Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lysosomes as coordinators of cellular catabolism, metabolic signalling and organ physiology

Abstract

Every cell must satisfy basic requirements for nutrient sensing, utilization and recycling through macromolecular breakdown to coordinate programmes for growth, repair and stress adaptation. The lysosome orchestrates these key functions through the synchronised interplay between hydrolytic enzymes, nutrient transporters and signalling factors, which together enable metabolic coordination with other organelles and regulation of specific gene expression programmes. In this Review, we discuss recent findings on lysosome-dependent signalling pathways, focusing on how the lysosome senses nutrient availability through its physical and functional association with mechanistic target of rapamycin complex 1 (mTORC1) and how, in response, the microphthalmia/transcription factor E (MiT/TFE) transcription factors exert feedback regulation on lysosome biogenesis. We also highlight the emerging interactions of lysosomes with other organelles, which contribute to cellular homeostasis. Lastly, we discuss how lysosome dysfunction contributes to diverse disease pathologies and how inherited mutations that compromise lysosomal hydrolysis, transport or signalling components lead to multi-organ disorders with severe metabolic and neurological impact. A deeper comprehension of lysosomal composition and function, at both the cellular and organismal level, may uncover fundamental insights into human physiology and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lysosome composition.
Fig. 2: The lysosome as a platform for signal transduction.
Fig. 3: Vesicular transport that converges on the lysosome.
Fig. 4: Mechanisms of lysosomal membrane repair.
Fig. 5: Physiological functions of the lysosome across organs.

Similar content being viewed by others

References

  1. Ballabio, A. & Bonifacino, J. S. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell Biol. 21, 101–118 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Shin, H. R. & Zoncu, R. The lysosome at the intersection of cellular growth and destruction. Dev. Cell 54, 226–238 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sardiello, M. et al. A gene network regulating lysosomal biogenesis and function. Science 325, 473–477 (2009).

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Settembre, C. et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31, 1095–1108 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Roczniak-Ferguson, A. et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 5, ra42 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Martina, J. A., Chen, Y., Gucek, M. & Puertollano, R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8, 903–914 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Goul, C., Peruzzo, R. & Zoncu, R. The molecular basis of nutrient sensing and signalling by mTORC1 in metabolism regulation and disease. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-023-00641-8 (2023).

    Article  PubMed  Google Scholar 

  8. Bonam, S. R., Wang, F. & Muller, S. Lysosomes as a therapeutic target. Nat. Rev. Drug. Discov. 18, 923–948 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Perera, R. M. & Zoncu, R. The lysosome as a regulatory hub. Annu. Rev. Cell Dev. Biol. 32, 223–253 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jahn, R., Cafiso, D. C. & Tamm, L. K. Mechanisms of SNARE proteins in membrane fusion. Nat. Rev. Mol. Cell. Biol. https://doi.org/10.1038/s41580-023-00668-x (2023).

  11. Saftig, P. & Klumperman, J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat. Rev. Mol. Cell Biol. 10, 623–635 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Kummel, D., Herrmann, E., Langemeyer, L. & Ungermann, C. Molecular insights into endolysosomal microcompartment formation and maintenance. Biol. Chem. 404, 441–454 (2023).

    Article  PubMed  Google Scholar 

  13. Shvarev, D. et al. Structure of the HOPS tethering complex, a lysosomal membrane fusion machinery. eLife 11, https://doi.org/10.7554/eLife.80901 (2022).

  14. di Ronza, A. et al. CLN8 is an endoplasmic reticulum cargo receptor that regulates lysosome biogenesis. Nat. Cell Biol. 20, 1370–1377 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bajaj, L. et al. A CLN6–CLN8 complex recruits lysosomal enzymes at the ER for Golgi transfer. J. Clin. Invest. 130, 4118–4132 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Braulke, T. & Bonifacino, J. S. Sorting of lysosomal proteins. Biochim. Biophys. Acta 1793, 605–614 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Li, H. et al. Structure of the human GlcNAc-1-phosphotransferase αβ subunits reveals regulatory mechanism for lysosomal enzyme glycan phosphorylation. Nat. Struct. Mol. Biol. 29, 348–356 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Reczek, D. et al. LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of β-glucocerebrosidase. Cell 131, 770–783 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, W. et al. GCAF(TMEM251) regulates lysosome biogenesis by activating the mannose-6-phosphate pathway. Nat. Commun. 13, 5351 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. Richards, C. M. et al. The human disease gene LYSET is essential for lysosomal enzyme transport and viral infection. Science 378, eabn5648 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pechincha, C. et al. Lysosomal enzyme trafficking factor LYSET enables nutritional usage of extracellular proteins. Science 378, eabn5637 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Calcagni, A. et al. Loss of the Batten disease protein CLN3 leads to mis-trafficking of M6PR and defective autophagic-lysosomal reformation. Nat. Commun. 14, 3911 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  23. Schmidtke, C. et al. Lysosomal proteome analysis reveals that CLN3-defective cells have multiple enzyme deficiencies associated with changes in intracellular trafficking. J. Biol. Chem. 294, 9592–9604 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yasa, S. et al. CLN3 regulates endosomal function by modulating Rab7A-effector interactions. J. Cell Sci. 133, jcs234047 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Kollmann, K. et al. Mannose phosphorylation in health and disease. Eur. J. Cell Biol. 89, 117–123 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Ain, N. U. et al. Biallelic TMEM251 variants in patients with severe skeletal dysplasia and extreme short stature. Hum. Mutat. 42, 89–101 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Platt, F. M., d’Azzo, A., Davidson, B. L., Neufeld, E. F. & Tifft, C. J. Lysosomal storage diseases. Nat. Rev. Dis. Prim. 4, 27 (2018).

    Article  PubMed  Google Scholar 

  28. Mindell, J. A. Lysosomal acidification mechanisms. Annu. Rev. Physiol. 74, 69–86 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Abbas, Y. M., Wu, D., Bueler, S. A., Robinson, C. V. & Rubinstein, J. L. Structure of V-ATPase from the mammalian brain. Science 367, 1240–1246 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. Vasanthakumar, T. & Rubinstein, J. L. Structure and roles of V-type ATPases. Trends Biochem. Sci. 45, 295–307 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Stransky, L. A. & Forgac, M. Amino acid availability modulates vacuolar H+-ATPase assembly. J. Biol. Chem. 290, 27360–27369 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ramirez, C., Hauser, A. D., Vucic, E. A. & Bar-Sagi, D. Plasma membrane V-ATPase controls oncogenic RAS-induced macropinocytosis. Nature 576, 477–481 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kosmidis, E. et al. Regulation of the mammalian-brain V-ATPase through ultraslow mode-switching. Nature 611, 827–834 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Banerjee, S. & Kane, P. M. Regulation of V-ATPase activity and organelle pH by phosphatidylinositol phosphate lipids. Front. Cell Dev. Biol. 8, 510 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ratto, E. et al. Direct control of lysosomal catabolic activity by mTORC1 through regulation of V-ATPase assembly. Nat. Commun. 13, 4848 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. Graves, A. R., Curran, P. K., Smith, C. L. & Mindell, J. A. The Cl/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature 453, 788–792 (2008).

    Article  CAS  PubMed  ADS  Google Scholar 

  37. Kornak, U. et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104, 205–215 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Kasper, D. et al. Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. EMBO J. 24, 1079–1091 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zoncu, R. et al. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-ATPase. Science 334, 678–683 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  40. Zhang, C. S. et al. The aldolase inhibitor aldometanib mimics glucose starvation to activate lysosomal AMPK. Nat. Metab. 4, 1369–1401 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chung, C. Y. et al. Covalent targeting of the vacuolar H+-ATPase activates autophagy via mTORC1 inhibition. Nat. Chem. Biol. 15, 776–785 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Durgan, J. & Florey, O. Many roads lead to CASM: diverse stimuli of noncanonical autophagy share a unifying molecular mechanism. Sci. Adv. 8, eabo1274 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chapel, A. et al. An extended proteome map of the lysosomal membrane reveals novel potential transporters. Mol. Cell Proteom. 12, 1572–1588 (2013).

    Article  CAS  Google Scholar 

  44. Verdon, Q. et al. SNAT7 is the primary lysosomal glutamine exporter required for extracellular protein-dependent growth of cancer cells. Proc. Natl Acad. Sci. USA 114, E3602–E3611 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Polishchuk, E. V. et al. Wilson disease protein ATP7B utilizes lysosomal exocytosis to maintain copper homeostasis. Dev. Cell 29, 686–700 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Russnak, R., Konczal, D. & McIntire, S. L. A family of yeast proteins mediating bidirectional vacuolar amino acid transport. J. Biol. Chem. 276, 23849–23857 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Mancias, J. D., Wang, X., Gygi, S. P., Harper, J. W. & Kimmelman, A. C. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509, 105–109 (2014).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  48. Liu, B., Du, H., Rutkowski, R., Gartner, A. & Wang, X. LAAT-1 is the lysosomal lysine/arginine transporter that maintains amino acid homeostasis. Science 337, 351–354 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  49. Dowdle, W. E. et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat. Cell Biol. 16, 1069–1079 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Abu-Remaileh, M. et al. Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes. Science 358, 807–813 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  51. Wyant, G. A. et al. mTORC1 activator SLC38A9 is required to efflux essential amino acids from lysosomes and use protein as a nutrient. Cell 171, 642–654.e12 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kalatzis, V., Cherqui, S., Antignac, C. & Gasnier, B. Cystinosin, the protein defective in cystinosis, is a H+-driven lysosomal cystine transporter. EMBO J. 20, 5940–5949 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. van Veen, S. et al. ATP13A2 deficiency disrupts lysosomal polyamine export. Nature 578, 419–424 (2020).

    Article  PubMed  ADS  Google Scholar 

  54. Wang, S. et al. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347, 188–194 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  55. Rebsamen, M. et al. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 519, 477–481 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  56. Jung, J., Genau, H. M. & Behrends, C. Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9. Mol. Cell Biol. 35, 2479–2494 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ogmundsdottir, M. H. et al. Proton-assisted amino acid transporter PAT1 complexes with Rag GTPases and activates TORC1 on late endosomal and lysosomal membranes. PLoS One 7, e36616 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  58. Amick, J., Tharkeshwar, A. K., Talaia, G. & Ferguson, S. M. PQLC2 recruits the C9orf72 complex to lysosomes in response to cationic amino acid starvation. J. Cell Biol. 219, e201906076 (2020).

    Article  Google Scholar 

  59. Su, M. Y., Fromm, S. A., Zoncu, R. & Hurley, J. H. Structure of the C9orf72 ARF GAP complex that is haploinsufficient in ALS and FTD. Nature 585, 251–255 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Su, M. Y., Fromm, S. A., Remis, J., Toso, D. B. & Hurley, J. H. Structural basis for the ARF GAP activity and specificity of the C9orf72 complex. Nat. Commun. 12, 3786 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  61. Jewell, J. L. et al. Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science 347, 194–198 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  62. Majounie, E. et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol. 11, 323–330 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Winkler, M. B. L. et al. Structural insight into eukaryotic sterol transport through Niemann–Pick type C proteins. Cell 179, 485–497.e18 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Qian, H. et al. Structural basis of low-pH-dependent lysosomal cholesterol egress by NPC1 and NPC2. Cell 182, 98–111.e18 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Davis, O. B. et al. NPC1–mTORC1 signaling couples cholesterol sensing to organelle homeostasis and is a targetable pathway in Niemann–Pick type C. Dev. Cell 56, 260–276.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Heybrock, S. et al. Lysosomal integral membrane protein-2 (LIMP-2/SCARB2) is involved in lysosomal cholesterol export. Nat. Commun. 10, 3521 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  67. Conrad, K. S. et al. Lysosomal integral membrane protein-2 as a phospholipid receptor revealed by biophysical and cellular studies. Nat. Commun. 8, 1908 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  68. Scharenberg, S. G. et al. An SPNS1-dependent lysosomal lipid transport pathway that enables cell survival under choline limitation. Sci. Adv. 9, eadf8966 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. He, M. et al. Spns1 is a lysophospholipid transporter mediating lysosomal phospholipid salvage. Proc. Natl Acad. Sci. USA 119, e2210353119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Laqtom, N. N. et al. CLN3 is required for the clearance of glycerophosphodiesters from lysosomes. Nature 609, 1005–1011 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  71. Xu, H. & Ren, D. Lysosomal physiology. Annu. Rev. Physiol. 77, 57–80 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang, X. et al. MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nat. Commun. 7, 12109 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  73. Nakamura, S. et al. LC3 lipidation is essential for TFEB activation during the lysosomal damage response to kidney injury. Nat. Cell Biol. 22, 1252–1263 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Medina, D. L. et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat. Cell Biol. 17, 288–299 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Dong, X. P. et al. PI(3,5)P2 controls membrane trafficking by direct activation of mucolipin Ca2+ release channels in the endolysosome. Nat. Commun. 1, 38 (2010).

    Article  PubMed  ADS  Google Scholar 

  76. Jaslan, D. et al. PI(3,5)P2 and NAADP: team players or lone warriors? — New insights into TPC activation modes. Cell Calcium 109, 102675 (2023).

    Article  CAS  PubMed  Google Scholar 

  77. Pantopoulos, K., Porwal, S. K., Tartakoff, A. & Devireddy, L. Mechanisms of mammalian iron homeostasis. Biochemistry 51, 5705–5724 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Yambire, K. F. et al. Impaired lysosomal acidification triggers iron deficiency and inflammation in vivo. eLife 8, e51031 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Weber, R. A. et al. Maintaining iron homeostasis is the key role of lysosomal acidity for cell proliferation. Mol. Cell 77, 645–655.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Santana-Codina, N. et al. NCOA4-mediated ferritinophagy is a pancreatic cancer dependency via maintenance of iron bioavailability for iron–sulfur cluster proteins. Cancer Discov. 12, 2180–2197 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Galy, B., Conrad, M. & Muckenthaler, M. Mechanisms controlling cellular and systemic iron homeostasis. Nat. Rev. Mol. Cell. Biol. https://doi.org/10.1038/s41580-023-00648-1 (2023).

    Article  PubMed  Google Scholar 

  82. Tsang, T., Davis, C. I. & Brady, D. C. Copper biology. Curr. Biol. 31, R421–R427 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Redhai, S. et al. An intestinal zinc sensor regulates food intake and developmental growth. Nature 580, 263–268 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  84. Li, M., Koshi, T. & Emr, S. D. Membrane-anchored ubiquitin ligase complex is required for the turnover of lysosomal membrane proteins. J. Cell Biol. 211, 639–652 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bar-Peled, L. et al. A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340, 1100–1106 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  86. Shen, K. et al. Architecture of the human GATOR1 and GATOR1–Rag GTPases complexes. Nature 556, 64–69 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  87. Panchaud, N., Peli-Gulli, M. P. & De Virgilio, C. Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1. Sci. Signal. 6, ra42 (2013).

    Article  PubMed  Google Scholar 

  88. Wolfson, R. L. et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351, 43–48 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  89. Chantranupong, L. et al. The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell 165, 153–164 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gu, X. et al. SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway. Science 358, 813–818 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  91. Tsun, Z. Y. et al. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol. Cell 52, 495–505 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Lawrence, R. E. et al. Structural mechanism of a Rag GTPase activation checkpoint by the lysosomal folliculin complex. Science 366, 971–977 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  93. Petit, C. S., Roczniak-Ferguson, A. & Ferguson, S. M. Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases. J. Cell Biol. 202, 1107–1122 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Castellano, B. M. et al. Lysosomal cholesterol activates mTORC1 via an SLC38A9–Niemann–Pick C1 signaling complex. Science 355, 1306–1311 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  95. Shin, H. R. et al. Lysosomal GPCR-like protein LYCHOS signals cholesterol sufficiency to mTORC1. Science 377, 1290–1298 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  96. Zhang, C. S. et al. The lysosomal V-ATPase–Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab. 20, 526–540 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Zhang, C. S. et al. Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature 548, 112–116 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  98. Malik, N. et al. Induction of lysosomal and mitochondrial biogenesis by AMPK phosphorylation of FNIP1. Science 380, eabj5559 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Perera, R. M., Di Malta, C. & Ballabio, A. MiT/TFE family of transcription factors, lysosomes, and cancer. Annu. Rev. Cancer Biol. 3, 203–222 (2019).

    Article  PubMed  Google Scholar 

  100. Palmieri, M. et al. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum. Mol. Genet. 20, 3852–3866 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Napolitano, G. & Ballabio, A. TFEB at a glance. J. Cell Sci. 129, 2475–2481 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Martina, J. A. et al. The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci. Signal. 7, ra9 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Mansueto, G. et al. Transcription factor EB controls metabolic flexibility during exercise. Cell Metab. 25, 182–196 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. O’Rourke, E. J. & Ruvkun, G. MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat. Cell Biol. 15, 668–676 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Settembre, C. et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 15, 647–658 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Napolitano, G. et al. A substrate-specific mTORC1 pathway underlies Birt–Hogg–Dube syndrome. Nature 585, 597–602 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  107. Wada, S. et al. The tumor suppressor FLCN mediates an alternate mTOR pathway to regulate browning of adipose tissue. Genes. Dev. 30, 2551–2564 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Napolitano, G., Di Malta, C. & Ballabio, A. Non-canonical mTORC1 signaling at the lysosome. Trends Cell Biol. 32, 920–931 (2022).

    Article  CAS  PubMed  Google Scholar 

  109. Jansen, R. M. et al. Structural basis for FLCN RagC GAP activation in MiT-TFE substrate-selective mTORC1 regulation. Sci. Adv. 8, eadd2926 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cui, Z. et al. Structure of the lysosomal mTORC1–TFEB–Rag–Ragulator megacomplex. Nature 614, 572–579 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  111. Marchand, B., Arsenault, D., Raymond-Fleury, A., Boisvert, F. M. & Boucher, M. J. Glycogen synthase kinase-3 (GSK3) inhibition induces prosurvival autophagic signals in human pancreatic cancer cells. J. Biol. Chem. 290, 5592–5605 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ploper, D. et al. MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells. Proc. Natl Acad. Sci. USA 112, E420–E429 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Settembre, C. et al. TFEB links autophagy to lysosomal biogenesis. Science 332, 1429–1433 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  114. Yin, Q. et al. CDK4/6 regulate lysosome biogenesis through TFEB/TFE3. J. Cell Biol. 219, e201911036 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Odle, R. I. et al. An mTORC1-to-CDK1 switch maintains autophagy suppression during mitosis. Mol. Cell 77, 228–240.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang, Y. et al. Acetyltransferase GCN5 regulates autophagy and lysosome biogenesis by targeting TFEB. EMBO Rep. 21, e48335 (2020).

    Article  CAS  PubMed  Google Scholar 

  117. Zhang, J. et al. Importance of TFEB acetylation in control of its transcriptional activity and lysosomal function in response to histone deacetylase inhibitors. Autophagy 14, 1043–1059 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Miller, A. J., Levy, C., Davis, I. J., Razin, E. & Fisher, D. E. Sumoylation of MITF and its related family members TFE3 and TFEB. J. Biol. Chem. 280, 146–155 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Murakami, H. & Arnheiter, H. Sumoylation modulates transcriptional activity of MITF in a promoter-specific manner. Pigment. Cell Res. 18, 265–277 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wang, H. et al. Oxidation of multiple MiT/TFE transcription factors links oxidative stress to transcriptional control of autophagy and lysosome biogenesis. Autophagy 16, 1683–1696 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Vu, H. N., Dilshat, R., Fock, V. & Steingrimsson, E. User guide to MiT-TFE isoforms and post-translational modifications. Pigment. Cell Melanoma Res. 34, 13–27 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Sha, Y., Rao, L., Settembre, C., Ballabio, A. & Eissa, N. T. STUB1 regulates TFEB-induced autophagy-lysosome pathway. EMBO J. 36, 2544–2552 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Nardone, C. et al. A central role for regulated protein stability in the control of TFE3 and MITF by nutrients. Mol. Cell 83, 57–73.e59 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang, Z., Yang, C., Guan, D., Li, J. & Zhang, H. Cellular proteins act as surfactants to control the interfacial behavior and function of biological condensates. Dev. Cell 58, 919–932.e5 (2023).

    Article  CAS  PubMed  Google Scholar 

  125. Annunziata, I. et al. MYC competes with MiT/TFE in regulating lysosomal biogenesis and autophagy through an epigenetic rheostat. Nat. Commun. 10, 3623 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  126. Zoncu, R. & Perera, R. M. Emerging roles of the MiT/TFE factors in cancer. Trends Cancer 9, 817–827 (2023).

    Article  CAS  PubMed  Google Scholar 

  127. Sakamaki, J. I. et al. Bromodomain protein BRD4 is a transcriptional repressor of autophagy and lysosomal function. Mol. Cell 66, 517–532.e9 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chauhan, S. et al. ZKSCAN3 is a master transcriptional repressor of autophagy. Mol. Cell 50, 16–28 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Seok, S. et al. Transcriptional regulation of autophagy by an FXR–CREB axis. Nature 516, 108–111 (2014).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  130. Cesana, M. et al. EGR1 drives cell proliferation by directly stimulating TFEB transcription in response to starvation. PLoS Biol. 21, e3002034 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Li, T. et al. TFEB acetylation promotes lysosome biogenesis and ameliorates Alzheimer’s disease-relevant phenotypes in mice. J. Biol. Chem. 298, 102649 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Shin, H. J. et al. AMPK–SKP2–CARM1 signalling cascade in transcriptional regulation of autophagy. Nature 534, 553–557 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  133. Li, X. et al. Nucleus-translocated ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy. Mol. Cell 66, 684–697.e9 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  134. Di Malta, C. et al. Transcriptional activation of RagD GTPase controls mTORC1 and promotes cancer growth. Science 356, 1188–1192 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  135. De Cegli, R. C. et al. TFEBexplorer: an integrated tool to study genes regulated by the stress-responsive transcription factor EB. Autophagy Rep. 1, 295–305 (2022).

    Article  Google Scholar 

  136. Wilhelm, L. P. et al. STARD3 mediates endoplasmic reticulum-to-endosome cholesterol transport at membrane contact sites. EMBO J. 36, 1412–1433 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Alpy, F. et al. STARD3 or STARD3NL and VAP form a novel molecular tether between late endosomes and the ER. J. Cell Sci. 126, 5500–5512 (2013).

    CAS  PubMed  Google Scholar 

  138. Kumar, N. et al. VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J. Cell Biol. 217, 3625–3639 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Tan, J. X. & Finkel, T. A phosphoinositide signalling pathway mediates rapid lysosomal repair. Nature 609, 815–821 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  140. Radulovic, M. et al. Cholesterol transfer via endoplasmic reticulum contacts mediates lysosome damage repair. EMBO J. 41, e112677 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lim, C. Y. et al. ER–lysosome contacts enable cholesterol sensing by mTORC1 and drive aberrant growth signalling in Niemann–Pick type C. Nat. Cell Biol. 21, 1206–1218 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Infante, R. E. & Radhakrishnan, A. Continuous transport of a small fraction of plasma membrane cholesterol to endoplasmic reticulum regulates total cellular cholesterol. eLife 6, e25466 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Wong, Y. C., Ysselstein, D. & Krainc, D. Mitochondria–lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature 554, 382–386 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  144. Nakatogawa, H. Mechanisms governing autophagosome biogenesis. Nat. Rev. Mol. Cell Biol. 21, 439–458 (2020).

    Article  CAS  PubMed  Google Scholar 

  145. Mizushima, N. The ATG conjugation systems in autophagy. Curr. Opin. Cell Biol. 63, 1–10 (2020).

    Article  CAS  PubMed  Google Scholar 

  146. Zhao, Y. G. & Zhang, H. Autophagosome maturation: an epic journey from the ER to lysosomes. J. Cell Biol. 218, 757–770 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Takats, S. et al. Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila. J. Cell Biol. 201, 531–539 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Saleeb, R. S., Kavanagh, D. M., Dun, A. R., Dalgarno, P. A. & Duncan, R. R. A VPS33A-binding motif on syntaxin 17 controls autophagy completion in mammalian cells. J. Biol. Chem. 294, 4188–4201 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Itakura, E., Kishi-Itakura, C. & Mizushima, N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151, 1256–1269 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. Takats, S. et al. Interaction of the HOPS complex with Syntaxin 17 mediates autophagosome clearance in Drosophila. Mol. Biol. Cell 25, 1338–1354 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Jiang, P. et al. The HOPS complex mediates autophagosome–lysosome fusion through interaction with syntaxin 17. Mol. Biol. Cell 25, 1327–1337 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  152. McEwan, D. G. et al. PLEKHM1 regulates autophagosome–lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol. Cell 57, 39–54 (2015).

    Article  CAS  PubMed  Google Scholar 

  153. Marwaha, R. et al. The Rab7 effector PLEKHM1 binds Arl8b to promote cargo traffic to lysosomes. J. Cell Biol. 216, 1051–1070 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wang, Z. et al. The Vici syndrome protein EPG5 is a Rab7 effector that determines the fusion specificity of autophagosomes with late endosomes/lysosomes. Mol. Cell 63, 781–795 (2016).

    Article  CAS  PubMed  Google Scholar 

  155. Diao, J. et al. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature 520, 563–566 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  156. Zhou, C. et al. Recycling of autophagosomal components from autolysosomes by the recycler complex. Nat. Cell Biol. 24, 497–512 (2022).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  157. Heckmann, B. L. & Green, D. R. LC3-associated phagocytosis at a glance. J. Cell Sci. 132, jcs222984 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Heckmann, B. L. et al. LC3-associated endocytosis facilitates β-amyloid clearance and mitigates neurodegeneration in murine Alzheimer’s disease. Cell 178, 536–551.e14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Leidal, A. M. et al. The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles. Nat. Cell Biol. 22, 187–199 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Florey, O., Kim, S. E., Sandoval, C. P., Haynes, C. M. & Overholtzer, M. Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nat. Cell Biol. 13, 1335–1343 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lei, Y. & Klionsky, D. J. The coordination of V-ATPase and ATG16L1 is part of a common mechanism of non-canonical autophagy. Autophagy 18, 2267–2269 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Jacquin, E. et al. Pharmacological modulators of autophagy activate a parallel noncanonical pathway driving unconventional LC3 lipidation. Autophagy 13, 854–867 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Florey, O., Gammoh, N., Kim, S. E., Jiang, X. & Overholtzer, M. V-ATPase and osmotic imbalances activate endolysosomal LC3 lipidation. Autophagy 11, 88–99 (2015).

    Article  PubMed  Google Scholar 

  164. Hernandez, G. A. & Perera, R. M. Autophagy in cancer cell remodeling and quality control. Mol. Cell 82, 1514–1527 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Lamark, T. & Johansen, T. Mechanisms of selective autophagy. Annu. Rev. Cell Dev. Biol. 37, 143–169 (2021).

    Article  CAS  PubMed  Google Scholar 

  166. Reggiori, F. & Molinari, M. ER-phagy: mechanisms, regulation, and diseases connected to the lysosomal clearance of the endoplasmic reticulum. Physiol. Rev. 102, 1393–1448 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Omari, S. et al. Noncanonical autophagy at ER exit sites regulates procollagen turnover. Proc. Natl Acad. Sci. USA 115, E10099–E10108 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  168. Forrester, A. et al. A selective ER-phagy exerts procollagen quality control via a Calnexin–FAM134B complex. EMBO J. 38, e99847 (2019).

    Article  PubMed  Google Scholar 

  169. Fregno, I. et al. ER-to-lysosome-associated degradation of proteasome-resistant ATZ polymers occurs via receptor-mediated vesicular transport. EMBO J. 37, e99259 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Martina, J. A., Diab, H. I., Brady, O. A. & Puertollano, R. TFEB and TFE3 are novel components of the integrated stress response. EMBO J. 35, 479–495 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Zhang, Z. et al. The unfolded protein response regulates hepatic autophagy by sXBP1-mediated activation of TFEB. Autophagy 17, 1841–1855 (2021).

    Article  CAS  PubMed  Google Scholar 

  172. Raimundo, N., Fernandez-Mosquera, L., Yambire, K. F. & Diogo, C. V. Mechanisms of communication between mitochondria and lysosomes. Int. J. Biochem. Cell Biol. 79, 345–349 (2016).

    Article  CAS  PubMed  Google Scholar 

  173. Pickles, S., Vigie, P. & Youle, R. J. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr. Biol. 28, R170–R185 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Towers, C. G. et al. Mitochondrial-derived vesicles compensate for loss of LC3-mediated mitophagy. Dev. Cell 56, 2029–2042.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Nezich, C. L., Wang, C., Fogel, A. I. & Youle, R. J. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J. Cell Biol. 210, 435–450 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Dai, X. et al. AMPK-dependent phosphorylation of the GATOR2 component WDR24 suppresses glucose-mediated mTORC1 activation. Nat. Metab. 5, 265–276 (2023).

    Article  CAS  PubMed  Google Scholar 

  177. Cabukusta, B. & Neefjes, J. Mechanisms of lysosomal positioning and movement. Traffic 19, 761–769 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Rosa-Ferreira, C. & Munro, S. Arl8 and SKIP act together to link lysosomes to kinesin-1. Dev. Cell 21, 1171–1178 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Pu, J. et al. BORC, a multisubunit complex that regulates lysosome positioning. Dev. Cell 33, 176–188 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Pu, J., Guardia, C. M., Keren-Kaplan, T. & Bonifacino, J. S. Mechanisms and functions of lysosome positioning. J. Cell Sci. 129, 4329–4339 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Hofmann, I. & Munro, S. An N-terminally acetylated Arf-like GTPase is localised to lysosomes and affects their motility. J. Cell Sci. 119, 1494–1503 (2006).

    Article  CAS  PubMed  Google Scholar 

  182. Bagshaw, R. D., Callahan, J. W. & Mahuran, D. J. The Arf-family protein, Arl8b, is involved in the spatial distribution of lysosomes. Biochem. Biophys. Res. Commun. 344, 1186–1191 (2006).

    Article  CAS  PubMed  Google Scholar 

  183. Raiborg, C. et al. Repeated ER–endosome contacts promote endosome translocation and neurite outgrowth. Nature 520, 234–238 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  184. Pankiv, S. et al. FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J. Cell Biol. 188, 253–269 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Li, X. et al. A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation. Nat. Cell Biol. 18, 404–417 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Willett, R. et al. TFEB regulates lysosomal positioning by modulating TMEM55B expression and JIP4 recruitment to lysosomes. Nat. Commun. 8, 1580 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  187. Kesisova, I. A., Robinson, B. P. & Spiliotis, E. T. A septin GTPase scaffold of dynein–dynactin motors triggers retrograde lysosome transport. J. Cell Biol. 220, https://doi.org/10.1083/jcb.202005219 (2021).

  188. Jordens, I. et al. The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein–dynactin motors. Curr. Biol. 11, 1680–1685 (2001).

    Article  CAS  PubMed  Google Scholar 

  189. Kumar, G. et al. RUFY3 links Arl8b and JIP4–dynein complex to regulate lysosome size and positioning. Nat. Commun. 13, 1540 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  190. Keren-Kaplan, T. et al. RUFY3 and RUFY4 are ARL8 effectors that promote coupling of endolysosomes to dynein–dynactin. Nat. Commun. 13, 1506 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  191. Jongsma, M. L. et al. SKIP–HOPS recruits TBC1D15 for a Rab7-to-Arl8b identity switch to control late endosome transport. EMBO J. 39, e102301 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Schleinitz, A. et al. Consecutive functions of small GTPases guide HOPS-mediated tethering of late endosomes and lysosomes. Cell Rep. 42, 111969 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Shelke, G. V., Williamson, C. D., Jarnik, M. & Bonifacino, J. S. Inhibition of endolysosome fusion increases exosome secretion. J. Cell Biol. 222, https://doi.org/10.1083/jcb.202209084 (2023).

  194. Lorincz, P. & Juhasz, G. Autophagosome–lysosome fusion. J. Mol. Biol. 432, 2462–2482 (2020).

    Article  CAS  PubMed  Google Scholar 

  195. Korolchuk, V. I. et al. Lysosomal positioning coordinates cellular nutrient responses. Nat. Cell Biol. 13, 453–460 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Bonifacino, J. S. & Neefjes, J. Moving and positioning the endolysosomal system. Curr. Opin. Cell Biol. 47, 1–8 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Jia, R., Guardia, C. M., Pu, J., Chen, Y. & Bonifacino, J. S. BORC coordinates encounter and fusion of lysosomes with autophagosomes. Autophagy 13, 1648–1663 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Pu, J., Keren-Kaplan, T. & Bonifacino, J. S. A Ragulator–BORC interaction controls lysosome positioning in response to amino acid availability. J. Cell Biol. 216, 4183–4197 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Filipek, P. A. et al. LAMTOR/Ragulator is a negative regulator of Arl8b- and BORC-dependent late endosomal positioning. J. Cell Biol. 216, 4199–4215 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Saric, A. et al. SNX19 restricts endolysosome motility through contacts with the endoplasmic reticulum. Nat. Commun. 12, 4552 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  201. Lie, P. P. Y. & Nixon, R. A. Lysosome trafficking and signaling in health and neurodegenerative diseases. Neurobiol. Dis. 122, 94–105 (2019).

    Article  CAS  PubMed  Google Scholar 

  202. Zhen, Y., Radulovic, M., Vietri, M. & Stenmark, H. Sealing holes in cellular membranes. EMBO J. 40, e106922 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Sharma, J., di Ronza, A., Lotfi, P. & Sardiello, M. Lysosomes and brain health. Annu. Rev. Neurosci. 41, 255–276 (2018).

    Article  CAS  PubMed  Google Scholar 

  204. Thiele, D. L. & Lipsky, P. E. Mechanism of l-leucyl-l-leucine methyl ester-mediated killing of cytotoxic lymphocytes: dependence on a lysosomal thiol protease, dipeptidyl peptidase I, that is enriched in these cells. Proc. Natl Acad. Sci. USA 87, 83–87 (1990).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  205. Bright, N. A., Davis, L. J. & Luzio, J. P. Endolysosomes are the principal intracellular sites of acid hydrolase activity. Curr. Biol. 26, 2233–2245 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Radulovic, M. et al. ESCRT-mediated lysosome repair precedes lysophagy and promotes cell survival. EMBO J. 37, https://doi.org/10.15252/embj.201899753 (2018).

  207. Scheffer, L. L. et al. Mechanism of Ca2+-triggered ESCRT assembly and regulation of cell membrane repair. Nat. Commun. 5, 5646 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  208. Shukla, S., Larsen, K. P., Ou, C., Rose, K. & Hurley, J. H. In vitro reconstitution of calcium-dependent recruitment of the human ESCRT machinery in lysosomal membrane repair. Proc. Natl Acad. Sci. USA 119, e2205590119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Skowyra, M. L., Schlesinger, P. H., Naismith, T. V. & Hanson, P. I. Triggered recruitment of ESCRT machinery promotes endolysosomal repair. Science 360, https://doi.org/10.1126/science.aar5078 (2018).

  210. Mercier, V. et al. Endosomal membrane tension regulates ESCRT-III-dependent intra-lumenal vesicle formation. Nat. Cell Biol. 22, 947–959 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Vietri, M., Radulovic, M. & Stenmark, H. The many functions of ESCRTs. Nat. Rev. Mol. Cell Biol. 21, 25–42 (2020).

    Article  CAS  PubMed  Google Scholar 

  212. Zoncu, R. & Perera, R. M. Built to last: lysosome remodeling and repair in health and disease. Trends Cell Biol. 32, 597–610 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Goul, C. S. & Zoncu, R. PITTching in for lysosome repair. Dev. Cell 57, 2347–2349 (2022).

    Article  CAS  PubMed  Google Scholar 

  214. Hung, Y. H., Chen, L. M., Yang, J. Y. & Yang, W. Y. Spatiotemporally controlled induction of autophagy-mediated lysosome turnover. Nat. Commun. 4, 2111 (2013).

    Article  PubMed  ADS  Google Scholar 

  215. Maejima, I. et al. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J. 32, 2336–2347 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Chauhan, S. et al. TRIMs and galectins globally cooperate and TRIM16 and galectin-3 co-direct autophagy in endomembrane damage homeostasis. Dev. Cell 39, 13–27 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Koerver, L. et al. The ubiquitin-conjugating enzyme UBE2QL1 coordinates lysophagy in response to endolysosomal damage. EMBO Rep. 20, e48014 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Yoshida, Y. et al. Ubiquitination of exposed glycoproteins by SCF(FBXO27) directs damaged lysosomes for autophagy. Proc. Natl Acad. Sci. USA 114, 8574–8579 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  219. Ravenhill, B. J. et al. The cargo receptor NDP52 initiates selective autophagy by recruiting the ULK complex to cytosol-invading bacteria. Mol. Cell 74, 320–329.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Thurston, T. L. et al. Recruitment of TBK1 to cytosol-invading Salmonella induces WIPI2-dependent antibacterial autophagy. EMBO J. 35, 1779–1792 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Bussi, C. et al. α-Synuclein fibrils recruit TBK1 and OPTN to lysosomal damage sites and induce autophagy in microglial cells. J. Cell Sci. 131, https://doi.org/10.1242/jcs.226241 (2018).

  222. Eapen, V. V., Swarup, S., Hoyer, M. J., Paulo, J. A. & Harper, J. W. Quantitative proteomics reveals the selectivity of ubiquitin-binding autophagy receptors in the turnover of damaged lysosomes by lysophagy. eLife 10, https://doi.org/10.7554/eLife.72328 (2021).

  223. Fujita, N. et al. Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin. J. Cell Biol. 203, 115–128 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Papadopoulos, C. et al. VCP/p97 cooperates with YOD1, UBXD1 and PLAA to drive clearance of ruptured lysosomes by autophagy. EMBO J. 36, 135–150 (2017).

    Article  CAS  PubMed  Google Scholar 

  225. Xu, Y. et al. A bacterial effector reveals the V-ATPase-ATG16L1 axis that initiates xenophagy. Cell 178, 552–566.e20 (2019).

    Article  CAS  PubMed  Google Scholar 

  226. Jia, J. et al. Galectins control mTOR in response to endomembrane damage. Mol. Cell 70, 120–135.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Jia, J. et al. AMPK is activated during lysosomal damage via a galectin–ubiquitin signal transduction system. Autophagy 16, 1550–1552 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Nanayakkara, R. et al. Autophagic lysosome reformation in health and disease. Autophagy 19, 1378–1395 (2023).

    Article  CAS  PubMed  Google Scholar 

  229. Munson, M. J. et al. mTOR activates the VPS34–UVRAG complex to regulate autolysosomal tubulation and cell survival. EMBO J. 34, 2272–2290 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Magalhaes, J. et al. Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: relevance to Parkinson disease. Hum. Mol. Genet. 25, 3432–3445 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Rong, Y. et al. Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. Proc. Natl Acad. Sci. USA 108, 7826–7831 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  232. Yang, C. & Wang, X. Lysosome biogenesis: regulation and functions. J. Cell Biol. 220, e202102001 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Bhattacharya, A. et al. A lysosome membrane regeneration pathway depends on TBC1D15 and autophagic lysosomal reformation proteins. Nat. Cell Biol. 25, 685–698 (2023).

    Article  CAS  PubMed  Google Scholar 

  234. Fraldi, A., Klein, A. D., Medina, D. L. & Settembre, C. Brain disorders due to lysosomal dysfunction. Annu. Rev. Neurosci. 39, 277–295 (2016).

    Article  CAS  PubMed  Google Scholar 

  235. Smith, B. R. et al. Neuronal inclusions of α-synuclein contribute to the pathogenesis of Krabbe disease. J. Pathol. 232, 509–521 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Ohmi, K. et al. Sanfilippo syndrome type B, a lysosomal storage disease, is also a tauopathy. Proc. Natl Acad. Sci. USA 106, 8332–8337 (2009).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  237. Monaco, A. et al. The amyloid inhibitor CLR01 relieves autophagy and ameliorates neuropathology in a severe lysosomal storage disease. Mol. Ther. 28, 1167–1176 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Xie, Y. X. et al. Lysosomal exocytosis releases pathogenic α-synuclein species from neurons in synucleinopathy models. Nat. Commun. 13, 4918 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  239. Annunziata, I. et al. Lysosomal NEU1 deficiency affects amyloid precursor protein levels and amyloid-β secretion via deregulated lysosomal exocytosis. Nat. Commun. 4, 2734 (2013).

    Article  PubMed  ADS  Google Scholar 

  240. Udayar, V., Chen, Y., Sidransky, E. & Jagasia, R. Lysosomal dysfunction in neurodegeneration: emerging concepts and methods. Trends Neurosci. 45, 184–199 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Blumenreich, S., Barav, O. B., Jenkins, B. J. & Futerman, A. H. Lysosomal storage disorders shed light on lysosomal dysfunction in Parkinson’s disease. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21144966 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Mazzulli, J. R. et al. Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146, 37–52 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Kim, S., Wong, Y. C., Gao, F. & Krainc, D. Dysregulation of mitochondria–lysosome contacts by GBA1 dysfunction in dopaminergic neuronal models of Parkinson’s disease. Nat. Commun. 12, 1807 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  244. Simon, M. J., Logan, T., DeVos, S. L. & Di Paolo, G. Lysosomal functions of progranulin and implications for treatment of frontotemporal dementia. Trends Cell Biol. 33, 324–339 (2023).

    Article  CAS  PubMed  Google Scholar 

  245. Oh, S., Paknejad, N. & Hite, R. K. Gating and selectivity mechanisms for the lysosomal K+ channel TMEM175. eLife 9, https://doi.org/10.7554/eLife.53430 (2020).

  246. Brunner, J. D. et al. Structural basis for ion selectivity in TMEM175 K+ channels. eLife 9, https://doi.org/10.7554/eLife.53683 (2020).

  247. Zheng, W. et al. pH regulates potassium conductance and drives a constitutive proton current in human TMEM175. Sci. Adv. 8, eabm1568 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Hu, M. et al. Parkinson’s disease-risk protein TMEM175 is a proton-activated proton channel in lysosomes. Cell 185, 2292–2308.e20 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Ramirez, A. et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet. 38, 1184–1191 (2006).

    Article  CAS  PubMed  Google Scholar 

  250. Yadavalli, N. & Ferguson, S. M. LRRK2 suppresses lysosome degradative activity in macrophages and microglia through MiT-TFE transcription factor inhibition. Proc. Natl Acad. Sci. USA 120, e2303789120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Bonet-Ponce, L. et al. LRRK2 mediates tubulation and vesicle sorting from lysosomes. Sci. Adv.https://doi.org/10.1126/sciadv.abb2454 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Lie, P. P. Y. et al. Axonal transport of late endosomes and amphisomes is selectively modulated by local Ca2+ efflux and disrupted by PSEN1 loss of function. Sci. Adv. 8, eabj5716 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Vantaggiato, C. et al. ZFYVE26/SPASTIZIN and SPG11/SPATACSIN mutations in hereditary spastic paraplegia types AR-SPG15 and AR-SPG11 have different effects on autophagy and endocytosis. Autophagy 15, 34–57 (2019).

    Article  CAS  PubMed  Google Scholar 

  254. Chang, J., Lee, S. & Blackstone, C. Spastic paraplegia proteins spastizin and spatacsin mediate autophagic lysosome reformation. J. Clin. Invest. 124, 5249–5262 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Franco-Romero, A. & Sandri, M. Role of autophagy in muscle disease. Mol. Asp. Med. 82, 101041 (2021).

    Article  CAS  Google Scholar 

  256. White, Z., White, R. B., McMahon, C., Grounds, M. D. & Shavlakadze, T. High mTORC1 signaling is maintained, while protein degradation pathways are perturbed in old murine skeletal muscles in the fasted state. Int. J. Biochem. Cell Biol. 78, 10–21 (2016).

    Article  CAS  PubMed  Google Scholar 

  257. Sakuma, K. et al. p62/SQSTM1 but not LC3 is accumulated in sarcopenic muscle of mice. J. Cachexia Sarcopenia Muscle 7, 204–212 (2016).

    Article  PubMed  Google Scholar 

  258. Hutter, E. et al. Oxidative stress and mitochondrial impairment can be separated from lipofuscin accumulation in aged human skeletal muscle. Aging Cell 6, 245–256 (2007).

    Article  PubMed  Google Scholar 

  259. Grumati, P. et al. Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles. Autophagy 7, 1415–1423 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Lim, J. A., Li, L. & Raben, N. Pompe disease: from pathophysiology to therapy and back again. Front. Aging Neurosci. 6, 177 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Lim, J. A. et al. Modulation of mTOR signaling as a strategy for the treatment of Pompe disease. EMBO Mol. Med. 9, 353–370 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Lim, J. A., Kakhlon, O., Li, L., Myerowitz, R. & Raben, N. Pompe disease: shared and unshared features of lysosomal storage disorders. Rare Dis. 3, e1068978 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Tanaka, Y. et al. Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406, 902–906 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  264. Chi, C. et al. LAMP-2B regulates human cardiomyocyte function by mediating autophagosome–lysosome fusion. Proc. Natl Acad. Sci. USA 116, 556–565 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  265. Manso, A. M. et al. Systemic AAV9.LAMP2B injection reverses metabolic and physiologic multiorgan dysfunction in a murine model of Danon disease. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aax1744 (2020).

    Article  PubMed  Google Scholar 

  266. McGrath, M. J. et al. Defective lysosome reformation during autophagy causes skeletal muscle disease. J. Clin. Invest. https://doi.org/10.1172/JCI135124 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Nemazanyy, I. et al. Defects of Vps15 in skeletal muscles lead to autophagic vacuolar myopathy and lysosomal disease. EMBO Mol. Med. 5, 870–890 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Cheng, X. et al. The intracellular Ca2+ channel MCOLN1 is required for sarcolemma repair to prevent muscular dystrophy. Nat. Med. 20, 1187–1192 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Yu, L. et al. Small-molecule activation of lysosomal TRP channels ameliorates Duchenne muscular dystrophy in mouse models. Sci. Adv. 6, eaaz2736 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  270. Zechner, R., Madeo, F. & Kratky, D. Cytosolic lipolysis and lipophagy: two sides of the same coin. Nat. Rev. Mol. Cell Biol. 18, 671–684 (2017).

    Article  CAS  PubMed  Google Scholar 

  271. Schott, M. B., Rozeveld, C. N., Weller, S. G. & McNiven, M. A. Lipophagy at a glance. J. Cell Sci. https://doi.org/10.1242/jcs.259402 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Schulze, R. J. et al. Direct lysosome-based autophagy of lipid droplets in hepatocytes. Proc. Natl Acad. Sci. USA 117, 32443–32452 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  273. Korbelius, M., Kuentzel, K. B., Bradic, I., Vujic, N. & Kratky, D. Recent insights into lysosomal acid lipase deficiency. Trends Mol. Med. 29, 425–438 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Savini, M., Zhao, Q. & Wang, M. C. Lysosomes: signaling hubs for metabolic sensing and longevity. Trends Cell Biol. 29, 876–887 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Savini, M. et al. Lysosome lipid signalling from the periphery to neurons regulates longevity. Nat. Cell Biol. 24, 906–916 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Folick, A. et al. Aging. Lysosomal signaling molecules regulate longevity in Caenorhabditis elegans. Science 347, 83–86 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  277. Zeng, J. et al. Restoration of lysosomal acidification rescues autophagy and metabolic dysfunction in non-alcoholic fatty liver disease. Nat. Commun. 14, 2573 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  278. Sarkar, S. et al. Impaired autophagy in the lipid-storage disorder Niemann–Pick type C1 disease. Cell Rep. 5, 1302–1315 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Fraldi, A. et al. Lysosomal fusion and SNARE function are impaired by cholesterol accumulation in lysosomal storage disorders. EMBO J. 29, 3607–3620 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Zhang, J. et al. Lipid-induced DRAM recruits STOM to lysosomes and induces LMP to promote exosome release from hepatocytes in NAFLD. Sci. Adv. 7, eabh1541 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  281. Gosis, B. S. et al. Inhibition of nonalcoholic fatty liver disease in mice by selective inhibition of mTORC1. Science 376, eabf8271 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Cinque, L. et al. FGF signalling regulates bone growth through autophagy. Nature 528, 272–275 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  283. Yoneshima, E. et al. The transcription factor EB (TFEB) regulates osteoblast differentiation through ATF4/CHOP-dependent pathway. J. Cell Physiol. 231, 1321–1333 (2016).

    Article  CAS  PubMed  Google Scholar 

  284. Ferron, M. et al. A RANKL–PKCβ–TFEB signaling cascade is necessary for lysosomal biogenesis in osteoclasts. Genes. Dev. 27, 955–969 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Cinque, L. et al. MiT/TFE factors control ER-phagy via transcriptional regulation of FAM134B. EMBO J. 39, e105696 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Nakamura, T. et al. Autophagy facilitates type I collagen synthesis in periodontal ligament cells. Sci. Rep. 11, 1291 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  287. Newton, P. T., Vuppalapati, K. K., Bouderlique, T. & Chagin, A. S. Pharmacological inhibition of lysosomes activates the MTORC1 signaling pathway in chondrocytes in an autophagy-independent manner. Autophagy 11, 1594–1607 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Bartolomeo, R. et al. mTORC1 hyperactivation arrests bone growth in lysosomal storage disorders by suppressing autophagy. J. Clin. Invest. 127, 3717–3729 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  289. Clarke, L. A. & Hollak, C. E. The clinical spectrum and pathophysiology of skeletal complications in lysosomal storage disorders. Best. Pract. Res. Clin. Endocrinol. Metab. 29, 219–235 (2015).

    Article  CAS  PubMed  Google Scholar 

  290. Settembre, C. et al. Defective collagen proteostasis and matrix formation in the pathogenesis of lysosomal storage disorders. Matrix Biol. 71-72, 283–293 (2018).

    Article  CAS  PubMed  Google Scholar 

  291. Jiang, Z., Lau, Y. K., Wu, M., Casal, M. L. & Smith, L. J. Ultrastructural analysis of different skeletal cell types in mucopolysaccharidosis dogs at the onset of postnatal growth. J. Anat. 238, 416–425 (2021).

    Article  CAS  PubMed  Google Scholar 

  292. Festa, B. P., Berquez, M., Nieri, D. & Luciani, A. Endolysosomal disorders affecting the proximal tubule of the kidney: new mechanistic insights and therapeutics. Rev. Physiol. Biochem. Pharmacol. 185, 233–257 (2023).

    Article  PubMed  Google Scholar 

  293. Perazella, M. A. & Herlitz, L. C. The crystalline nephropathies. Kidney Int. Rep. 6, 2942–2957 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  294. Zhong, D. et al. Induction of lysosomal exocytosis and biogenesis via TRPML1 activation for the treatment of uranium-induced nephrotoxicity. Nat. Commun. 14, 3997 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  295. Nakamura, J. et al. TFEB-mediated lysosomal exocytosis alleviates high-fat diet-induced lipotoxicity in the kidney. JCI Insight 8, https://doi.org/10.1172/jci.insight.162498 (2023).

  296. Medina, D. L. et al. Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev. Cell 21, 421–430 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Schmidt, L. S. & Linehan, W. M. Molecular genetics and clinical features of Birt–Hogg–Dube syndrome. Nat. Rev. Urol. 12, 558–569 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Di Malta, C. et al. TFEB and TFE3 drive kidney cystogenesis and tumorigenesis. EMBO Mol. Med. 15, e16877 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  299. Krohn, P. et al. Multisystem involvement, defective lysosomes and impaired autophagy in a novel rat model of nephropathic cystinosis. Hum. Mol. Genet. 31, 2262–2278 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Festa, B. P. et al. Impaired autophagy bridges lysosomal storage disease and epithelial dysfunction in the kidney. Nat. Commun. 9, 161 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  301. Sumayao, R., Jr, Newsholme, P. & McMorrow, T. The role of cystinosin in the intermediary thiol metabolism and redox homeostasis in kidney proximal tubular cells. Antioxidants 7, https://doi.org/10.3390/antiox7120179 (2018).

  302. Berquez, M. et al. Lysosomal cystine export regulates mTORC1 signaling to guide kidney epithelial cell fate specialization. Nat. Commun. 14, 3994 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  303. Venkatarangan, V. et al. ER-associated degradation in cystinosis pathogenesis and the prospects of precision medicine. J. Clin. Invest. https://doi.org/10.1172/JCI169551 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  304. De Matteis, M. A., Staiano, L., Emma, F. & Devuyst, O. The 5-phosphatase OCRL in Lowe syndrome and Dent disease 2. Nat. Rev. Nephrol. 13, 455–470 (2017).

    Article  PubMed  Google Scholar 

  305. De Leo, M. G. et al. Autophagosome–lysosome fusion triggers a lysosomal response mediated by TLR9 and controlled by OCRL. Nat. Cell Biol. 18, 839–850 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  306. Biswas, J., Nandi, K., Sridharan, S. & Ranjan, P. Ocular manifestation of storage diseases. Curr. Opin. Ophthalmol. 19, 507–511 (2008).

    Article  PubMed  Google Scholar 

  307. Intartaglia, D., Giamundo, G. & Conte, I. Autophagy in the retinal pigment epithelium: a new vision and future challenges. FEBS J. 289, 7199–7212 (2022).

    Article  CAS  PubMed  Google Scholar 

  308. Ferrington, D. A., Sinha, D. & Kaarniranta, K. Defects in retinal pigment epithelial cell proteolysis and the pathology associated with age-related macular degeneration. Prog. Retin. Eye Res. 51, 69–89 (2016).

    Article  CAS  PubMed  Google Scholar 

  309. Anderson, D. M. G. et al. Bis(monoacylglycero)phosphate lipids in the retinal pigment epithelium implicate lysosomal/endosomal dysfunction in a model of Stargardt disease and human retinas. Sci. Rep. 7, 17352 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  310. Kim, J. Y. et al. Noncanonical autophagy promotes the visual cycle. Cell 154, 365–376 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Naso, F. et al. Light-responsive microRNA miR-211 targets Ezrin to modulate lysosomal biogenesis and retinal cell clearance. EMBO J. 39, e102468 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Boya, P., Codogno, P. & Rodriguez-Muela, N. Autophagy in stem cells: repair, remodelling and metabolic reprogramming. Development 145, https://doi.org/10.1242/dev.146506 (2018).

  313. Bartram, J. & Filippi, M. D. The new metabolic needs of hematopoietic stem cells. Curr. Opin. Hematol. 29, 188–193 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Liang, R. et al. Restraining lysosomal activity preserves hematopoietic stem cell quiescence and potency. Cell Stem Cell 26, 359–376.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Garcia-Prat, L. et al. TFEB-mediated endolysosomal activity controls human hematopoietic stem cell fate. Cell Stem Cell 28, 1838–1850.e10 (2021).

    Article  CAS  PubMed  Google Scholar 

  316. Fujimaki, K. et al. Graded regulation of cellular quiescence depth between proliferation and senescence by a lysosomal dimmer switch. Proc. Natl Acad. Sci. USA 116, 22624–22634 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  317. Kobayashi, T. et al. Enhanced lysosomal degradation maintains the quiescent state of neural stem cells. Nat. Commun. 10, 5446 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  318. Leeman, D. S. et al. Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science 359, 1277–1283 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  319. Ghaffari, S. Lysosomal regulation of metabolism in quiescent hematopoietic stem cells: more than just autophagy. Cell Stem Cell 28, 374–377 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Mannick, J. B. & Lamming, D. W. Targeting the biology of aging with mTOR inhibitors. Nat. Aging 3, 642–660 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Mareninova, O. A. et al. Lysosome associated membrane proteins maintain pancreatic acinar cell homeostasis: LAMP-2 deficient mice develop pancreatitis. Cell Mol. Gastroenterol. Hepatol. 1, 678–694 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  322. Csizmadia, T. et al. Molecular mechanisms of developmentally programmed crinophagy in Drosophila. J. Cell Biol. 217, 361–374 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Antonucci, L. et al. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc. Natl Acad. Sci. USA 112, E6166–E6174 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Goginashvili, A. et al. Insulin granules. Insulin secretory granules control autophagy in pancreatic β cells. Science 347, 878–882 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  325. Pasquier, A. et al. Lysosomal degradation of newly formed insulin granules contributes to β cell failure in diabetes. Nat. Commun. 10, 3312 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  326. Watts, C. Lysosomes and lysosome-related organelles in immune responses. FEBS Open. Bio 12, 678–693 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Lind, N. A., Rael, V. E., Pestal, K., Liu, B. & Barton, G. M. Regulation of the nucleic acid-sensing Toll-like receptors. Nat. Rev. Immunol. 22, 224–235 (2022).

    Article  CAS  PubMed  Google Scholar 

  328. Ostendorf, T. et al. Immune sensing of synthetic, bacterial, and protozoan RNA by Toll-like receptor 8 requires coordinated processing by RNase T2 and RNase 2. Immunity 52, 591–605.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  329. Nguyen, T. A. et al. SIDT2 transports extracellular dsRNA into the cytoplasm for innate immune recognition. Immunity 47, 498–509.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Maric, M. et al. Defective antigen processing in GILT-free mice. Science 294, 1361–1365 (2001).

    Article  CAS  PubMed  ADS  Google Scholar 

  331. Hastings, K. T., Lackman, R. L. & Cresswell, P. Functional requirements for the lysosomal thiol reductase GILT in MHC class II-restricted antigen processing. J. Immunol. 177, 8569–8577 (2006).

    Article  CAS  PubMed  Google Scholar 

  332. Bretou, M. et al. Lysosome signaling controls the migration of dendritic cells. Sci. Immunol. 2, https://doi.org/10.1126/sciimmunol.aak9573 (2017).

  333. Pastore, N. et al. TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy 12, 1240–1258 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Zhang, Z. et al. Itaconate is a lysosomal inducer that promotes antibacterial innate immunity. Mol. Cell 82, 2844–2857.e10 (2022).

    Article  CAS  PubMed  Google Scholar 

  335. Kuchitsu, Y. et al. STING signalling is terminated through ESCRT-dependent microautophagy of vesicles originating from recycling endosomes. Nat. Cell Biol. 25, 453–466 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Chu, T. T. et al. Tonic prime-boost of STING signalling mediates Niemann–Pick disease type C. Nature 596, 570–575 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  337. Gaidt, M. M. et al. The DNA inflammasome in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3. Cell 171, 1110–1124.e18 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Sachdeva, K. & Sundaramurthy, V. The interplay of host lysosomes and intracellular pathogens. Front. Cell Infect. Microbiol. 10, 595502 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Xu, Y. et al. ARF GTPases activate Salmonella effector SopF to ADP-ribosylate host V-ATPase and inhibit endomembrane damage-induced autophagy. Nat. Struct. Mol. Biol. 29, 67–77 (2022).

    Article  PubMed  Google Scholar 

  340. Ghosh, S. et al. β-Coronaviruses use lysosomes for egress instead of the biosynthetic secretory pathway. Cell 183, 1520–1535.e14 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Chen, D. et al. ORF3a of SARS-CoV-2 promotes lysosomal exocytosis-mediated viral egress. Dev. Cell 56, 3250–3263.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Assi, M. & Kimmelman, A. C. Impact of context-dependent autophagy states on tumor progression. Nat. Cancer 4, 596–607 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Lambies, G. & Commisso, C. Macropinocytosis and cancer: from tumor stress to signaling pathways. Subcell. Biochem. 98, 15–40 (2022).

    Article  CAS  PubMed  Google Scholar 

  344. Morgan, M. J. et al. Metastatic cells are preferentially vulnerable to lysosomal inhibition. Proc. Natl Acad. Sci. USA 115, E8479–E8488 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. Perera, R. M. et al. Transcriptional control of autophagy–lysosome function drives pancreatic cancer metabolism. Nature 524, 361–365 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  346. Eichner, L. J. et al. Genetic analysis reveals AMPK is required to support tumor growth in murine Kras-dependent lung cancer models. Cell Metab. 29, 285–302.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  347. Gupta, S. et al. Lysosomal retargeting of myoferlin mitigates membrane stress to enable pancreatic cancer growth. Nat. Cell Biol. 23, 232–242 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Guo, J. Y. et al. Autophagy provides metabolic substrates to maintain energy charge and nucleotide pools in Ras-driven lung cancer cells. Genes. Dev. 30, 1704–1717 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Sousa, C. M. et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536, 479–483 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  350. Yamamoto, K. et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 581, 100–105 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  351. Poillet-Perez, L. et al. Autophagy promotes growth of tumors with high mutational burden by inhibiting a T-cell immune response. Nat. Cancer 1, 923–934 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Lawson, K. A. et al. Functional genomic landscape of cancer-intrinsic evasion of killing by T cells. Nature 586, 120–126 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  353. Deng, J. et al. ULK1 inhibition overcomes compromised antigen presentation and restores antitumor immunity in LKB1 mutant lung cancer. Nat. Cancer 2, 503–514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Kimmelman, A. C. & White, E. Autophagy and tumor metabolism. Cell Metab. 25, 1037–1043 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Mukhopadhyay, S. et al. Autophagy is required for proper cysteine homeostasis in pancreatic cancer through regulation of SLC7A11. Proc. Natl Acad. Sci. USA 118, https://doi.org/10.1073/pnas.2021475118 (2021).

  356. Mathew, R. et al. Autophagy suppresses tumor progression by limiting chromosomal instability. Genes. Dev. 21, 1367–1381 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Karantza-Wadsworth, V. et al. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes. Dev. 21, 1621–1635 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. Yun, S. et al. TFEB links MYC signaling to epigenetic control of myeloid differentiation and acute myeloid leukemia. Blood Cancer Discov. 2, 162–185 (2021).

    Article  CAS  PubMed  Google Scholar 

  359. Watson, A. S. et al. Autophagy limits proliferation and glycolytic metabolism in acute myeloid leukemia. Cell Death Discov. 1, 15008 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Fernandez, M. R. et al. Disrupting the MYC–TFEB circuit impairs amino acid homeostasis and provokes metabolic anergy. Cancer Res. 82, 1234–1250 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Poillet-Perez, L., Sarry, J. E. & Joffre, C. Autophagy is a major metabolic regulator involved in cancer therapy resistance. Cell Rep. 36, 109528 (2021).

    Article  CAS  PubMed  Google Scholar 

  362. Viale, A. et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514, 628–632 (2014).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  363. Mulcahy Levy, J. M. et al. Autophagy inhibition overcomes multiple mechanisms of resistance to BRAF inhibition in brain tumors. eLife 6, https://doi.org/10.7554/eLife.19671 (2017).

  364. Mehnert, J. M. et al. BAMM (BRAF Autophagy and MEK Inhibition in Melanoma): a phase I/II trial of dabrafenib, trametinib, and hydroxychloroquine in advanced BRAFV600-mutant melanoma. Clin. Cancer Res. 28, 1098–1106 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. McAteer, M. J., Lagarde, A. C., Georgiou, H. M. & Bellgrau, D. A requirement for the CD5 antigen in T cell activation. Eur. J. Immunol. 18, 1111–1117 (1988).

    Article  CAS  PubMed  Google Scholar 

  366. Levy, J. M. et al. Autophagy inhibition improves chemosensitivity in BRAFV600E brain tumors. Cancer Discov. 4, 773–780 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  367. Lee, J. J., Jain, V. & Amaravadi, R. K. Clinical translation of combined MAPK and autophagy inhibition in RAS mutant cancer. Int. J. Mol. Sci. 22, https://doi.org/10.3390/ijms222212402 (2021).

  368. Kinsey, C. G. et al. Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nat. Med. 25, 620–627 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Bryant, K. L. et al. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat. Med. 25, 628–640 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  370. Ravichandran, M. et al. Coordinated transcriptional and catabolic programs support iron dependent adaptation to RAS–MAPK pathway inhibition in pancreatic cancer. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-22-0044 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  371. Fang, R. et al. Nuclear translocation of ASPL–TFE3 fusion protein creates favorable metabolism by mediating autophagy in translocation renal cell carcinoma. Oncogene 40, 3303–3317 (2021).

    Article  CAS  PubMed  Google Scholar 

  372. Bakouny, Z. et al. Integrative clinical and molecular characterization of translocation renal cell carcinoma. Cell Rep. 38, 110190 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Pastore, N. et al. TFEB regulates murine liver cell fate during development and regeneration. Nat. Commun. 11, 2461 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  374. Calcagni, A. et al. Modelling TFE renal cell carcinoma in mice reveals a critical role of WNT signaling. eLife 5, https://doi.org/10.7554/eLife.17047 (2016).

  375. Baba, M. et al. TFE3 Xp11.2 translocation renal cell carcinoma mouse model reveals novel therapeutic targets and identifies GPNMB as a diagnostic marker for human disease. Mol. Cancer Res. 17, 1613–1626 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  376. Platt, F. M., Boland, B. & van der Spoel, A. C. The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J. Cell Biol. 199, 723–734 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. Tharkeshwar, A. K. et al. A novel approach to analyze lysosomal dysfunctions through subcellular proteomics and lipidomics: the case of NPC1 deficiency. Sci. Rep. 7, 41408 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  378. Nylandsted, J. et al. ErbB2-associated changes in the lysosomal proteome. Proteomics 11, 2830–2838 (2011).

    Article  CAS  PubMed  Google Scholar 

  379. Xiong, J. et al. Rapid affinity purification of intracellular organelles using a twin strep tag. J. Cell Sci. 132, https://doi.org/10.1242/jcs.235390 (2019).

  380. Morone, D., Marazza, A., Bergmann, T. J. & Molinari, M. Deep learning approach for quantification of organelles and misfolded polypeptide delivery within degradative compartments. Mol. Biol. Cell 31, 1512–1524 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Medina, D. L., Settembre, C. & Ballabio, A. Methods to monitor and manipulate TFEB activity during autophagy. Methods Enzymol. 588, 61–78 (2017).

    Article  CAS  PubMed  Google Scholar 

  382. Zhao, L., Zhao, J., Zhong, K., Tong, A. & Jia, D. Targeted protein degradation: mechanisms, strategies and application. Signal. Transduct. Target. Ther. 7, 113 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

C.S acknowledges the Italian Telethon funding agency, the European Research Council (ERC-101045285-AUTOSELECT) and the Italian Ministry of Health (PNRR-MAD-2022-12376672). R.M.P acknowledges the National Institutes of Health (NIH R01CA260249), the Ed Marra Passion to Win Fund, the Shorenstein Fund and the AACR-MPM Oncology Charitable Foundation Transformative Cancer Research Grant. The authors apologize to colleagues whose work they were unable to cite due to space restrictions.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Carmine Settembre or Rushika M. Perera.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

TFEBexplorer: https://tfeb.tigem.it/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Settembre, C., Perera, R.M. Lysosomes as coordinators of cellular catabolism, metabolic signalling and organ physiology. Nat Rev Mol Cell Biol 25, 223–245 (2024). https://doi.org/10.1038/s41580-023-00676-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-023-00676-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing