in reproductive and metabolic health: overview and approaches for treatment. Diabetes Spectr. 28, 116–120 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Bohler, H. Jr., Mokshagundam, S. & Winters, S. J. Adipose tissue and reproduction in women. Fertil. Steril. 94, 795–825 (2010).

    Article  CAS  PubMed  Google Scholar 

  228. Provost, M. P. et al. Pregnancy outcomes decline with increasing body mass index: analysis of 239,127 fresh autologous in vitro fertilization cycles from the 2008–2010 Society for Assisted Reproductive Technology registry. Fertil. Steril. 105, 663–669 (2016).

    Article  PubMed  Google Scholar 

  229. Campbell, J. M., Lane, M., Owens, J. A. & Bakos, H. W. Paternal obesity negatively affects male fertility and assisted reproduction outcomes: a systematic review and meta-analysis. Reprod. Biomed. Online 31, 593–604 (2015).

    Article  PubMed  Google Scholar 

  230. Oliveira, J. B. Obesity and reproduction. JBRA Assist. Reprod. 20, 194 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  231. MacDonald, A. A., Herbison, G. P., Showell, M. & Farquhar, C. M. The impact of body mass index on semen parameters and reproductive hormones in human males: a systematic review with meta-analysis. Hum. Reprod. Update 16, 293–311 (2010).

    Article  CAS  PubMed  Google Scholar 

  232. Fariello, R. M. et al. Association between obesity and alteration of sperm DNA integrity and mitochondrial activity. BJU Int. 110, 863–867 (2012).

    Article  CAS  PubMed  Google Scholar 

  233. Practice Committee of the American Society for Reproductive Medicine. Obesity and reproduction: a committee opinion. Fertil. Steril. 116, 1266–1285 (2021).

    Article  Google Scholar 

  234. Taha, E. A. et al. Does being overweight affect seminal variables in fertile men? Reprod. Biomed. Online 33, 703–708 (2016).

    Article  PubMed  Google Scholar 

  235. Malczak, P. et al. Influence of bariatric surgery on erectile dysfunction — a systematic review and meta-analysis. Obes. Surg. 33, 1652–1658 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Liu, Y. et al. Association of BMI with erectile dysfunction: a cross-sectional study of men from an andrology clinic. Front. Endocrinol. 14, 1135024 (2023).

    Article  Google Scholar 

  237. Jastreboff, A. M. et al. Tirzepatide once weekly for the treatment of obesity. N. Engl. J. Med. 387, 205–216 (2022).

    Article  CAS  PubMed  Google Scholar 

  238. Prillaman, M. The ‘breakthrough’ obesity drugs that have stunned researchers. Nature 613, 16–18 (2023).

    Article  CAS  PubMed  Google Scholar 

  239. Ogrodnik, M. et al. Cellular senescence drives age-dependent hepatic steatosis. Nat. Commun. 8, 15691 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Raffaele, M. et al. Mild exacerbation of obesity- and age-dependent liver disease progression by senolytic cocktail dasatinib + quercetin. Cell Commun. Signal. 19, 44 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Raffaele, M. & Vinciguerra, M. The costs and benefits of senotherapeutics for human health. Lancet Healthy Longev. 3, e67–e77 (2022).

    Article  PubMed  Google Scholar 

  242. Wurfel, M. et al. Adipokines as clinically relevant therapeutic targets in obesity. Biomedicines 11, 1427 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Brock, J. et al. Progranulin serum levels and gene expression in subcutaneous vs visceral adipose tissue of severely obese patients undergoing bariatric surgery. Clin. Endocrinol. 91, 400–410 (2019).

    Article  CAS  Google Scholar 

  244. Buechler, C., Feder, S., Haberl, E. M. & Aslanidis, C. Chemerin isoforms and activity in obesity. Int. J. Mol. Sci. 20, 1128 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Wijetunge, S. et al. Association between serum and adipose tissue resistin with dysglycemia in South Asian women. Nutr. Diabetes 9, 5 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Lehr, S., Hartwig, S. & Sell, H. Adipokines: a treasure trove for the discovery of biomarkers for metabolic disorders. Proteom. Clin. Appl. 6, 91–101 (2012).

    Article  CAS  Google Scholar 

  247. Fasshauer, M. & Bluher, M. Adipokines in health and disease. Trends Pharmacol. Sci. 36, 461–470 (2015).

    Article  CAS  PubMed  Google Scholar 

  248. Pestel, J., Blangero, F., Watson, J., Pirola, L. & Eljaafari, A. Adipokines in obesity and metabolic-related-diseases. Biochimie 212, 48–59 (2023).

    Article  CAS  PubMed  Google Scholar 

  249. Kukla, M. et al. Anti-inflammatory adipokines: chemerin, vaspin, omentin concentrations and SARS-CoV-2 outcomes. Sci. Rep. 11, 21514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Bondue, B. et al. ChemR23 dampens lung inflammation and enhances anti-viral immunity in a mouse model of acute viral pneumonia. PLoS Pathog. 7, e1002358 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Article  CAS  PubMed  Google Scholar 

  252. Wang, Q. A., Tao, C., Gupta, R. K. & Scherer, P. E. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat. Med. 19, 1338–1344 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Wang, M. Y. et al. Adipogenic capacity and the susceptibility to type 2 diabetes and metabolic syndrome. Proc. Natl Acad. Sci. USA 105, 6139–6144 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Papademetris, X., Shkarin, P., Staib, L. H. & Behar, K. L. Regional whole body fat quantification in mice. Inf. Process. Med. Imaging 19, 369–380 (2005).

    PubMed  Google Scholar 

  255. Vitali, A. et al. The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes. J. Lipid Res. 53, 619–629 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Luu, Y. K. et al. In vivo quantification of subcutaneous and visceral adiposity by micro-computed tomography in a small animal model. Med. Eng. Phys. 31, 34–41 (2009).

    Article  CAS  PubMed  Google Scholar 

  257. Krieg, L. et al. Multiomics reveal unique signatures of human epiploic adipose tissue related to systemic insulin resistance. Gut 71, 2179–2193 (2022).

    Article  CAS  PubMed  Google Scholar 

  258. Onogi, Y. & Ussar, S. Is epiploic fat the dermal fat of the intestine? Gut 71, 2147–2148 (2022).

    Article  PubMed  Google Scholar 

  259. Frontini, A. & Cinti, S. Distribution and development of brown adipocytes in the murine and human adipose organ. Cell Metab. 11, 253–256 (2010).

    Article  CAS  PubMed  Google Scholar 

  260. Rytka, J. M., Wueest, S., Schoenle, E. J. & Konrad, D. The portal theory supported by venous drainage-selective fat transplantation. Diabetes 60, 56–63 (2011).

    Article  CAS  PubMed  Google Scholar 

  261. Nielsen, S., Guo, Z., Johnson, C. M., Hensrud, D. D. & Jensen, M. D. Splanchnic lipolysis in human obesity. J. Clin. Invest. 113, 1582–1588 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Johnson, P. R. & Hirsch, J. Cellularity of adipose depots in six strains of genetically obese mice. J. Lipid Res. 13, 2–11 (1972).

    Article  CAS  PubMed  Google Scholar 

  263. Song, M. G. et al. Depot-specific differences in angiogenic capacity of adipose tissue in differential susceptibility to diet-induced obesity. Mol. Metab. 5, 1113–1120 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Schottl, T., Kappler, L., Braun, K., Fromme, T. & Klingenspor, M. Limited mitochondrial capacity of visceral versus subcutaneous white adipocytes in male C57BL/6N mice. Endocrinology 156, 923–933 (2015).

    Article  PubMed  Google Scholar 

  265. Schottl, T., Kappler, L., Fromme, T. & Klingenspor, M. Limited OXPHOS capacity in white adipocytes is a hallmark of obesity in laboratory mice irrespective of the glucose tolerance status. Mol. Metab. 4, 631–642 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Villaret, A. et al. Adipose tissue endothelial cells from obese human subjects: differences among depots in angiogenic, metabolic, and inflammatory gene expression and cellular senescence. Diabetes 59, 2755–2763 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Kraunsoe, R. et al. Mitochondrial respiration in subcutaneous and visceral adipose tissue from patients with morbid obesity. J. Physiol. 588, 2023–2032 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Wueest, S., Schoenle, E. J. & Konrad, D. Depot-specific differences in adipocyte insulin sensitivity in mice are diet- and function-dependent. Adipocyte 1, 153–156 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Portillo, M. P., Villaro, J. M., Torres, M. I. & Macarulla, M. T. In vivo lipolysis in adipose tissue from two anatomical locations measured by microdialysis. Life Sci. 67, 437–445 (2000).

    Article  CAS  PubMed  Google Scholar 

  270. Gaidhu, M. P., Anthony, N. M., Patel, P., Hawke, T. J. & Ceddia, R. B. Dysregulation of lipolysis and lipid metabolism in visceral and subcutaneous adipocytes by high-fat diet: role of ATGL, HSL, and AMPK. Am. J. Physiol. Cell Physiol. 298, C961–C971 (2010).

    Article  CAS  PubMed  Google Scholar 

  271. Lundgren, M., Buren, J., Ruge, T., Myrnas, T. & Eriksson, J. W. Glucocorticoids down-regulate glucose uptake capacity and insulin-signaling proteins in omental but not subcutaneous human adipocytes. J. Clin. Endocrinol. Metab. 89, 2989–2997 (2004).

    Article  CAS  PubMed  Google Scholar 

  272. Virtanen, K. A. et al. Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin stimulation in nonobese and obese humans. J. Clin. Endocrinol. Metab. 87, 3902–3910 (2002).

    Article  CAS  PubMed  Google Scholar 

  273. Laviola, L. et al. Insulin signaling in human visceral and subcutaneous adipose tissue in vivo. Diabetes 55, 952–961 (2006).

    Article  CAS  PubMed  Google Scholar 

  274. Hoffstedt, J., Arner, P., Hellers, G. & Lonnqvist, F. Variation in adrenergic regulation of lipolysis between omental and subcutaneous adipocytes from obese and non-obese men. J. Lipid Res. 38, 795–804 (1997).

    Article  CAS  PubMed  Google Scholar 

  275. Cheung, L. et al. Human mediastinal adipose tissue displays certain characteristics of brown fat. Nutr. Diabetes 3, e66 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Zuriaga, M. A., Fuster, J. J., Gokce, N. & Walsh, K. Humans and mice display opposing patterns of “Browning” gene expression in visceral and subcutaneous white adipose tissue depots. Front. Cardiovasc. Med. 4, 27 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  277. Alessio, N. et al. Obesity is associated with senescence of mesenchymal stromal cells derived from bone marrow, subcutaneous and visceral fat of young mice. Aging 12, 12609–12621 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. List, E. O. et al. Diet-induced weight loss is sufficient to reduce senescent cell number in white adipose tissue of weight-cycled mice. Nutr. Healthy Aging 4, 95–99 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Rouault, C. et al. Senescence-associated β-galactosidase in subcutaneous adipose tissue associates with altered glycaemic status and truncal fat in severe obesity. Diabetologia 64, 240–254 (2021).

    Article  CAS  PubMed  Google Scholar 

  280. Alexander, H. G. & Dugdale, A. E. Fascial planes within subcutaneous fat in humans. Eur. J. Clin. Nutr. 46, 903–906 (1992).

    CAS  PubMed  Google Scholar 

  281. Sbarbati, A. et al. Subcutaneous adipose tissue classification. Eur. J. Histochem. 54, e48 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Walker, G. E. et al. Deep subcutaneous adipose tissue: a distinct abdominal adipose depot. Obesity 15, 1933–1943 (2007).

    Article  CAS  PubMed  Google Scholar 

  283. Raajendiran, A. et al. Proteome analysis of human adipocytes identifies depot-specific heterogeneity at metabolic control points. Am. J. Physiol. Endocrinol. Metab. 320, E1068–E1084 (2021).

    Article  CAS  PubMed  Google Scholar 

  284. Al-Sari, N. et al. Lipidomics of human adipose tissue reveals diversity between body areas. PLoS ONE 15, e0228521 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Tarabra, E. et al. The omentum of obese girls harbors small adipocytes and browning transcripts. JCI Insight 5, e135448 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  286. Maniyadath, B., Zhang, Q., Gupta, R. K. & Mandrup, S. Adipose tissue at single-cell resolution. Cell Metab. 35, 386–413 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Yang Loureiro, Z., Solivan-Rivera, J. & Corvera, S. Adipocyte heterogeneity underlying adipose tissue functions. Endocrinology 163, bqab138 (2022).

    Article  PubMed  Google Scholar 

  288. Emont, M. P. & Rosen, E. D. Exploring the heterogeneity of white adipose tissue in mouse and man. Curr. Opin. Genet. Dev. 80, 102045 (2023).

    Article  CAS  PubMed  Google Scholar 

  289. Sun, W. et al. snRNA-seq reveals a subpopulation of adipocytes that regulates thermogenesis. Nature 587, 98–102 (2020).

    Article  CAS  PubMed  Google Scholar 

  290. Backdahl, J. et al. Spatial mapping reveals human adipocyte subpopulations with distinct sensitivities to insulin. Cell Metab. 33, 2301 (2021).

    Article  CAS  PubMed  Google Scholar 

  291. Kumar, T. et al. A spatially resolved single-cell genomic atlas of the adult human breast. Nature 620, 181–191 (2023).

    Article  CAS  PubMed  Google Scholar 

  292. Langin, D. Adipocyte heterogeneity revealed by spatial transcriptomics of human adipose tissue: painting and more. Cell Metab. 33, 1721–1722 (2021).

    Article  CAS  PubMed  Google Scholar 

  293. Lumish, H. S., O’Reilly, M. & Reilly, M. P. Sex differences in genomic drivers of adipose distribution and related cardiometabolic disorders: opportunities for precision medicine. Arterioscler. Thromb. Vasc. Biol. 40, 45–60 (2020).

    Article  CAS  PubMed  Google Scholar 

  294. Kuk, J. L., Lee, S., Heymsfield, S. B. & Ross, R. Waist circumference and abdominal adipose tissue distribution: influence of age and sex. Am. J. Clin. Nutr. 81, 1330–1334 (2005).

    Article  CAS  PubMed  Google Scholar 

  295. Manolopoulos, K. N., Karpe, F. & Frayn, K. N. Gluteofemoral body fat as a determinant of metabolic health. Int. J. Obes. 34, 949–959 (2010).

    Article  CAS  Google Scholar 

  296. Pedersen, S. B., Kristensen, K., Hermann, P. A., Katzenellenbogen, J. A. & Richelsen, B. Estrogen controls lipolysis by up-regulating α2A-adrenergic receptors directly in human adipose tissue through the estrogen receptor α. Implications for the female fat distribution. J. Clin. Endocrinol. Metab. 89, 1869–1878 (2004).

    Article  CAS  PubMed  Google Scholar 

  297. Richelsen, B. Increased α2- but similar b-adrenergic receptor activities in subcutaneous gluteal adipocytes from females compared with males. Eur. J. Clin. Invest. 16, 302–309 (1986).

    Article  CAS  PubMed  Google Scholar 

  298. Ramirez, M. E. et al. Evidence for sex steroid inhibition of lipoprotein lipase in men: comparison of abdominal and femoral adipose tissue. Metabolism 46, 179–185 (1997).

    Article  CAS  PubMed  Google Scholar 

  299. Tchkonia, T. et al. Identification of depot-specific human fat cell progenitors through distinct expression profiles and developmental gene patterns. Am. J. Physiol. Endocrinol. Metab. 292, E298–E307 (2007).

    Article  CAS  PubMed  Google Scholar 

  300. Karastergiou, K. et al. Distinct developmental signatures of human abdominal and gluteal subcutaneous adipose tissue depots. J. Clin. Endocrinol. Metab. 98, 362–371 (2013).

    Article  CAS  PubMed  Google Scholar 

  301. Arner, E. et al. Adipocyte turnover: relevance to human adipose tissue morphology. Diabetes 59, 105–109 (2010).

    Article  CAS  PubMed  Google Scholar 

  302. Gustafson, B. & Smith, U. The WNT inhibitor Dickkopf 1 and bone morphogenetic protein 4 rescue adipogenesis in hypertrophic obesity in humans. Diabetes 61, 1217–1224 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Isakson, P., Hammarstedt, A., Gustafson, B. & Smith, U. Impaired preadipocyte differentiation in human abdominal obesity: role of Wnt, tumor necrosis factor-α, and inflammation. Diabetes 58, 1550–1557 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Smith, G. I., Mittendorfer, B. & Klein, S. Metabolically healthy obesity: facts and fantasies. J. Clin. Invest. 129, 3978–3989 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  305. Kloting, N. et al. Insulin-sensitive obesity. Am. J. Physiol. Endocrinol. Metab. 299, E506–E515 (2010).

    Article  PubMed  Google Scholar 

  306. Michaud, A. et al. Abdominal adipocyte populations in women with visceral obesity. Eur. J. Endocrinol. 174, 227–239 (2016).

    Article  CAS  PubMed  Google Scholar 

  307. Danforth, E. Jr. Failure of adipocyte differentiation causes type II diabetes mellitus? Nat. Genet. 26, 13 (2000).

    Article  CAS  PubMed  Google Scholar 

  308. Ghaben, A. L. & Scherer, P. E. Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 20, 242–258 (2019).

    Article  CAS  PubMed  Google Scholar 

  309. Gray, S. L. & Vidal-Puig, A. J. Adipose tissue expandability in the maintenance of metabolic homeostasis. Nutr. Rev. 65, S7–12, (2007).

    Article  PubMed  Google Scholar 

  310. McLaughlin, T. et al. Enhanced proportion of small adipose cells in insulin-resistant vs insulin-sensitive obese individuals implicates impaired adipogenesis. Diabetologia 50, 1707–1715 (2007).

    Article  CAS  PubMed  Google Scholar 

  311. Johannsen, D. L. et al. Effect of 8 weeks of overfeeding on ectopic fat deposition and insulin sensitivity: testing the “adipose tissue expandability” hypothesis. Diabetes Care 37, 2789–2797 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. White, U., Beyl, R. A. & Ravussin, E. A higher proportion of small adipocytes is associated with increased visceral and ectopic lipid accumulation during weight gain in response to overfeeding in men. Int. J. Obes. 46, 1560–1563 (2022).

    Article  CAS  Google Scholar 

  313. Spalding, K. L. et al. Impact of fat mass and distribution on lipid turnover in human adipose tissue. Nat. Commun. 8, 15253 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

C.E.H. was supported by the Swedish Research Council (#2019-02046), European Foundation for the Study of Diabetes (EFSD 2022) and Karolinska Institutet (2-189/2022). K.L.S. was supported by Novo Nordisk Foundation (project grants NNF20OC0063944, NNF22OC0078384), Knut och Alice Wallenberg Stiftelse (Dnr KAW 2020.0118), Swedish Research Council (#2022-01236) and the Mark Foundation Aspire grant.

Author information

Authors and Affiliations

Authors

Contributions

C.E.H. and K.L.S. wrote and edited the article together.

Corresponding author

Correspondence to Kirsty L. Spalding.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Kai Sun, Siegfried Ussar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hagberg, C.E., Spalding, K.L. White adipocyte dysfunction and obesity-associated pathologies in humans. Nat Rev Mol Cell Biol 25, 270–289 (2024). https://doi.org/10.1038/s41580-023-00680-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-023-00680-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing