Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

FOXO transcription factors as mediators of stress adaptation

Abstract

The forkhead box protein O (FOXO, consisting of FOXO1, FOXO3, FOXO4 and FOXO6) transcription factors are the mammalian orthologues of Caenorhabditis elegans DAF-16, which gained notoriety for its capability to double lifespan in the absence of daf-2 (the gene encoding the worm insulin receptor homologue). Since then, research has provided many mechanistic details on FOXO regulation and FOXO activity. Furthermore, conditional knockout experiments have provided a wealth of data as to how FOXOs control development and homeostasis at the organ and organism levels. The lifespan-extending capabilities of DAF-16/FOXO are highly correlated with their ability to induce stress response pathways. Exogenous and endogenous stress, such as cellular redox stress, are considered the main drivers of the functional decline that characterizes ageing. Functional decline often manifests as disease, and decrease in FOXO activity indeed negatively impacts on major age-related diseases such as cancer and diabetes. In this context, the main function of FOXOs is considered to preserve cellular and organismal homeostasis, through regulation of stress response pathways. Paradoxically, the same FOXO-mediated responses can also aid the survival of dysfunctional cells once these eventually emerge. This general property to control stress responses may underlie the complex and less-evident roles of FOXOs in human lifespan as opposed to model organisms such as C. elegans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Upstream regulation and output of FOXO transcription factors in stress adaptation.
Fig. 2: Levels of FOXO regulation.
Fig. 3: FOXO and the cell cycle.
Fig. 4: Redox control of FOXO transcription factors.
Fig. 5: FOXO and the regulation of metabolism and cell fate.
Fig. 6: A model illustrating how FOXO-dependent stress survival could sustain both healthy and pathological conditions.

Similar content being viewed by others

References

  1. Gems, D. et al. Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics 150, 129–155 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Murphy, C. T. et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424, 277–283 (2003).

    CAS  PubMed  Google Scholar 

  3. Lee, S. S., Kennedy, S., Tolonen, A. C. & Ruvkun, G. DAF-16 target genes that control C. elegans life-span and metabolism. Science 300, 644–647 (2003).

    CAS  PubMed  Google Scholar 

  4. Jenkins, N. L., McColl, G. & Lithgow, G. J. Fitness cost of extended lifespan in Caenorhabditis elegans. Proc. Biol. Sci. 271, 2523–2526 (2004).

    PubMed  PubMed Central  Google Scholar 

  5. Kenyon, C. The plasticity of aging: insights from long-lived mutants. Cell 120, 449–460 (2005). This is one of the first papers to show that a single specific genetic mutation (daf-2) can increase lifespan and can be reverted by a second mutation (daf-16), revealing a connection between insulin signalling and lifespan.

    CAS  PubMed  Google Scholar 

  6. Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A. C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993).

    CAS  PubMed  Google Scholar 

  7. Willcox, B. J. et al. FOXO3A genotype is strongly associated with human longevity. Proc. Natl Acad. Sci. USA 105, 13987–13992 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Santo, E. E. et al. FOXO3A-short is a novel regulator of non-oxidative glucose metabolism associated with human longevity. Aging Cell 22, e13763 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Eijkelenboom, A. & Burgering, B. M. FOXOs: signalling integrators for homeostasis maintenance. Nat. Rev. Mol. Cell Biol. 14, 83–97 (2013).

    CAS  PubMed  Google Scholar 

  10. Liang, R. & Ghaffari, S. Stem cells seen through the FOXO lens: an evolving paradigm. Curr. Top. Dev. Biol. 127, 23–47 (2018).

    CAS  PubMed  Google Scholar 

  11. Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance physiologic oxid. stress. Cell 128, 325–339 (2007). This study shows the redundancy of FOXO1, FOXO3 and FOXO4 in HSC maintenance and that antioxidant defence downstream of FOXO is a key driver of stem cell maintenance.

    CAS  PubMed  Google Scholar 

  12. Shimokawa, I. et al. The life-extending effect of dietary restriction requires Foxo3 in mice. Aging Cell 14, 707–709 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hwang, I. et al. FOXO protects against age-progressive axonal degeneration. Aging Cell 17, e12701 (2018).

    PubMed  Google Scholar 

  14. Du, S. et al. FoxO3 deficiency in cortical astrocytes leads to impaired lipid metabolism and aggravated amyloid pathology. Aging Cell 20, e13432 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hedrick, S. M., Hess Michelini, R., Doedens, A. L., Goldrath, A. W. & Stone, E. L. FOXO transcription factors throughout T cell biology. Nat. Rev. Immunol. 12, 649–661 (2012).

    CAS  PubMed  Google Scholar 

  16. Calissi, G., Lam, E. W. & Link, W. Therapeutic strategies targeting FOXO transcription factors. Nat. Rev. Drug Discov. 20, 21–38 (2021).

    CAS  PubMed  Google Scholar 

  17. Brown, A. K. & Webb, A. E. Regulation of FOXO factors in mammalian cells. Curr. Top. Dev. Biol. 127, 165–192 (2018).

    CAS  PubMed  Google Scholar 

  18. Calnan, D. R. & Brunet, A. The FoxO code. Oncogene 27, 2276–2288 (2008).

    CAS  PubMed  Google Scholar 

  19. Franz, F. et al. The transcriptional regulation of FOXO genes in thyrocytes. Horm. Metab. Res. 48, 601–606 (2016).

    CAS  PubMed  Google Scholar 

  20. Urbanek, P. & Klotz, L. O. Posttranscriptional regulation of FOXO expression: microRNAs and beyond. Br. J. Pharmacol. 174, 1514–1532 (2017).

    CAS  PubMed  Google Scholar 

  21. Asmamaw, M. D., Liu, Y., Zheng, Y. C., Shi, X. J. & Liu, H. M. Skp2 in the ubiquitin–proteasome system: a comprehensive review. Med. Res. Rev. 40, 1920–1949 (2020).

    CAS  PubMed  Google Scholar 

  22. Brenkman, A. B., de Keizer, P. L., van den Broek, N. J., Jochemsen, A. G. & Burgering, B. M. Mdm2 induces mono-ubiquitination of FOXO4. PLoS ONE 3, e2819 (2008).

    PubMed  PubMed Central  Google Scholar 

  23. Huang, H. & Tindall, D. J. Regulation of FOXO protein stability via ubiquitination and proteasome degradation. Biochim. Biophys. Acta 1813, 1961–1964 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, X., Wang, J. & Jiang, X. MdmX protein is essential for Mdm2 protein-mediated p53 polyubiquitination. J. Biol. Chem. 286, 23725–23734 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Grossman, S. R. et al. Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science 300, 342–344 (2003).

    CAS  PubMed  Google Scholar 

  26. Zhou, B. P. et al. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat. Cell Biol. 3, 973–982 (2001).

    CAS  PubMed  Google Scholar 

  27. Mayo, L. D. & Donner, D. B. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc. Natl Acad. Sci. USA 98, 11598–11603 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. van der Horst, A. et al. FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat. Cell Biol. 8, 1064–1073 (2006).

    PubMed  Google Scholar 

  29. Heimbucher, T. & Hunter, T. The C. elegans ortholog of USP7 controls DAF-16 stability in insulin/IGF-1-like signaling. Worm 4, e1103429 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. Kops, G. J. et al. Direct control of the forkhead transcription factor AFX by protein kinase B. Nature 398, 630–634 (1999).

    CAS  PubMed  Google Scholar 

  31. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell 96, 857–868 (1999). This study and the study by Kops et al. (1999) are the first to show that the regulation of FOXOs, the orthologues of DAF-16 in mammalians, are directly controlled by AKT and PI3K signalling, thereby showing evolutionary conservation.

    CAS  PubMed  Google Scholar 

  32. Brownawell, A. M., Kops, G. J., Macara, I. G. & Burgering, B. M. Inhibition of nuclear import by protein kinase B (Akt) regulates the subcellular distribution and activity of the forkhead transcription factor AFX. Mol. Cell Biol. 21, 3534–3546 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Essers, M. A. et al. FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J. 23, 4802–4812 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Putker, M. et al. Redox-dependent control of FOXO/DAF-16 by transportin-1. Mol. Cell 49, 730–742 (2013).

    CAS  PubMed  Google Scholar 

  35. Putker, M. et al. Evolutionary acquisition of cysteines determines FOXO paralog-specific redox signaling. Antioxid. Redox Signal. 22, 15–28 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zaret, K. S. & Carroll, J. S. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 25, 2227–2241 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Clark, K. L., Halay, E. D., Lai, E. & Burley, S. K. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364, 412–420 (1993).

    CAS  PubMed  Google Scholar 

  38. Wang, F. et al. Biochemical and structural characterization of an intramolecular interaction in FOXO3a and its binding with p53. J. Mol. Biol. 384, 590–603 (2008).

    CAS  PubMed  Google Scholar 

  39. Bourgeois, B. et al. Multiple regulatory intrinsically disordered motifs control FOXO4 transcription factor binding and function. Cell Rep. 36, 109446 (2021).

    CAS  PubMed  Google Scholar 

  40. Obsil, T. & Obsilova, V. Structural basis for DNA recognition by FOXO proteins. Biochim. Biophys. Acta 1813, 1946–1953 (2011).

    CAS  PubMed  Google Scholar 

  41. Li, J. et al. Mechanism of forkhead transcription factors binding to a novel palindromic DNA site. Nucleic Acids Res. 49, 3573–3583 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Psenakova, K. et al. Forkhead domains of FOXO transcription factors differ in both overall conformation and dynamics. Cells 8, 966 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sugase, K., Dyson, H. J. & Wright, P. E. Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447, 1021–1025 (2007).

    CAS  PubMed  Google Scholar 

  44. Shoemaker, B. A., Portman, J. J. & Wolynes, P. G. Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proc. Natl Acad. Sci. USA 97, 8868–8873 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Dansen, T. B. et al. Redox-sensitive cysteines bridge p300/CBP-mediated acetylation and FoxO4 activity. Nat. Chem. Biol. 5, 664–672 (2009). This study is among the first to show that redox signalling, similar to growth factor signalling, proceeds through protein–protein interactions that are enforced by redox-sensitive cysteine disulfide bridges.

    CAS  PubMed  Google Scholar 

  46. Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21, 363–383 (2020).

    CAS  PubMed  Google Scholar 

  47. van der Horst, A. et al. FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2. J. Biol. Chem. 279, 28873–28879 (2004).

    PubMed  Google Scholar 

  48. Yoshimochi, K., Daitoku, H. & Fukamizu, A. PCAF represses transactivation function of FOXO1 in an acetyltransferase-independent manner. J. Recept. Signal Transduct. Res. 30, 43–49 (2010).

    CAS  PubMed  Google Scholar 

  49. Adamowicz, M., Vermezovic, J. & d’Adda di Fagagna, F. NOTCH1 inhibits activation of ATM by impairing the formation of an ATM-FOXO3a-KAT5/Tip60 complex. Cell Rep. 16, 2068–2076 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Brunet, A. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011–2015 (2004). This study, together with van der Horst et al. (2004) provides a mechanistic link between FOXO and SIRT, which were independently shown to affect lifespan.

    CAS  PubMed  Google Scholar 

  51. Daitoku, H. et al. Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc. Natl Acad. Sci. USA 101, 10042–10047 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tseng, A. H., Wu, L. H., Shieh, S. S. & Wang, D. L. SIRT3 interactions with FOXO3 acetylation, phosphorylation and ubiquitinylation mediate endothelial cell responses to hypoxia. Biochem. J. 464, 157–168 (2014).

    CAS  PubMed  Google Scholar 

  53. Mihaylova, M. M. et al. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145, 607–621 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Daitoku, H., Sakamaki, J. & Fukamizu, A. Regulation of FoxO transcription factors by acetylation and protein–protein interactions. Biochim. Biophys. Acta 1813, 1954–1960 (2011).

    CAS  PubMed  Google Scholar 

  55. Riedel, C. G. et al. DAF-16 employs the chromatin remodeller SWI/SNF to promote stress resistance and longevity. Nat. Cell Biol. 15, 491–501 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Webb, A. E. & Brunet, A. FOXO flips the longevity SWItch. Nat. Cell Biol. 15, 444–446 (2013).

    CAS  PubMed  Google Scholar 

  57. Mattila, J., Kallijarvi, J. & Puig, O. RNAi screening for kinases and phosphatases identifies FoxO regulators. Proc. Natl Acad. Sci. USA 105, 14873–14878 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu, J. et al. Targeting the BRD4/FOXO3a/CDK6 axis sensitizes AKT inhibition in luminal breast cancer. Nat. Commun. 9, 5200 (2018).

    PubMed  PubMed Central  Google Scholar 

  59. Webb, A. E., Kundaje, A. & Brunet, A. Characterization of the direct targets of FOXO transcription factors throughout evolution. Aging Cell 15, 673–685 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hao, N. & O’Shea, E. K. Signal-dependent dynamics of transcription factor translocation controls gene expression. Nat. Struct. Mol. Biol. 19, 31–39 (2011).

    PubMed  PubMed Central  Google Scholar 

  61. Demirbas, B. et al. Control of C. elegans growth arrest by stochastic, yet synchronized DAF-16/FOXO nuclear translocation pulses. Preprint at bioRxiv https://doi.org/10.1101/2023.07.05.547674 (2023).

  62. Lasick, K. A. et al. FOXO nuclear shuttling dynamics are stimulus-dependent and correspond with cell fate. Mol. Biol. Cell 34, ar21 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hatta, M. & Cirillo, L. A. Chromatin opening and stable perturbation of core histone: DNA contacts by FoxO1. J. Biol. Chem. 282, 35583–35593 (2007).

    CAS  PubMed  Google Scholar 

  64. Hatta, M., Liu, F. & Cirillo, L. A. Acetylation curtails nucleosome binding, not stable nucleosome remodeling, by FoxO1. Biochem. Biophys. Res. Commun. 379, 1005–1008 (2009).

    CAS  PubMed  Google Scholar 

  65. Eijkelenboom, A., Mokry, M., Smits, L. M., Nieuwenhuis, E. E. & Burgering, B. M. FOXO3 selectively amplifies enhancer activity to establish target gene regulation. Cell Rep. 5, 1664–1678 (2013).

    CAS  PubMed  Google Scholar 

  66. Newman, J. R. et al. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441, 840–846 (2006).

    CAS  PubMed  Google Scholar 

  67. Allgayer, J., Kitsera, N., Bartelt, S., Epe, B. & Khobta, A. Widespread transcriptional gene inactivation initiated by a repair intermediate of 8-oxoguanine. Nucleic Acids Res. 44, 7267–7280 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Desai, R. V. et al. A DNA repair pathway can regulate transcriptional noise to promote cell fate transitions. Science 373, eabc6506 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Raser, J. M. & O’Shea, E. K. Noise in gene expression: origins, consequences, and control. Science 309, 2010–2013 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Munsky, B., Neuert, G. & van Oudenaarden, A. Using gene expression noise to understand gene regulation. Science 336, 183–187 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wong, V. C. et al. NF-kappaB-chromatin interactions drive diverse phenotypes by modulating transcriptional noise. Cell Rep. 22, 585–599 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Comandante-Lou, N., Baumann, D. G. & Fallahi-Sichani, M. AP-1 transcription factor network explains diverse patterns of cellular plasticity in melanoma cells. Cell Rep. 40, 111147 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Bahar, R. et al. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature 441, 1011–1014 (2006).

    CAS  PubMed  Google Scholar 

  74. Somel, M., Khaitovich, P., Bahn, S., Paabo, S. & Lachmann, M. Gene expression becomes heterogeneous with age. Curr. Biol. 16, R359–R360 (2006).

    CAS  PubMed  Google Scholar 

  75. Rangaraju, S. et al. Suppression of transcriptional drift extends C. elegans lifespan by postponing the onset of mortality. eLife 4, e08833 (2015).

    Google Scholar 

  76. Cheung, P. et al. Single-cell chromatin modification profiling reveals increased epigenetic variations with aging. Cell 173, 1385–1397.e14 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Burgess, D. J. Human epigenetics: showing your age. Nat. Rev. Genet. 14, 6 (2013).

    PubMed  Google Scholar 

  78. Booth, L. N. & Brunet, A. The aging epigenome. Mol. Cell 62, 728–744 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Fielenbach, N. & Antebi, A. C. elegans Dauer formation and the molecular basis of plasticity. Genes Dev. 22, 2149–2165 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Medema, R. H., Kops, G. J., Bos, J. L. & Burgering, B. M. AFX-like forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404, 782–787 (2000). This study links FOXO function to inhibition of the cell cycle, thereby suggesting a role for FOXOs in tissue homeostasis and cancer.

    CAS  PubMed  Google Scholar 

  81. Furukawa-Hibi, Y., Yoshida-Araki, K., Ohta, T., Ikeda, K. & Motoyama, N. FOXO forkhead transcription factors induce G(2)-M checkpoint in response to oxidative stress. J. Biol. Chem. 277, 26729–26732 (2002).

    CAS  PubMed  Google Scholar 

  82. Hornsveld, M. et al. A FOXO-dependent replication checkpoint restricts proliferation of damaged cells. Cell Rep. 34, 108675 (2021).

    CAS  PubMed  Google Scholar 

  83. Sekimoto, T., Fukumoto, M. & Yoneda, Y. 14-3-3 Suppresses the nuclear localization of threonine 157-phosphorylated p27(Kip1). EMBO J. 23, 1934–1942 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Blain, S. W. & Massague, J. Breast cancer banishes p27 from nucleus. Nat. Med. 8, 1076–1078 (2002).

    CAS  PubMed  Google Scholar 

  85. Gao, D. et al. Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction. Nat. Cell Biol. 11, 397–408 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Huang, H. et al. Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc. Natl Acad. Sci. USA 102, 1649–1654 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Shtivelman, E., Sussman, J. & Stokoe, D. A role for PI 3-kinase and PKB activity in the G2/M phase of the cell cycle. Curr. Biol. 12, 919–924 (2002).

    CAS  PubMed  Google Scholar 

  88. Kamura, T. et al. Cytoplasmic ubiquitin ligase KPC regulates proteolysis of p27(Kip1) at G1 phase. Nat. Cell Biol. 6, 1229–1235 (2004).

    CAS  PubMed  Google Scholar 

  89. Ou, L. et al. Incomplete folding upon binding mediates Cdk4/cyclin D complex activation by tyrosine phosphorylation of inhibitor p27 protein. J. Biol. Chem. 286, 30142–30151 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Coller, H. A., Sang, L. & Roberts, J. M. A new description of cellular quiescence. PLoS Biol. 4, e83 (2006).

    PubMed  PubMed Central  Google Scholar 

  91. Grana, X., Garriga, J. & Mayol, X. Role of the retinoblastoma protein family, pRB, p107 and p130 in the negative control of cell growth. Oncogene 17, 3365–3383 (1998).

    PubMed  Google Scholar 

  92. Smith, E. J., Leone, G., DeGregori, J., Jakoi, L. & Nevins, J. R. The accumulation of an E2F-p130 transcriptional repressor distinguishes a G0 cell state from a G1 cell state. Mol. Cell Biol. 16, 6965–6976 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Kops, G. J. et al. Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors. Mol. Cell Biol. 22, 2025–2036 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513–522 (2005).

    CAS  PubMed  Google Scholar 

  95. Nogueira, V. et al. Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell 14, 458–470 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. de Keizer, P. L. et al. Activation of forkhead box O transcription factors by oncogenic BRAF promotes p21cip1-dependent senescence. Cancer Res. 70, 8526–8536 (2010).

    PubMed  PubMed Central  Google Scholar 

  97. Baar, M. P. et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169, 132–147.e16 (2017). This paper shows that FOXOs can be a target for the specific elimination of senescent cells in order to mitigate age-related decline.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Munoz-Espin, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118 (2013).

    CAS  PubMed  Google Scholar 

  99. Storer, M. et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155, 1119–1130 (2013).

    CAS  PubMed  Google Scholar 

  100. Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11, 298–300 (1956).

    CAS  PubMed  Google Scholar 

  101. Honda, Y. & Honda, S. The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J. 13, 1385–1393 (1999). This is the first study to show that DAF-16 regulates the expression of antioxidant enzymes, providing a link between the free radical theory of ageing and DAF-16-dependent lifespan extension.

    CAS  PubMed  Google Scholar 

  102. Honda, Y. & Honda, S. Life span extensions associated with upregulation of gene expression of antioxidant enzymes in Caenorhabdms elegans; studies of mutation in the AGE-1, PI3 kinase homologue and short-term exposure to hyperoxia. J. Am. Aging Assoc. 24, 179–186 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Paik, J. H. et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128, 309–323 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Klotz, L. O. et al. Redox regulation of FoxO transcription factors. Redox Biol. 6, 51–72 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Sies, H. et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 23, 499–515 (2022).

    CAS  PubMed  Google Scholar 

  106. Netto, L. E. S. & Machado, L. Preferential redox regulation of cysteine-based protein tyrosine phosphatases: structural and biochemical diversity. FEBS J. 289, 5480–5504 (2022).

    CAS  PubMed  Google Scholar 

  107. Snyder, N. A. & Silva, G. M. Deubiquitinating enzymes (DUBs): regulation, homeostasis, and oxidative stress response. J. Biol. Chem. 297, 101077 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang, Y. & Hekimi, S. Mitochondrial dysfunction and longevity in animals: untangling the knot. Science 350, 1204–1207 (2015).

    CAS  PubMed  Google Scholar 

  109. Van Raamsdonk, J. M. & Hekimi, S. Superoxide dismutase is dispensable for normal animal lifespan. Proc. Natl Acad. Sci. USA 109, 5785–5790 (2012).

    PubMed  PubMed Central  Google Scholar 

  110. Hoehne, M. N. et al. Spatial and temporal control of mitochondrial H(2) O(2) release in intact human cells. EMBO J. 41, e109169 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Saeedi Saravi, S. S. et al. Differential endothelial signaling responses elicited by chemogenetic H(2)O(2) synthesis. Redox Biol. 36, 101605 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Gross, D. N., van den Heuvel, A. P. & Birnbaum, M. J. The role of FoxO in the regulation of metabolism. Oncogene 27, 2320–2336 (2008).

    CAS  PubMed  Google Scholar 

  113. Postic, C., Dentin, R. & Girard, J. Role of the liver in the control of carbohydrate and lipid homeostasis. Diabetes Metab. 30, 398–408 (2004).

    CAS  PubMed  Google Scholar 

  114. Altomonte, J. et al. Foxo1 mediates insulin action on apoC-III and triglyceride metabolism. J. Clin. Invest. 114, 1493–1503 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Bastie, C. C. et al. FoxO1 stimulates fatty acid uptake and oxidation in muscle cells through CD36-dependent and -independent mechanisms. J. Biol. Chem. 280, 14222–14229 (2005).

    CAS  PubMed  Google Scholar 

  116. Kamei, Y. et al. A forkhead transcription factor FKHR up-regulates lipoprotein lipase expression in skeletal muscle. FEBS Lett. 536, 232–236 (2003).

    CAS  PubMed  Google Scholar 

  117. Belgardt, B. F. et al. PDK1 deficiency in POMC-expressing cells reveals FOXO1-dependent and -independent pathways in control of energy homeostasis and stress response. Cell Metab. 7, 291–301 (2008).

    CAS  PubMed  Google Scholar 

  118. Kim, M. S. et al. Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nat. Neurosci. 9, 901–906 (2006).

    CAS  PubMed  Google Scholar 

  119. Kitamura, T. et al. Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat. Med. 12, 534–540 (2006).

    CAS  PubMed  Google Scholar 

  120. Ren, H. et al. FoxO1 target Gpr17 activates AgRP neurons to regulate food intake. Cell 149, 1314–1326 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Peck, B., Ferber, E. C. & Schulze, A. Antagonism between FOXO and MYC regulates cellular powerhouse. Front. Oncol. 3, 96 (2013).

    PubMed  PubMed Central  Google Scholar 

  122. Li, F. et al. Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol. Cell Biol. 25, 6225–6234 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Ferber, E. C. et al. FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. Cell Death Differ. 19, 968–979 (2012).

    CAS  PubMed  Google Scholar 

  124. Cheng, Z. et al. Foxo1 integrates insulin signaling with mitochondrial function in the liver. Nat. Med. 15, 1307–1311 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Chan, D. C. Mitochondrial dynamics and its involvement in disease. Annu. Rev. Pathol. 15, 235–259 (2020).

    CAS  PubMed  Google Scholar 

  126. Wang, K. et al. miR-484 regulates mitochondrial network through targeting Fis1. Nat. Commun. 3, 781 (2012).

    PubMed  Google Scholar 

  127. Mei, Y. et al. FOXO3a-dependent regulation of Pink1 (Park6) mediates survival signaling in response to cytokine deprivation. Proc. Natl Acad. Sci. USA 106, 5153–5158 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Cheng, Z. FoxO transcription factors in mitochondrial homeostasis. Biochem. J. 479, 525–536 (2022).

    CAS  PubMed  Google Scholar 

  129. Munoz-Martin, N., Sierra, R., Schimmang, T., Villa Del Campo, C. & Torres, M. Myc is dispensable for cardiomyocyte development but rescues Mycn-deficient hearts through functional replacement and cell competition. Development 146, dev170753 (2019).

    PubMed  Google Scholar 

  130. Muncan, V. et al. Rapid loss of intestinal crypts upon conditional deletion of the Wnt/Tcf-4 target gene c-Myc. Mol. Cell Biol. 26, 8418–8426 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Sansom, O. J. et al. Myc deletion rescues Apc deficiency in the small intestine. Nature 446, 676–679 (2007).

    CAS  PubMed  Google Scholar 

  132. Lettieri-Barbato, D. et al. FoxO1 localizes to mitochondria of adipose tissue and is affected by nutrient stress. Metabolism 95, 84–92 (2019).

    CAS  PubMed  Google Scholar 

  133. Caballero-Caballero, A. et al. Mitochondrial localization of the forkhead box class O transcription factor FOXO3a in brain. J. Neurochem. 124, 749–756 (2013).

    CAS  PubMed  Google Scholar 

  134. Spinelli, J. B. & Haigis, M. C. The multifaceted contributions of mitochondria to cellular metabolism. Nat. Cell Biol. 20, 745–754 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Chakrabarty, R. P. & Chandel, N. S. Mitochondria as signaling organelles control mammalian stem cell fate. Cell Stem Cell 28, 394–408 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Klimovich, A. et al. Non-senescent hydra tolerates severe disturbances in the nuclear lamina. Aging 10, 951–972 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Martinez, D. E. Mortality patterns suggest lack of senescence in hydra. Exp. Gerontol. 33, 217–225 (1998).

    CAS  PubMed  Google Scholar 

  138. Boehm, A. M. et al. FoxO is a critical regulator of stem cell maintenance in immortal Hydra. Proc. Natl Acad. Sci. USA 109, 19697–19702 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Bridge, D. et al. FoxO and stress responses in the cnidarian Hydra vulgaris. PLoS ONE 5, e11686 (2010). This is the first paper to show that FOXO is expressed in the cnidarian H. vulgaris, and that FOXO-dependent adaptation to stress was introduced early in animal evolution.

    PubMed  PubMed Central  Google Scholar 

  140. Schultz, M. B. & Sinclair, D. A. When stem cells grow old: phenotypes and mechanisms of stem cell aging. Development 143, 3–14 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Li, L. & Clevers, H. Coexistence of quiescent and active adult stem cells in mammals. Science 327, 542–545 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Paik, J. H. et al. FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell 5, 540–553 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Renault, V. M. et al. FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 5, 527–539 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Garcia-Prat, L. et al. FoxO maintains a genuine muscle stem-cell quiescent state until geriatric age. Nat. Cell Biol. 22, 1307–1318 (2020).

    CAS  PubMed  Google Scholar 

  145. Wang, G. et al. p110alpha of PI3K is necessary and sufficient for quiescence exit in adult muscle satellite cells. EMBO J. 37, e98239 (2018).

    PubMed  PubMed Central  Google Scholar 

  146. Yue, F. et al. Pten is necessary for the quiescence and maintenance of adult muscle stem cells. Nat. Commun. 8, 14328 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Miyamoto, K. et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1, 101–112 (2007).

    CAS  PubMed  Google Scholar 

  148. Tothova, Z. & Gilliland, D. G. FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 1, 140–152 (2007).

    CAS  PubMed  Google Scholar 

  149. Castrillon, D. H., Miao, L., Kollipara, R., Horner, J. W. & DePinho, R. A. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science 301, 215–218 (2003). This study establishes a link between FOXO function and fecundity in mice, thereby establishing a FOXO-dependent evolutionary conserved trade-off between fecundity and lifespan.

    CAS  PubMed  Google Scholar 

  150. Tissenbaum, H. A. & Ruvkun, G. An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans. Genetics 148, 703–717 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Giannakou, M. E. et al. Long-lived Drosophila with overexpressed dFOXO in adult fat body. Science 305, 361 (2004).

    CAS  PubMed  Google Scholar 

  152. Schaffner, I. et al. FoxO function is essential for maintenance of autophagic flux and neuronal morphogenesis in adult neurogenesis. Neuron 99, 1188–1203.e6 (2018).

    PubMed  PubMed Central  Google Scholar 

  153. Yeo, H. et al. FoxO3 coordinates metabolic pathways to maintain redox balance in neural stem cells. EMBO J. 32, 2589–2602 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Gopinath, S. D., Webb, A. E., Brunet, A. & Rando, T. A. FOXO3 promotes quiescence in adult muscle stem cells during the process of self-renewal. Stem Cell Rep. 2, 414–426 (2014). This paper, together with Garcia-Prat et al. (2020), shows the role of FOXOs and redox regulation in quiescent adult (muscle) stem cells.

    CAS  Google Scholar 

  155. Zhang, L., Issa Bhaloo, S., Chen, T., Zhou, B. & Xu, Q. Role of resident stem cells in vessel formation and arteriosclerosis. Circ. Res. 122, 1608–1624 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Andrade, J. et al. Control of endothelial quiescence by FOXO-regulated metabolites. Nat. Cell Biol. 23, 413–423 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Wilhelm, K. et al. FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature 529, 216–220 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Islam, M. S., Leissing, T. M., Chowdhury, R., Hopkinson, R. J. & Schofield, C. J. 2-Oxoglutarate-dependent oxygenases. Annu. Rev. Biochem. 87, 585–620 (2018).

    CAS  PubMed  Google Scholar 

  159. Charitou, P. et al. FOXOs support the metabolic requirements of normal and tumor cells by promoting IDH1 expression. EMBO Rep. 16, 456–466 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Ito, K. et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431, 997–1002 (2004).

    CAS  PubMed  Google Scholar 

  161. Kim, J. & Wong, P. K. Loss of ATM impairs proliferation of neural stem cells through oxidative stress-mediated p38 MAPK signaling. Stem Cell 27, 1987–1998 (2009).

    CAS  Google Scholar 

  162. Jones, R. M. et al. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. EMBO J. 32, 3017–3028 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Rodriguez-Colman, M. J. et al. Interplay between metabolic identities in the intestinal crypt supports stem cell function. Nature 543, 424–427 (2017). One of the first studies that shows metabolic crosstalk between niche and stem cells, thereby showing that next to growth factors, metabolites also act as crucial signalling molecules in stem cell maintenance.

    CAS  PubMed  Google Scholar 

  164. Le Belle, J. E. et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 8, 59–71 (2011).

    PubMed  PubMed Central  Google Scholar 

  165. Sandri, M. et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117, 399–412 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Cerletti, M., Jang, Y. C., Finley, L. W., Haigis, M. C. & Wagers, A. J. Short-term calorie restriction enhances skeletal muscle stem cell function. Cell Stem Cell 10, 515–519 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Benjamin, D. I. et al. Fasting induces a highly resilient deep quiescent state in muscle stem cells via ketone body signaling. Cell Metab. 34, 902–918.e6 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. van Gastel, N. et al. Lipid availability determines fate of skeletal progenitor cells via SOX9. Nature 579, 111–117 (2020). This study shows how FOXO can sense the metabolic environment and, in response, specify cell differentiation.

    PubMed  PubMed Central  Google Scholar 

  169. Matsuzaki, T. et al. FoxO transcription factors modulate autophagy and proteoglycan 4 in cartilage homeostasis and osteoarthritis. Sci. Transl Med 10, eaan0746 (2018).

    PubMed  PubMed Central  Google Scholar 

  170. Beumer, J. & Clevers, H. Cell fate specification and differentiation in the adult mammalian intestine. Nat. Rev. Mol. Cell Biol. 22, 39–53 (2021).

    CAS  PubMed  Google Scholar 

  171. Schell, J. C. et al. Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism. Nat. Cell Biol. 19, 1027–1036 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Ludikhuize, M. C. et al. Mitochondria define intestinal stem cell differentiation downstream of a FOXO/Notch axis. Cell Metab. 32, 889–900.e7 (2020).

    CAS  PubMed  Google Scholar 

  173. Kaiko, G. E. et al. The colonic crypt protects stem cells from microbiota-derived metabolites. Cell 165, 1708–1720 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Chen, Z. et al. Foxo1 controls gut homeostasis and commensalism by regulating mucus secretion. J. Exp. Med. 218, e20210324 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Zhao, Y. et al. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat. Cell Biol. 12, 665–675 (2010).

    CAS  PubMed  Google Scholar 

  176. Hornsveld, M. et al. FOXO transcription factors both suppress and support breast cancer progression. Cancer Res. 78, 2356–2369 (2018).

    CAS  PubMed  Google Scholar 

  177. Sykes, S. M. et al. AKT/FOXO signaling enforces reversible differentiation blockade in myeloid leukemias. Cell 146, 697–708 (2011). This is the first study to show that FOXOs not only act as tumour suppressor but also promote tumorigenesis.

    CAS  PubMed  Google Scholar 

  178. Ng, S. W. K. et al. Convergent somatic mutations in metabolism genes in chronic liver disease. Nature 598, 473–478 (2021).

    CAS  PubMed  Google Scholar 

  179. Sullivan, L. B. & Chandel, N. S. Mitochondrial reactive oxygen species and cancer. Cancer Metab. 2, 17 (2014).

    PubMed  PubMed Central  Google Scholar 

  180. Kensler, T. W. & Wakabayashi, N. Nrf2: friend or foe for chemoprevention. Carcinogenesis 31, 90–99 (2010).

    CAS  PubMed  Google Scholar 

  181. Sporn, M. B. & Liby, K. T. NRF2 and cancer: the good, the bad and the importance of context. Nat. Rev. Cancer 12, 564–571 (2012).

    CAS  PubMed  Google Scholar 

  182. O’Reilly, D. R. p53 and transformation by SV40. Biol. Cell 57, 187–196 (1986).

    PubMed  Google Scholar 

  183. Levine, A. J. p53: 800 million years of evolution and 40 years of discovery. Nat. Rev. Cancer 20, 471–480 (2020).

    CAS  PubMed  Google Scholar 

  184. Furuyama, T., Nakazawa, T., Nakano, I. & Mori, N. Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem. J. 349, 629–634 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Brunet, A. et al. 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J. Cell Biol. 156, 817–828 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Wang, F. et al. Structures of KIX domain of CBP in complex with two FOXO3a transactivation domains reveal promiscuity and plasticity in coactivator recruitment. Proc. Natl Acad. Sci. USA 109, 6078–6083 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Wang, F. et al. Synergistic interplay between promoter recognition and CBP/p300 coactivator recruitment by FOXO3a. ACS Chem. Biol. 4, 1017–1027 (2009).

    CAS  PubMed  Google Scholar 

  188. Feringa, F. M. et al. Hypersensitivity to DNA damage in antephase as a safeguard for genome stability. Nat. Commun. 7, 12618 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Chin, C. F. & Yeong, F. M. Safeguarding entry into mitosis: the antephase checkpoint. Mol. Cell Biol. 30, 22–32 (2010).

    CAS  PubMed  Google Scholar 

  190. Shats, I. et al. FOXO transcription factors control E2F1 transcriptional specificity and apoptotic function. Cancer Res. 73, 6056–6067 (2013).

    CAS  PubMed  Google Scholar 

  191. Krenning, L., Feringa, F. M., Shaltiel, I. A., van den Berg, J. & Medema, R. H. Transient activation of p53 in G2 phase is sufficient to induce senescence. Mol. Cell 55, 59–72 (2014).

    CAS  PubMed  Google Scholar 

  192. Krenning, L., van den Berg, J. & Medema, R. H. Life or death after a break: what determines the choice. Mol. Cell 76, 346–358 (2019).

    CAS  PubMed  Google Scholar 

  193. Hoxhaj, G. & Manning, B. D. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 20, 74–88 (2020).

    CAS  PubMed  Google Scholar 

  194. Rim, E. Y., Clevers, H. & Nusse, R. The wnt pathway: from signaling mechanisms to synthetic modulators. Annu. Rev. Biochem. 91, 571–598 (2022).

    CAS  PubMed  Google Scholar 

  195. Daniels, D. L. & Weis, W. I. Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat. Struct. Mol. Biol. 12, 364–371 (2005).

    CAS  PubMed  Google Scholar 

  196. Hoogeboom, D. et al. Interaction of FOXO with beta-catenin inhibits beta-catenin/T cell factor activity. J. Biol. Chem. 283, 9224–9230 (2008).

    CAS  PubMed  Google Scholar 

  197. Almeida, M., Han, L., Martin-Millan, M., O’Brien, C. A. & Manolagas, S. C. Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to forkhead box O-mediated transcription. J. Biol. Chem. 282, 27298–27305 (2007).

    CAS  PubMed  Google Scholar 

  198. Liu, H. et al. Wnt signaling regulates hepatic metabolism. Sci. Signal. 4, ra6 (2011).

    PubMed  PubMed Central  Google Scholar 

  199. Shi, T., van Soest, D. M. K., Polderman, P. E., Burgering, B. M. T. & Dansen, T. B. DNA damage and oxidant stress activate p53 through differential upstream signaling pathways. Free Radic. Biol. Med. 172, 298–311 (2021).

    CAS  PubMed  Google Scholar 

  200. Fuentes-Lemus, E. & Davies, M. J. Effect of crowding, compartmentalization and nanodomains on protein modification and redox signaling — current state and future challenges. Free Radic. Biol. Med. 196, 81–92 (2023).

    CAS  PubMed  Google Scholar 

  201. Sies, H., Berndt, C. & Jones, D. P. Oxidative stress. Annu. Rev. Biochem. 86, 715–748 (2017).

    CAS  PubMed  Google Scholar 

  202. Marabelli, C., Marrocco, B. & Mattevi, A. The growing structural and functional complexity of the LSD1/KDM1A histone demethylase. Curr. Opin. Struct. Biol. 41, 135–144 (2016).

    CAS  PubMed  Google Scholar 

  203. Bai, J. et al. Actin reduction by MsrB2 is a key component of the cytokinetic abscission checkpoint and prevents tetraploidy. Proc. Natl Acad. Sci. USA 117, 4169–4179 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Yoshida, K., Yamaguchi, T., Natsume, T., Kufe, D. & Miki, Y. JNK phosphorylation of 14-3-3 proteins regulates nuclear targeting of c-Abl in the apoptotic response to DNA damage. Nat. Cell Biol. 7, 278–285 (2005).

    CAS  PubMed  Google Scholar 

  205. Hopkins, B. L. et al. A peroxidase peroxiredoxin 1-specific redox regulation of the novel FOXO3 microRNA target let-7. Antioxid. Redox Signal. 28, 62–77 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Kong, H. & Chandel, N. S. Regulation of redox balance in cancer and T cells. J. Biol. Chem. 293, 7499–7507 (2018).

    CAS  PubMed  Google Scholar 

  207. Bansal, A. et al. Transcriptional regulation of Caenorhabditis elegans FOXO/DAF-16 modulates lifespan. Longev. Healthspan 3, 5 (2014).

    PubMed  PubMed Central  Google Scholar 

  208. Guertin, D. A. et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev. Cell 11, 859–871 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize for not being able to cite all relevant studies owing to space constraints. The authors thank T. Madl (University Graz, Austria) for discussion on FOXO structure. The authors also thank all members of their respective laboratories for discussion. Research performed in the laboratories of the authors is financially supported by grants from the Dutch Cancer Foundation (KWF) (B.M.T.B., T.B.D. and M.J.R.-C.), Dutch Research Council (NWO) (M.J.R.-C.), Health Holland (B.M.T.B. and T.B.D.) and Oncode Institute (B.M.T.B.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Boudewijn. M. T. Burgering.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Andrew Paek, Jihye Paik and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

PhosphoSitePlus: https://www.phosphosite.org

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez-Colman, M.J., Dansen, T.B. & Burgering, B.M.T. FOXO transcription factors as mediators of stress adaptation. Nat Rev Mol Cell Biol 25, 46–64 (2024). https://doi.org/10.1038/s41580-023-00649-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-023-00649-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing