Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms and pathology of protein misfolding and aggregation

Abstract

Despite advances in machine learning-based protein structure prediction, we are still far from fully understanding how proteins fold into their native conformation. The conventional notion that polypeptides fold spontaneously to their biologically active states has gradually been replaced by our understanding that cellular protein folding often requires context-dependent guidance from molecular chaperones in order to avoid misfolding. Misfolded proteins can aggregate into larger structures, such as amyloid fibrils, which perpetuate the misfolding process, creating a self-reinforcing cascade. A surge in amyloid fibril structures has deepened our comprehension of how a single polypeptide sequence can exhibit multiple amyloid conformations, known as polymorphism. The assembly of these polymorphs is not a random process but is influenced by the specific conditions and tissues in which they originate. This observation suggests that, similar to the folding of native proteins, the kinetics of pathological amyloid assembly are modulated by interactions specific to cells and tissues. Here, we review the current understanding of how intrinsic protein conformational propensities are modulated by physiological and pathological interactions in the cell to shape protein misfolding and aggregation pathology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The role of frustration and aggregation-prone regions in protein folding and aggregation.
Fig. 2: Structural determinants are shared between polymorphic amyloid fibril structures.
Fig. 3: Structural determinants stabilize polymorphic amyloid fibril structures.
Fig. 4: Overview of protein aggregation kinetics and processes that contribute during amyloid fibril formation.
Fig. 5: Amyloid interactions with other biomolecules can have significant implications for aggregation-related mechanisms of toxicity.

Similar content being viewed by others

References

  1. Hipp, M. S., Kasturi, P. & Hartl, F. U. The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol. 20, 421–435 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Stroo, E., Koopman, M., Nollen, E. A. A. & Mata-Cabana, A. Cellular regulation of amyloid formation in aging and disease. Front. Neurosci. https://doi.org/10.3389/fnins.2017.00064 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  3. Hartl, F. U. Protein misfolding diseases. Annu. Rev. Biochem. 86, 21–26 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Chiti, F. & Dobson, C. M. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu. Rev. Biochem. 86, 27–68 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Buxbaum, J. N. et al. Amyloid nomenclature 2022: update, novel proteins, and recommendations by the International Society of Amyloidosis (ISA) Nomenclature Committee. Amyloid 29, 213–219 (2022).

    Article  PubMed  Google Scholar 

  6. Wechalekar, A. D., Gillmore, J. D. & Hawkins, P. N. Systemic amyloidosis. Lancet 387, 2641–2654 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Jucker, M. & Walker, L. C. Propagation and spread of pathogenic protein assemblies in neurodegenerative diseases. Nat. Neurosci. 21, 1341–1349 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Peng, C., Trojanowski, J. Q. & Lee, V. M. Protein transmission in neurodegenerative disease. Nat. Rev. Neurol. 16, 199–212 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Scheckel, C. & Aguzzi, A. Prions, prionoids and protein misfolding disorders. Nat. Rev. Genet. 19, 405–418 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Otzen, D. & Riek, R. Functional amyloids. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a033860 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  11. Cereghetti, G. et al. Reversible amyloids of pyruvate kinase couple cell metabolism and stress granule disassembly. Nat. Cell Biol. 23, 1085–1094 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Jeon, J., Yau, W.-M. & Tycko, R. Early events in amyloid-β self-assembly probed by time-resolved solid state NMR and light scattering. Nat. Commun. 14, 2964 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Zimmermann, M. R. et al. Mechanism of secondary nucleation at the single fibril level from direct observations of Aβ42 aggregation. J. Am. Chem. Soc. 143, 16621–16629 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Wesseling, H. et al. Tau PTM profiles identify patient heterogeneity and stages of Alzheimer’s disease. Cell 183, 1699–1713.e13 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Tracy, T. E. et al. Tau interactome maps synaptic and mitochondrial processes associated with neurodegeneration. Cell https://doi.org/10.1016/j.cell.2021.12.041 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  16. Ferrari, L. et al. Arginine π-stacking drives binding to fibrils of the Alzheimer protein Tau. Nat. Commun. 11, 571 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Gallardo, R., Ranson, N. A. & Radford, S. E. Amyloid structures: much more than just a cross-β fold. Curr. Opin. Struct. Biol. 60, 7–16 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Sawaya, M. R., Hughes, M. P., Rodriguez, J. A., Riek, R. & Eisenberg, D. S. The expanding amyloid family: structure, stability, function, and pathogenesis. Cell 184, 4857–4873 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Louros, N., van der Kant, R., Schymkowitz, J. & Rousseau, F. StAmP-DB: a platform for structures of polymorphic amyloid fibril cores. Bioinformatics 38, 2636–2638 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. van der Kant, R., Louros, N., Schymkowitz, J. & Rousseau, F. Thermodynamic analysis of amyloid fibril structures reveals a common framework for stability in amyloid polymorphs. Structure https://doi.org/10.1016/j.str.2022.05.002 (2022).

    Article  PubMed  Google Scholar 

  21. Mullapudi, V. et al. Network of hotspot interactions cluster tau amyloid folds. Nat. Commun. 14, 895 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Karplus, M. & Weaver, D. L. Protein-folding dynamics. Nature 260, 404–406 (1976).

    Article  CAS  PubMed  Google Scholar 

  23. Levinthal, C. Are there pathways for protein folding ? J. Chim. Phys. 65, 44–45 (1968).

    Article  Google Scholar 

  24. Ellis, R. J. Protein folding: importance of the Anfinsen cage. Curr. Biol. 13, R881–883 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Anfinsen, C. B. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).

    Article  CAS  PubMed  Google Scholar 

  26. Fersht, A. R. & Daggett, V. Protein folding and unfolding at atomic resolution. Cell 108, 573–582 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Kiefhaber, T. Kinetic traps in lysozyme folding. Proc. Natl Acad. Sci. USA 92, 9029–9033 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Silow, M. & Oliveberg, M. Transient aggregates in protein folding are easily mistaken for folding intermediates. Proc. Natl Acad. Sci. USA 94, 6084–6086 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Buchner, J. Molecular chaperones and protein quality control: an introduction to the JBC Reviews thematic series. J. Biol. Chem. 294, 2074–2075 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Powers, E. T., Morimoto, R. I., Dillin, A., Kelly, J. W. & Balch, W. E. Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 78, 959–991 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Baldwin, A. J. et al. Metastability of native proteins and the phenomenon of amyloid formation. J. Am. Chem. Soc. 133, 14160–14163 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Chiti, F. et al. Kinetic partitioning of protein folding and aggregation. Nat. Struct. Biol. 9, 137–143 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Huang, C. et al. Intrinsically aggregation-prone proteins form amyloid-like aggregates and contribute to tissue aging in Caenorhabditis elegans. eLife https://doi.org/10.7554/eLife.43059 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  34. Vecchi, G. et al. Proteome-wide observation of the phenomenon of life on the edge of solubility. Proc. Natl Acad. Sci. USA 117, 1015–1020 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Ciryam, P., Kundra, R., Morimoto, R. I., Dobson, C. M. & Vendruscolo, M. Supersaturation is a major driving force for protein aggregation in neurodegenerative diseases. Trends Pharmacol. Sci. 36, 72–77 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Ciryam, P. et al. A metastable subproteome underlies inclusion formation in muscle proteinopathies. Acta Neuropathol. Commun. https://doi.org/10.1186/s40478-019-0853-9 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  37. Niwa, T., Kanamori, T., Ueda, T. & Taguchi, H. Global analysis of chaperone effects using a reconstituted cell-free translation system. Proc. Natl Acad. Sci. USA 109, 8937–8942 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Fujiwara, K., Ishihama, Y., Nakahigashi, K., Soga, T. & Taguchi, H. A systematic survey of in vivo obligate chaperonin-dependent substrates. EMBO J. 29, 1552–1564 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Niwa, T., Fujiwara, K. & Taguchi, H. Identification of novel in vivo obligate GroEL/ES substrates based on data from a cell-free proteomics approach. FEBS Lett. 590, 251–257 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Gestaut, D. et al. Structural visualization of the tubulin folding pathway directed by human chaperonin TRiC/CCT. Cell 185, 4770–4787.e20 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Chen, D. H. et al. Visualizing GroEL/ES in the act of encapsulating a folding protein. Cell 153, 1354–1365 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Sharma, S. et al. Monitoring protein conformation along the pathway of chaperonin-assisted folding. Cell 133, 142–153 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Ellis, R. J. Revisiting the Anfinsen cage. Fold. Des. 1, R9–R15 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Balch, W. E., Morimoto, R. I., Dillin, A. & Kelly, J. W. Adapting proteostasis for disease intervention. Science 319, 916–919 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Sawaya, M. R. et al. Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447, 453–457 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Teng, P. K. & Eisenberg, D. Short protein segments can drive a non-fibrillizing protein into the amyloid state. Protein Eng. Des. Sel. 22, 531–536 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Louros, N. et al. WALTZ-DB 2.0: an updated database containing structural information of experimentally determined amyloid-forming peptides. Nucleic Acids Res. 48, D389–D393 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Santos, J., Pallares, I., Iglesias, V. & Ventura, S. Cryptic amyloidogenic regions in intrinsically disordered proteins: function and disease association. Comput. Struct. Biotechnol. J. 19, 4192–4206 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Fuxreiter, M. Fold or not to fold upon binding—does it really matter? Curr. Opin. Struct. Biol. 54, 19–25 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Oldfield, C. J. & Dunker, A. K. Intrinsically disordered proteins and intrinsically disordered protein regions. Annu. Rev. Biochem. 83, 553–584 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Maurer-Stroh, S. et al. Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat. Methods 7, 237–242 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Louros, N., Orlando, G., De Vleeschouwer, M., Rousseau, F. & Schymkowitz, J. Structure-based machine-guided mapping of amyloid sequence space reveals uncharted sequence clusters with higher solubilities. Nat. Commun. 11, 3314 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Ulamec, S. M., Brockwell, D. J. & Radford, S. E. Looking beyond the core: the role of flanking regions in the aggregation of amyloidogenic peptides and proteins. Front. Neurosci. 14, 611285 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  54. Strodel, B. Energy landscapes of protein aggregation and conformation switching in intrinsically disordered proteins. J. Mol. Biol. 433, 167182 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Mirbaha, H. et al. Inert and seed-competent tau monomers suggest structural origins of aggregation. eLife 7, e36584 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  56. Furukawa, K. et al. Isoelectric point-amyloid formation of α-synuclein extends the generality of the solubility and supersaturation-limited mechanism. Curr. Res. Struct. Biol. 2, 35–44 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  57. Kandola, T. et al. The polyglutamine amyloid nucleus in living cells is a monomer with competing dimensions of order. Preprint at bioRxiv https://doi.org/10.1101/2021.08.29.458132 (2021).

    Article  Google Scholar 

  58. Killinger, B. A., Melki, R., Brundin, P. & Kordower, J. H. Endogenous α-synuclein monomers, oligomers and resulting pathology: let’s talk about the lipids in the room. NPJ Parkinsons Dis. 5, 23 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  59. Sciacca, M. F. et al. Lipid-chaperone hypothesis: a common molecular mechanism of membrane disruption by intrinsically disordered proteins. ACS Chem. Neurosci. 11, 4336–4350 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Riback, J. A. et al. Innovative scattering analysis shows that hydrophobic disordered proteins are expanded in water. Science 358, 238–241 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Borgia, A. et al. Transient misfolding dominates multidomain protein folding. Nat. Commun. 6, 8861 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Borgia, M. B. et al. Single-molecule fluorescence reveals sequence-specific misfolding in multidomain proteins. Nature 474, 662–665 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Zheng, W., Schafer, N. P. & Wolynes, P. G. Frustration in the energy landscapes of multidomain protein misfolding. Proc. Natl Acad. Sci. USA 110, 1680–1685 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Guthertz, N. et al. The effect of mutation on an aggregation-prone protein: an in vivo, in vitro, and in silico analysis. Proc. Natl Acad. Sci. USA 119, e2200468119 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Ventura, S. et al. Short amino acid stretches can mediate amyloid formation in globular proteins: the Src homology 3 (SH3) case. Proc. Natl Acad. Sci. USA 101, 7258–7263 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Ivanova, M. I., Sawaya, M. R., Gingery, M., Attinger, A. & Eisenberg, D. An amyloid-forming segment of β2-microglobulin suggests a molecular model for the fibril. Proc. Natl Acad. Sci. USA 101, 10584–10589 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Ventura, S., Lacroix, E. & Serrano, L. Insights into the origin of the tendency of the PI3–SH3 domain to form amyloid fibrils. J. Mol. Biol. 322, 1147–1158 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Janssen, K. et al. Exploiting the intrinsic misfolding propensity of the KRAS oncoprotein. Proc. Natl Acad. Sci. USA 120, e2214921120 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Michiels, E. et al. Reverse engineering synthetic antiviral amyloids. Nat. Commun. 11, 2832 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Khodaparast, L. et al. Aggregating sequences that occur in many proteins constitute weak spots of bacterial proteostasis. Nat. Commun. 9, 866 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  71. Gallardo, R. et al. De novo design of a biologically active amyloid. Science https://doi.org/10.1126/science.aah4949 (2016).

    Article  PubMed  Google Scholar 

  72. De Baets, G., Van Doorn, L., Rousseau, F. & Schymkowitz, J. Increased aggregation is more frequently associated to human disease-associated mutations than to neutral polymorphisms. PLoS Comput. Biol. 11, e1004374 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  73. Thangakani, A. M., Kumar, S., Velmurugan, D. & Gromiha, M. S. M. How do thermophilic proteins resist aggregation. Proteins Struct. Funct. Bioinforma. 80, 1003–1015 (2012).

    Article  CAS  Google Scholar 

  74. Langenberg, T. et al. Thermodynamic and evolutionary coupling between the native and amyloid state of globular proteins. Cell Rep. 31, 107512 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Geller, R., Pechmann, S., Acevedo, A., Andino, R. & Frydman, J. Hsp90 shapes protein and RNA evolution to balance trade-offs between protein stability and aggregation. Nat. Commun. 9, 1781 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  76. Claes, F. et al. Exposure of a cryptic Hsp70 binding site determines the cytotoxicity of the ALS-associated SOD1-mutant A4V. Protein Eng. Des. Sel. 32, 443–457 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Gilis, D., Massar, S., Cerf, N. J. & Rooman, M. Optimality of the genetic code with respect to protein stability and amino-acid frequencies. Genome Biol. 2, RESEARCH0049 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Buck, P. M., Kumar, S. & Singh, S. K. On the role of aggregation prone regions in protein evolution, stability, and enzymatic catalysis: insights from diverse analyses. PLoS Comput. Biol. 9, e1003291 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  79. Maury, C. P. Self-propagating β-sheet polypeptide structures as prebiotic informational molecular entities: the amyloid world. Orig. Life Evol. Biosph. 39, 141–150 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Carny, O. & Gazit, E. A model for the role of short self-assembled peptides in the very early stages of the origin of life. FASEB J. 19, 1051–1055 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Rout, S. K., Rhyner, D., Riek, R. & Greenwald, J. Prebiotically plausible autocatalytic peptide amyloids. Chemistry 28, e202103841 (2022).

    Article  CAS  PubMed  Google Scholar 

  82. Serio, T. R. et al. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289, 1317–1321 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Carny, O. & Gazit, E. Creating prebiotic sanctuary: self-assembling supramolecular peptide structures bind and stabilize RNA. Orig. Life Evol. Biosph. 41, 121–132 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Sanderson, J. M. The association of lipids with amyloid fibrils. J. Biol. Chem. 298, 102108 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Rufo, C. M. et al. Short peptides self-assemble to produce catalytic amyloids. Nat. Chem. 6, 303–309 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Sun-Wang, J. L., Ivanova, S. & Zorzano, A. The dialogue between the ubiquitin-proteasome system and autophagy: implications in ageing. Ageing Res. Rev. 64, 101203 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Balchin, D., Hayer-Hartl, M. & Hartl, F. U. Recent advances in understanding catalysis of protein folding by molecular chaperones. FEBS Lett. 594, 2770–2781 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Mashaghi, A. et al. Alternative modes of client binding enable functional plasticity of Hsp70. Nature 539, 448–451 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Faust, O. et al. HSP40 proteins use class-specific regulation to drive HSP70 functional diversity. Nature 587, 489–494 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. Burmann, B. M. et al. Regulation of α-synuclein by chaperones in mammalian cells. Nature 577, 127–132 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Goloubinoff, P., Sassi, A. S., Fauvet, B., Barducci, A. & De Los Rios, P. Chaperones convert the energy from ATP into the nonequilibrium stabilization of native proteins. Nat. Chem. Biol. 14, 388–395 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Kaushik, S. & Cuervo, A. M. The coming of age of chaperone-mediated autophagy. Nat. Rev. Mol. Cell Biol. 19, 365–381 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Xu, C. Y. et al. DJ-1 Inhibits α-synuclein aggregation by regulating chaperone-mediated autophagy. Front. Aging Neurosci. 9, 308 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  94. Bourdenx, M. et al. Chaperone-mediated autophagy prevents collapse of the neuronal metastable proteome. Cell 184, 2696–2714.e25 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Caballero, B. et al. Acetylated tau inhibits chaperone-mediated autophagy and promotes tau pathology propagation in mice. Nat. Commun. 12, 2238 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Baughman, H. E. R., Clouser, A. F., Klevit, R. E. & Nath, A. HspB1 and Hsc70 chaperones engage distinct tau species and have different inhibitory effects on amyloid formation. J. Biol. Chem. 293, 2687–2700 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Kundel, F. et al. Hsp70 inhibits the nucleation and elongation of tau and sequesters tau aggregates with high affinity. ACS Chem. Biol. 13, 636–646 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Avellaneda, M. J. et al. Processive extrusion of polypeptide loops by a Hsp100 disaggregase. Nature 578, 317–320 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Nachman, E. et al. Disassembly of Tau fibrils by the human Hsp70 disaggregation machinery generates small seeding-competent species. J. Biol. Chem. 295, 9676–9690 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Wentink, A. S. et al. Molecular dissection of amyloid disaggregation by human HSP70. Nature 587, 483–488 (2020).

    Article  CAS  PubMed  Google Scholar 

  101. Stein, K. C. & Frydman, J. The stop-and-go traffic regulating protein biogenesis: how translation kinetics controls proteostasis. J. Biol. Chem. 294, 2076–2084 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Hanson, G. & Coller, J. Codon optimality, bias and usage in translation and mRNA decay. Nat. Rev. Mol. Cell Biol. 19, 20–30 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Yan, X. W., Hoek, T. A., Vale, R. D. & Tanenbaum, M. E. Dynamics of translation of single mRNA molecules in vivo. Cell 165, 976–989 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Jacobs, W. M. & Shakhnovich, E. I. Evidence of evolutionary selection for cotranslational folding. Proc. Natl Acad. Sci. USA 114, 11434–11439 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Bitran, A., Jacobs, W. M., Zhai, X. & Shakhnovich, E. Cotranslational folding allows misfolding-prone proteins to circumvent deep kinetic traps. Proc. Natl Acad. Sci. USA 117, 1485–1495 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Zhou, T., Weems, M. & Wilke, C. O. Translationally optimal codons associate with structurally sensitive sites in proteins. Mol. Biol. Evol. 26, 1571–1580 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Rosenberg, A. A., Marx, A. & Bronstein, A. M. Codon-specific Ramachandran plots show amino acid backbone conformation depends on identity of the translated codon. Nat. Commun. 13, 2815 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Doring, K. et al. Profiling Ssb-nascent chain interactions reveals principles of Hsp70-assisted folding. Cell 170, 298 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  109. Shen, X., Song, S., Li, C. & Zhang, J. Synonymous mutations in representative yeast genes are mostly strongly non-neutral. Nature https://doi.org/10.1038/s41586-022-04823-w (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  110. Stein, K. C., Morales-Polanco, F., van der Lienden, J., Rainbolt, T. K. & Frydman, J. Ageing exacerbates ribosome pausing to disrupt cotranslational proteostasis. Nature 601, 637–642 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Wruck, F. et al. The ribosome modulates folding inside the ribosomal exit tunnel. Commun. Biol. 4, 523 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Shen, K. et al. Dual role of ribosome-binding domain of NAC as a potent suppressor of protein aggregation and aging-related proteinopathies. Mol. Cell 74, 729–741.e7 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Rousseau, F., Serrano, L. & Schymkowitz, J. W. How evolutionary pressure against protein aggregation shaped chaperone specificity. J. Mol. Biol. 355, 1037–1047 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Monsellier, E. & Chiti, F. Prevention of amyloid-like aggregation as a driving force of protein evolution. EMBO Rep. 8, 737–742 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Houben, B. et al. Autonomous aggregation suppression by acidic residues explains why chaperones favour basic residues. EMBO J. https://doi.org/10.15252/embj.2019102864 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  116. Ganesan, A. et al. Structural hot spots for the solubility of globular proteins. Nat. Commun. 7, 10816 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. De Baets, G., Van Durme, J., Rousseau, F. & Schymkowitz, J. A genome-wide sequence-structure analysis suggests aggregation gatekeepers constitute an evolutionary constrained functional class. J. Mol. Biol. 426, 2405–2412 (2014).

    Article  PubMed  Google Scholar 

  118. Casari, G., Sander, C. & Valencia, A. A method to predict functional residues in proteins. Nat. Struct. Biol. 2, 171–178 (1995).

    Article  CAS  PubMed  Google Scholar 

  119. Huang, L. et al. DAXX represents a new type of protein-folding enabler. Nature https://doi.org/10.1038/s41586-021-03824-5 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  120. Doherty, C. P. A. et al. A short motif in the N-terminal region of α-synuclein is critical for both aggregation and function. Nat. Struct. Mol. Biol. 27, 249 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Yoshimura, Y. et al. MOAG-4 promotes the aggregation of α-synuclein by competing with self-protective electrostatic interactions. J. Biol. Chem. 292, 8269–8278 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. van Ham, T. J. et al. Identification of MOAG-4/SERF as a regulator of age-related proteotoxicity. Cell 142, 601–612 (2010).

    Article  PubMed  Google Scholar 

  123. Pras, A. et al. The cellular modifier MOAG-4/SERF drives amyloid formation through charge complementation. EMBO J. 40, e107568 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Hong, J.-Y. et al. Structural and dynamic studies reveal that the Ala-rich region of ataxin-7 initiates α-helix formation of the polyQ tract but suppresses its aggregation. Sci. Rep. 9, 7481 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  125. Chen, D. et al. Tau local structure shields an amyloid-forming motif and controls aggregation propensity. Nat. Commun. 10, 2493 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  126. Zhang, W. et al. Modulation of the aggregation of an amyloidogenic sequence by flanking-disordered region in the intrinsically disordered antigen merozoite surface protein 2. Eur. Biophys. J. 48, 99–110 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Santner, A. A. et al. Sweeping away protein aggregation with entropic bristles: intrinsically disordered protein fusions enhance soluble expression. Biochemistry 51, 7250–7262 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Graña-Montes, R., Marinelli, P., Reverter, D. & Ventura, S. N-terminal protein tails act as aggregation protective entropic bristles: the SUMO case. Biomacromolecules 15, 1194–1203 (2014).

    Article  PubMed  Google Scholar 

  129. Michiels, E. et al. Entropic bristles tune the seeding efficiency of prion-nucleating fragments. Cell Rep. 30, 2834–2845.e3 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  130. Housmans, J. A. J. et al. Investigating the sequence determinants of the curling of amyloid fibrils using ovalbumin as a case study. Biomacromolecules 23, 3779–3797 (2022).

    Article  CAS  PubMed  Google Scholar 

  131. Shi, Y. et al. Structure-based classification of tauopathies. Nature 598, 359–363 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  132. Iadanza, M. G., Jackson, M. P., Hewitt, E. W., Ranson, N. A. & Radford, S. E. A new era for understanding amyloid structures and disease. Nat. Rev. Mol. Cell Biol. 19, 755–773 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. Dueholm, M. S. et al. Fibrillation of the major curli subunit CsgA under a wide range of conditions implies a robust design of aggregation. Biochemistry 50, 8281–8290 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Bemporad, F., De Simone, A., Chiti, F. & Dobson, C. M. Characterizing intermolecular interactions that initiate native-like protein aggregation. Biophys. J. 102, 2595–2604 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  135. Lafita, A., Tian, P., Best, R. B. & Bateman, A. Tandem domain swapping: determinants of multidomain protein misfolding. Curr. Opin. Struct. Biol. 58, 97–104 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  136. Salinas, N. et al. The amphibian antimicrobial peptide uperin 3.5 is a cross-α/cross-β chameleon functional amyloid. Proc. Natl Acad. Sci. USA 118, e2014442118 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  137. Bowden, G. A., Paredes, A. M. & Georgiou, G. Structure and morphology of protein inclusion bodies in Escherichia coli. Biotechnology 9, 725–730 (1991).

    CAS  PubMed  Google Scholar 

  138. Herneke, A. et al. Protein nanofibrils for sustainable food—characterization and comparison of fibrils from a broad range of plant protein isolates. ACS Food Sci. Technol. 1, 854–864 (2021).

    Article  CAS  Google Scholar 

  139. Sunde, M. et al. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273, 729–739 (1997).

    Article  CAS  PubMed  Google Scholar 

  140. Petkova, A. T. et al. A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR. Proc. Natl Acad. Sci. USA 99, 16742–16747 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  141. Wasmer, C. et al. Amyloid fibrils of the HET-s(218–289) prion form a β solenoid with a triangular hydrophobic core. Science 319, 1523–1526 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Scheres, S. H., Zhang, W., Falcon, B. & Goedert, M. Cryo-EM structures of tau filaments. Curr. Opin. Struct. Biol. 64, 17–25 (2020).

    Article  CAS  PubMed  Google Scholar 

  143. Geddes, A. J., Parker, K. D., Atkins, E. D. & Beighton, E. “Cross-β” conformation in proteins. J. Mol. Biol. 32, 343–358 (1968).

    Article  CAS  PubMed  Google Scholar 

  144. Yang, Y. et al. Cryo-EM structures of amyloid-β42 filaments from human brains. Science 375, 167–172 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  145. Fitzpatrick, A. W. P. et al. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 547, 185–190 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  146. Zhang, W. et al. Novel tau filament fold in corticobasal degeneration. Nature 580, 283–287 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  147. Falcon, B. et al. Tau filaments from multiple cases of sporadic and inherited Alzheimer’s disease adopt a common fold. Acta Neuropathol. 136, 699–708 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  148. Schweighauser, M. et al. Structures of α-synuclein filaments from multiple system atrophy. Nature 585, 464–469 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  149. Yang, Y. et al. Structures of α-synuclein filaments from human brains with Lewy pathology. Nature 610, 791–795 (2022).

    Article  CAS  PubMed  Google Scholar 

  150. Zhao, K. et al. Parkinson’s disease-related phosphorylation at Tyr39 rearranges α-synuclein amyloid fibril structure revealed by cryo-EM. Proc. Natl Acad. Sci. USA 117, 20305–20315 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  151. Guerrero-Ferreira, R., Kovacik, L., Ni, D. & Stahlberg, H. New insights on the structure of α-synuclein fibrils using cryo-electron microscopy. Curr. Opin. Neurobiol. 61, 89–95 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Cao, Q., Boyer, D. R., Sawaya, M. R., Ge, P. & Eisenberg, D. S. Cryo-EM structures of four polymorphic TDP-43 amyloid cores. Nat. Struct. Mol. Biol. 26, 619–627 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  153. Li, Q., Jaroniec, C. P. & Surewicz, W. K. Cryo-EM structure of disease-related prion fibrils provides insights into seeding barriers. Nat. Struct. Mol. Biol. 29, 962–965 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  154. Cao, Q., Boyer, D. R., Sawaya, M. R., Ge, P. & Eisenberg, D. S. Cryo-EM structure and inhibitor design of human IAPP (amylin) fibrils. Nat. Struct. Mol. Biol. 27, 653–659 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  155. Gallardo, R. et al. Fibril structures of diabetes-related amylin variants reveal a basis for surface-templated assembly. Nat. Struct. Mol. Biol. 27, 1048–1056 (2020).

    Article  CAS  PubMed  Google Scholar 

  156. Schmidt, M. et al. Cryo-EM structure of a transthyretin-derived amyloid fibril from a patient with hereditary ATTR amyloidosis. Nat. Commun. 10, 5008 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  157. Liberta, F. et al. Cryo-EM fibril structures from systemic AA amyloidosis reveal the species complementarity of pathological amyloids. Nat. Commun. 10, 1104 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  158. Radamaker, L. et al. Cryo-EM structure of a light chain-derived amyloid fibril from a patient with systemic AL amyloidosis. Nat. Commun. 10, 1103 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  159. Kaufman, S. K. et al. Tau prion strains dictate patterns of cell pathology, progression rate, and regional vulnerability in vivo. Neuron 92, 796–812 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  160. Vaquer-Alicea, J., Diamond, M. I. & Joachimiak, L. A. Tau strains shape disease. Acta Neuropathol. 142, 57–71 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  161. Van der Perren, A. et al. The structural differences between patient-derived α-synuclein strains dictate characteristics of Parkinson’s disease, multiple system atrophy and dementia with Lewy bodies. Acta Neuropathol. 139, 977–1000 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  162. Soto, C. & Pritzkow, S. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat. Neurosci. 21, 1332–1340 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  163. Maxwell, A. M. et al. Emergence of distinct and heterogeneous strains of amyloid βbeta with advanced Alzheimer’s disease pathology in Down syndrome. Acta Neuropathol. Commun. 9, 201 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  164. Abskharon, R. et al. Cryo-EM structure of RNA-induced tau fibrils reveals a small C-terminal core that may nucleate fibril formation. Proc. Natl Acad. Sci. USA 119, e2119952119 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  165. Zhang, W. et al. Heparin-induced tau filaments are polymorphic and differ from those in Alzheimer’s and Pick’s diseases. eLife 8, e43584 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  166. Tao, Y. et al. Heparin induces α-synuclein to form new fibril polymorphs with attenuated neuropathology. Nat. Commun. 13, 4226 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  167. Herrmann, U. S. et al. Structure-based drug design identifies polythiophenes as antiprion compounds. Sci. Transl. Med. 7, 299ra123 (2015).

    Article  PubMed  Google Scholar 

  168. Heerde, T. et al. Cryo-EM demonstrates the in vitro proliferation of an ex vivo amyloid fibril morphology by seeding. Nat. Commun. 13, 85 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  169. Strohäker, T. et al. Structural heterogeneity of α-synuclein fibrils amplified from patient brain extracts. Nat. Commun. 10, 5535 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  170. Lövestam, S. et al. Seeded assembly in vitro does not replicate the structures of α-synuclein filaments from multiple system atrophy. FEBS Open Bio 11, 999–1013 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  171. Lövestam, S. et al. Assembly of recombinant tau into filaments identical to those of Alzheimer’s disease and chronic traumatic encephalopathy. eLife 11, e76494 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  172. Al-Hilaly, Y. K. et al. Tau (297–391) forms filaments that structurally mimic the core of paired helical filaments in Alzheimer’s disease brain. FEBS Lett. 594, 944–950 (2020).

    Article  CAS  PubMed  Google Scholar 

  173. Radamaker, L. et al. Cryo-EM reveals structural breaks in a patient-derived amyloid fibril from systemic AL amyloidosis. Nat. Commun. 12, 875 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  174. Arakhamia, T. et al. Posttranslational modifications mediate the structural diversity of tauopathy strains. Cell 180, 633–644.e12 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  175. Louros, N. N. et al. Tracking the amyloidogenic core of IAPP amyloid fibrils: insights from micro-Raman spectroscopy. J. Struct. Biol. 199, 140–152 (2017).

    Article  CAS  PubMed  Google Scholar 

  176. Ye, X., Hedenqvist, M. S., Langton, M. & Lendel, C. On the role of peptide hydrolysis for fibrillation kinetics and amyloid fibril morphology. RSC Adv. 8, 6915–6924 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  177. Louros, N. et al. Tau amyloid polymorphism is shaped by local structural propensities of its protein sequence. Preprint at bioRxiv https://doi.org/10.1101/2022.10.24.512987 (2022).

    Article  Google Scholar 

  178. Michaels, T. C. T. et al. Chemical kinetics for bridging molecular mechanisms and macroscopic measurements of amyloid fibril formation. Annu. Rev. Phys. Chem. 69, 273–298 (2018).

    Article  CAS  PubMed  Google Scholar 

  179. Michaels, T. C. T. et al. Fluctuations in the kinetics of linear protein self-assembly. Phys. Rev. Lett. 116, 258103 (2016).

    Article  PubMed  Google Scholar 

  180. Galvagnion, C. et al. Lipid vesicles trigger α-synuclein aggregation by stimulating primary nucleation. Nat. Chem. Biol. 11, 229–234 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  181. Louros, N., Schymkowitz, J. & Rousseau, F. Heterotypic amyloid interactions: clues to polymorphic bias and selective cellular vulnerability? Curr. Opin. Struct. Biol. 72, 176–186 (2022).

    Article  CAS  PubMed  Google Scholar 

  182. Juhl, D. W. et al. Conservation of the amyloid interactome across diverse fibrillar structures. Sci. Rep. 9, 3863 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  183. Chatterjee, D. et al. Co-aggregation and secondary nucleation in the life cycle of human prolactin/galanin functional amyloids. eLife 11, e73835 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  184. Pansieri, J. et al. Templating S100A9 amyloids on Aβ fibrillar surfaces revealed by charge detection mass spectrometry, microscopy, kinetic and microfluidic analyses. Chem. Sci. 11, 7031–7039 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  185. Linse, S. Monomer-dependent secondary nucleation in amyloid formation. Biophys. Rev. 9, 329–338 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  186. Törnquist, M. & Linse, S. Chiral selectivity of secondary nucleation in amyloid fibril propagation. Angew. Chem. Int. Ed. Engl. 60, 24008–24011 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  187. Thacker, D. et al. The role of fibril structure and surface hydrophobicity in secondary nucleation of amyloid fibrils. Proc. Natl Acad. Sci. USA 117, 25272–25283 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  188. Louros, N. et al. Mapping the sequence specificity of heterotypic amyloid interactions enables the identification of aggregation modifiers. Nat. Commun. 13, 1351 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  189. Tian, Y. & Viles, J. H. pH dependence of amyloid-β fibril assembly kinetics: unravelling the microscopic molecular processes. Angew. Chem. Int. Ed. 61, e202210675 (2022).

    Article  CAS  Google Scholar 

  190. Kumari, P. et al. Structural insights into α-synuclein monomer–fibril interactions. Proc. Natl Acad. Sci. USA 118, e2012171118 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  191. Hadi Alijanvand, S., Peduzzo, A. & Buell, A. K. Secondary nucleation and the conservation of structural characteristics of amyloid fibril strains. Front. Mol. Biosci. https://doi.org/10.3389/fmolb.2021.669994 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  192. Brännström, K. et al. The properties of amyloid-β fibrils are determined by their path of formation. J. Mol. Biol. 430, 1940–1949 (2018).

    Article  PubMed  Google Scholar 

  193. Sakalauskas, A., Ziaunys, M. & Smirnovas, V. Concentration-dependent polymorphism of insulin amyloid fibrils. PeerJ 7, e8208 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  194. Wördehoff, M. M. et al. Single fibril growth kinetics of α-synuclein. J. Mol. Biol. 427, 1428–1435 (2015).

    Article  PubMed  Google Scholar 

  195. Sleutel, M. et al. Nucleation and growth of a bacterial functional amyloid at single-fiber resolution. Nat. Chem. Biol. 13, 902–908 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  196. Sun, Y. et al. Direct observation of competing prion protein fibril populations with distinct structures and kinetics. ACS Nano https://doi.org/10.1021/acsnano.2c12009 (2023).

    Article  PubMed Central  PubMed  Google Scholar 

  197. Pinotsi, D. et al. Direct observation of heterogeneous amyloid fibril growth kinetics via two-color super-resolution microscopy. Nano Lett. 14, 339–345 (2014).

    Article  CAS  PubMed  Google Scholar 

  198. Rodriguez, R. A., Chen, L. Y., Plascencia-Villa, G. & Perry, G. Thermodynamics of amyloid-β fibril elongation: atomistic details of the transition state. ACS Chem. Neurosci. 9, 783–789 (2018).

    Article  CAS  PubMed  Google Scholar 

  199. Sasmal, S., Schwierz, N. & Head-Gordon, T. Mechanism of nucleation and growth of Aβ40 fibrils from all-atom and coarse-grained simulations. J. Phys. Chem. B 120, 12088–12097 (2016).

    Article  CAS  PubMed  Google Scholar 

  200. Xu, Y. et al. Frustrated peptide chains at the fibril tip control the kinetics of growth of amyloid-β fibrils. Proc. Natl Acad. Sci. USA 118, e2110995118 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  201. Xu, Y. et al. Steady, symmetric, and reversible growth and dissolution of individual amyloid-β fibrils. ACS Chem. Neurosci. 10, 2967–2976 (2019).

    Article  CAS  PubMed  Google Scholar 

  202. Nicoud, L., Lazzari, S., Balderas Barragán, D. & Morbidelli, M. Fragmentation of amyloid fibrils occurs in preferential positions depending on the environmental conditions. J. Phys. Chem. B 119, 4644–4652 (2015).

    Article  CAS  PubMed  Google Scholar 

  203. Sanami, S., Purton, T. J., Smith, D. P., Tuite, M. F. & Xue, W. F. Comparative analysis of the relative fragmentation stabilities of polymorphic α-synuclein amyloid fibrils. Biomolecules https://doi.org/10.3390/biom12050630 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  204. Beal, D. M. et al. The division of amyloid fibrils: systematic comparison of fibril fragmentation stability by linking theory with experiments. iScience 23, 101512 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  205. Xue, W.-F., Hellewell, A. L., Hewitt, E. W. & Radford, S. E. Fibril fragmentation in amyloid assembly and cytotoxicity. Prion 4, 20–25 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  206. Zhang, X. et al. Correlation between cellular uptake and cytotoxicity of fragmented α-synuclein amyloid fibrils suggests intracellular basis for toxicity. ACS Chem. Neurosci. 11, 233–241 (2020).

    Article  CAS  PubMed  Google Scholar 

  207. Morris, R. J. et al. Mechanistic and environmental control of the prevalence and lifetime of amyloid oligomers. Nat. Commun. 4, 1891 (2013).

    Article  PubMed  Google Scholar 

  208. Konstantoulea, K. et al. Heterotypic amyloid β interactions facilitate amyloid assembly and modify amyloid structure. EMBO J. 41, e108591 (2022).

    Article  CAS  PubMed  Google Scholar 

  209. Dear, A. J. et al. Kinetic diversity of amyloid oligomers. Proc. Natl Acad. Sci. USA 117, 12087–12094 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  210. Michaels, T. C. T. et al. Dynamics of oligomer populations formed during the aggregation of Alzheimer’s Aβ42 peptide. Nat. Chem. 12, 445–451 (2020).

    Article  CAS  PubMed  Google Scholar 

  211. Crespo, R. et al. What can the kinetics of amyloid fibril formation tell about off-pathway aggregation? J. Biol. Chem. 291, 2018–2032 (2016).

    Article  CAS  PubMed  Google Scholar 

  212. Hasecke, F. et al. Origin of metastable oligomers and their effects on amyloid fibril self-assembly. Chem. Sci. 9, 5937–5948 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  213. Hasecke, F. et al. Protofibril–fibril interactions inhibit amyloid fibril assembly by obstructing secondary nucleation. Angew. Chem. Int. Ed. 60, 3016–3021 (2021).

    Article  CAS  Google Scholar 

  214. Konno, H. et al. Dynamics of oligomer and amyloid fibril formation by yeast prion Sup35 observed by high-speed atomic force microscopy. Proc. Natl Acad. Sci. USA 117, 7831–7836 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  215. Kayed, R. & Lasagna-Reeves, C. A. Molecular mechanisms of amyloid oligomers toxicity. J. Alzheimers Dis. 33, S67–S78 (2013).

    Article  PubMed  Google Scholar 

  216. He, Y. et al. Amyloid β oligomers suppress excitatory transmitter release via presynaptic depletion of phosphatidylinositol-4,5-bisphosphate. Nat. Commun. 10, 1193 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  217. Lasagna-Reeves, C. A. et al. Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice. Mol. Neurodegener. 6, 39 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  218. Cascella, R., Bigi, A., Cremades, N. & Cecchi, C. Effects of oligomer toxicity, fibril toxicity and fibril spreading in synucleinopathies. Cell. Mol. Life Sci. 79, 174 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  219. Wagner, J. et al. Medin co-aggregates with vascular amyloid-β in Alzheimer’s disease. Nature 612, 123–131 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  220. Konstantoulea, K., Louros, N., Rousseau, F. & Schymkowitz, J. Heterotypic interactions in amyloid function and disease. FEBS J. 289, 2025–2046 (2022).

    Article  CAS  PubMed  Google Scholar 

  221. Clinton, L. K., Blurton-Jones, M., Myczek, K., Trojanowski, J. Q. & LaFerla, F. M. Synergistic Interactions between Aβ, tau, and α-synuclein: acceleration of neuropathology and cognitive decline. J. Neurosci. 30, 7281–7289 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  222. Zhao, Y. et al. β2-Microglobulin coaggregates with Aβ and contributes to amyloid pathology and cognitive deficits in Alzheimer’s disease model mice. Nat. Neurosci. https://doi.org/10.1038/s41593-023-01352-1 (2023).

    Article  PubMed Central  PubMed  Google Scholar 

  223. Yu, A. et al. Tau protein aggregates inhibit the protein-folding and vesicular trafficking arms of the cellular proteostasis network. J. Biol. Chem. 294, 7917–7930 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  224. Engstrom, A. K. et al. The inhibition of LSD1 via sequestration contributes to tau-mediated neurodegeneration. Proc. Natl Acad. Sci. USA 117, 29133–29143 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  225. Peng, C. et al. Cellular milieu imparts distinct pathological α-synuclein strains in α-synucleinopathies. Nature 557, 558–563 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  226. Lengyel, Z., Rufo, C. M. & Korendovych, I. V. Preparation and screening of catalytic amyloid assemblies. Methods Mol. Biol. 1777, 261–270 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  227. Dolan, M. A. et al. Catalytic nanoassemblies formed by short peptides promote highly enantioselective transfer hydrogenation. ACS Nano 13, 9292–9297 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  228. Arad, E., Baruch Leshem, A., Rapaport, H. & Jelinek, R. β-Amyloid fibrils catalyze neurotransmitter degradation. Chem. Catal. 1, 908–922 (2021).

    Article  CAS  Google Scholar 

  229. Kollmer, M. et al. Electron tomography reveals the fibril structure and lipid interactions in amyloid deposits. Proc. Natl Acad. Sci. USA 113, 5604–5609 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  230. Bäuerlein, F. J. B. et al. In situ architecture and cellular interactions of PolyQ inclusions. Cell 171, 179–187.e10 (2017).

    Article  PubMed  Google Scholar 

  231. Seidler, P. M. et al. Structure-based inhibitors of tau aggregation. Nat. Chem. 10, 170–176 (2018).

    Article  CAS  PubMed  Google Scholar 

  232. Agerschou, E. D. et al. An engineered monomer binding-protein for α-synuclein efficiently inhibits the proliferation of amyloid fibrils. eLife https://doi.org/10.7554/eLife.46112 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  233. Lu, J. et al. Structure-based peptide inhibitor design of amyloid-β aggregation. Front. Mol. Neurosci. 12, 54 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  234. Saelices, L. et al. A pair of peptides inhibits seeding of the hormone transporter transthyretin into amyloid fibrils. J. Biol. Chem. 294, 6130–6141 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  235. Krotee, P. et al. Common fibrillar spines of amyloid-β and human islet amyloid polypeptide revealed by microelectron diffraction and structure-based inhibitors. J. Biol. Chem. 293, 2888–2902 (2018).

    Article  CAS  PubMed  Google Scholar 

  236. Mompeán, M. et al. The structure of the necrosome RIPK1–RIPK3 core, a human hetero-amyloid signaling complex. Cell 173, 1244–1253.e10 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  237. Cerofolini, L. et al. Mixing Aβ1–40 and Aβ1–42 peptides generates unique amyloid fibrils. Chem. Commun. 56, 8830–8833 (2020).

    Article  CAS  Google Scholar 

  238. Ziaunys, M., Mikalauskaite, K. & Smirnovas, V. Amyloidophilic molecule interactions on the surface of insulin fibrils: cooperative binding and fluorescence quenching. Sci. Rep. 9, 20303 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  239. Fichou, Y. et al. Tau-cofactor complexes as building blocks of tau fibrils. Front. Neurosci. 13, 1339 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  240. Yamaguchi, K. et al. Polyphosphates induce amyloid fibril formation of α-synuclein in concentration-dependent distinct manners. J. Biol. Chem. 296, 100510 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  241. Matafora, V. et al. Amyloid aggregates accumulate in melanoma metastasis modulating YAP activity. EMBO Rep. 21, e50446 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  242. Wegmann, S., Medalsy, I. D., Mandelkow, E. & Müller, D. J. The fuzzy coat of pathological human Tau fibrils is a two-layered polyelectrolyte brush. Proc. Natl Acad. Sci. USA 110, E313–E321 (2013).

    Article  CAS  PubMed  Google Scholar 

  243. Khan, M. R. et al. Amyloidogenic oligomerization transforms Drosophila Orb2 from a translation repressor to an activator. Cell 163, 1468–1483 (2015).

    Article  CAS  PubMed  Google Scholar 

  244. Wentink, A., Nussbaum-Krammer, C. & Bukau, B. Modulation of amyloid states by molecular chaperones. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a033969 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  245. Ayyadevara, S., Ganne, A., Balasubramaniam, M. & Shmookler Reis, R. J. Intrinsically disordered proteins identified in the aggregate proteome serve as biomarkers of neurodegeneration. Metab. Brain Dis. 37, 147–152 (2022).

    Article  CAS  PubMed  Google Scholar 

  246. Jiang, L. L., Guan, W. L., Wang, J. Y., Zhang, S. X. & Hu, H. Y. RNA-assisted sequestration of RNA-binding proteins by cytoplasmic inclusions of the C-terminal 35-kDa fragment of TDP-43. J. Cell Sci. 135, jcs259380 (2022).

    Article  CAS  PubMed  Google Scholar 

  247. Niss, F., Zaidi, W., Hallberg, E. & Ström, A. L. Polyglutamine expanded Ataxin-7 induces DNA damage and alters FUS localization and function. Mol. Cell Neurosci. 110, 103584 (2021).

    Article  CAS  PubMed  Google Scholar 

  248. Nihei, Y. et al. Poly-glycine-alanine exacerbates C9orf72 repeat expansion-mediated DNA damage via sequestration of phosphorylated ATM and loss of nuclear hnRNPA3. Acta Neuropathol. 139, 99–118 (2020).

    Article  PubMed  Google Scholar 

  249. Agarwal, A., Arora, L., Rai, S. K., Avni, A. & Mukhopadhyay, S. Spatiotemporal modulations in heterotypic condensates of prion and α-synuclein control phase transitions and amyloid conversion. Nat. Commun. 13, 1154 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  250. Mathieu, C., Pappu, R. V. & Taylor, J. P. Beyond aggregation: pathological phase transitions in neurodegenerative disease. Science 370, 56–60 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  251. Yue, H.-W., Hong, J.-Y., Zhang, S.-X., Jiang, L.-L. & Hu, H.-Y. PolyQ-expanded proteins impair cellular proteostasis of ataxin-3 through sequestering the co-chaperone HSJ1 into aggregates. Sci. Rep. 11, 7815 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  252. Ferdosh, S., Banerjee, S., Singh, J. & Barat, C. Amyloid protein-induced sequestration of the eukaryotic ribosome: effect of stoichiometry and polyphenolic inhibitors. FEBS Lett. 596, 1190–1202 (2022).

    Article  CAS  PubMed  Google Scholar 

  253. Guo, Q. et al. In situ structure of neuronal C9orf72 poly-GA aggregates reveals proteasome recruitment. Cell 172, 696–705.e12 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  254. Riemenschneider, H. et al. Gel-like inclusions of C-terminal fragments of TDP-43 sequester stalled proteasomes in neurons. EMBO Rep. 23, e53890 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  255. Thibaudeau, T. A., Anderson, R. T. & Smith, D. M. A common mechanism of proteasome impairment by neurodegenerative disease-associated oligomers. Nat. Commun. 9, 1097 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  256. Riera-Tur, I. et al. Amyloid-like aggregating proteins cause lysosomal defects in neurons via gain-of-function toxicity. Life Sci. Alliance 5, e202101185 (2022).

    Article  CAS  PubMed  Google Scholar 

  257. Koss, D. J. et al. RAB39B is redistributed in dementia with Lewy bodies and is sequestered within aβ plaques and Lewy bodies. Brain Pathol. 31, 120–132 (2021).

    Article  CAS  PubMed  Google Scholar 

  258. Morten, M. J. et al. Quantitative super-resolution imaging of pathological aggregates reveals distinct toxicity profiles in different synucleinopathies. Proc. Natl Acad. Sci. USA 119, e2205591119 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  259. Suzuki, G. et al. α-Synuclein strains that cause distinct pathologies differentially inhibit proteasome. eLife 9, e56825 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  260. Mahul-Mellier, A.-L. et al. The process of Lewy body formation, rather than simply α-synuclein fibrillization, is one of the major drivers of neurodegeneration. Proc. Natl Acad. Sci. USA 117, 4971–4982 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  261. Man, W. K. et al. The docking of synaptic vesicles on the presynaptic membrane induced by α-synuclein is modulated by lipid composition. Nat. Commun. 12, 927 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  262. Choong, C.-J. et al. Phosphatidylinositol-3,4,5-trisphosphate interacts with α-synuclein and initiates its aggregation and formation of Parkinson’s disease-related fibril polymorphism. Acta Neuropathol. https://doi.org/10.1007/s00401-023-02555-3 (2023).

    Article  PubMed Central  PubMed  Google Scholar 

  263. Das, M. & Gursky, O. Amyloid-forming properties of human apolipoproteins: sequence analyses and structural insights. Adv. Exp. Med. Biol. 855, 175–211 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  264. Louros, N. N. et al. Chameleon ‘aggregation-prone’ segments of apoA-I: a model of amyloid fibrils formed in apoA-I amyloidosis. Int. J. Biol. Macromol. 79, 711–718 (2015).

    Article  CAS  PubMed  Google Scholar 

  265. Kenyaga, J. M., Cheng, Q. & Qiang, W. Early stage β-amyloid–membrane interactions modulate lipid dynamics and influence structural interfaces and fibrillation. J. Biol. Chem. 298, 102491 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  266. Antonschmidt, L. et al. Insights into the molecular mechanism of amyloid filament formation: segmental folding of α-synuclein on lipid membranes. Sci. Adv. 7, eabg2174 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  267. Korshavn, K. J. et al. Reduced lipid bilayer thickness regulates the aggregation and cytotoxicity of amyloid-β. J. Biol. Chem. 292, 4638–4650 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  268. Sienski, G. et al. APOE4 disrupts intracellular lipid homeostasis in human iPSC-derived glia. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aaz4564 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  269. Blanchard, J. W. et al. APOE4 impairs myelination via cholesterol dysregulation in oligodendrocytes. Nature 611, 769–779 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  270. Liu, C. C. et al. ApoE4 accelerates early seeding of amyloid pathology. Neuron 96, 1024–1032.e23 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  271. Verghese, P. B. et al. ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions. Proc. Natl Acad. Sci. USA 110, E1807–E1816 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  272. Wu, J. et al. Cryo-electron microscopy imaging of Alzheimer’s amyloid-β42 oligomer displayed on a functionally and structurally relevant scaffold. Angew. Chem. Int. Ed. 60, 18680–18687 (2021).

    Article  CAS  Google Scholar 

  273. Laganowsky, A. et al. Atomic view of a toxic amyloid small oligomer. Science 335, 1228–1231 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  274. Chen, S. W. et al. Structural characterization of toxic oligomers that are kinetically trapped during α-synuclein fibril formation. Proc. Natl Acad. Sci. USA 112, E1994–E2003 (2015).

    CAS  PubMed Central  PubMed  Google Scholar 

  275. Fusco, G. et al. Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers. Science 358, 1440–1443 (2017).

    Article  CAS  PubMed  Google Scholar 

  276. De, S. et al. Different soluble aggregates of Aβ42 can give rise to cellular toxicity through different mechanisms. Nat. Commun. 10, 1541 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  277. Birol, M., Kumar, S., Rhoades, E. & Miranker, A. D. Conformational switching within dynamic oligomers underpins toxic gain-of-function by diabetes-associated amyloid. Nat. Commun. 9, 1312 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  278. Elenbaas, B. O. W., Kremsreiter, S. M., Khemtemourian, L., Killian, J. A. & Sinnige, T. Fibril elongation by human islet amyloid polypeptide is the main event linking aggregation to membrane damage. BBA Adv. 3, 100083 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  279. Koike, H. & Katsuno, M. The ultrastructure of tissue damage by amyloid fibrils. Molecules https://doi.org/10.3390/molecules26154611 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  280. Frieg, B. et al. The 3D structure of lipidic fibrils of α-synuclein. Nat. Commun. 13, 6810 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  281. Shahmoradian, S. H. et al. Lewy pathology in Parkinson’s disease consists of crowded organelles and lipid membranes. Nat. Neurosci. 22, 1099–1109 (2019).

    Article  CAS  PubMed  Google Scholar 

  282. Lee, J.-E. et al. Mapping surface hydrophobicity of α-synuclein oligomers at the nanoscale. Nano Lett. 18, 7494–7501 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  283. Habchi, J. et al. Cholesterol catalyses Aβ42 aggregation through a heterogeneous nucleation pathway in the presence of lipid membranes. Nat. Chem. 10, 673–683 (2018).

    Article  CAS  PubMed  Google Scholar 

  284. Limbocker, R. et al. Trodusquemine enhances Aβ42 aggregation but suppresses its toxicity by displacing oligomers from cell membranes. Nat. Commun. 10, 225 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  285. Ganz, T. et al. Microbial pathogens induce neurodegeneration in Alzheimer’s disease mice: protection by microglial regulation. J. Neuroinflammation 19, 5 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  286. Brown, G. C. The endotoxin hypothesis of neurodegeneration. J. Neuroinflammation 16, 180 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  287. Yao, L. et al. Protective effects of endotoxin tolerance on peripheral lipopolysaccharide-induced neuroinflammation and dopaminergic neuronal injury. Immunopharmacol. Immunotoxicol. 44, 326–337 (2022).

    Article  CAS  PubMed  Google Scholar 

  288. Kim, C. et al. Exposure to bacterial endotoxin generates a distinct strain of α-synuclein fibril. Sci. Rep. 6, 30891 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  289. Cheng, N., Liang, Y., Du, X. & Ye, R. D. Serum amyloid A promotes LPS clearance and suppresses LPS-induced inflammation and tissue injury. EMBO Rep. 19, e45517 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  290. Cammann, D. et al. Genetic correlations between Alzheimer’s disease and gut microbiome genera. Sci. Rep. 13, 5258 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  291. Wallen, Z. D. et al. Metagenomics of Parkinson’s disease implicates the gut microbiome in multiple disease mechanisms. Nat. Commun. 13, 6958 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  292. Wang, X. et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res. 29, 787–803 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  293. Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012).

    Article  CAS  PubMed  Google Scholar 

  294. Seo, D. O. et al. ApoE isoform- and microbiota-dependent progression of neurodegeneration in a mouse model of tauopathy. Science 379, eadd1236 (2023).

    Article  CAS  PubMed  Google Scholar 

  295. Sampson, T. R. et al. A gut bacterial amyloid promotes α-synuclein aggregation and motor impairment in mice. eLife 9, e53111 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  296. Perov, S. et al. Structural insights into curli CsgA cross-β fibril architecture inspire repurposing of anti-amyloid compounds as anti-biofilm agents. PLoS Pathog. 15, e1007978 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  297. Bhoite, S. S., Han, Y., Ruotolo, B. T. & Chapman, M. R. Mechanistic insights into accelerated α-synuclein aggregation mediated by human microbiome-associated functional amyloids. J. Biol. Chem. 298, 102088 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  298. Evans, M. L. et al. The bacterial curli system possesses a potent and selective inhibitor of amyloid formation. Mol. Cell 57, 445–455 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  299. Kumar, D. K. et al. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci. Transl. Med. 8, 340ra372 (2016).

    Article  Google Scholar 

  300. Bücker, R. et al. The cryo-EM structures of two amphibian antimicrobial cross-β amyloid fibrils. Nat. Commun. 13, 4356 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  301. Pastore, A., Raimondi, F., Rajendran, L. & Temussi, P. A. Why does the Aβ peptide of Alzheimer share structural similarity with antimicrobial peptides? Commun. Biol. 3, 135 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  302. Tang, Y., Zhang, D., Gong, X. & Zheng, J. Repurposing of intestinal defensins as multi-target, dual-function amyloid inhibitors via cross-seeding. Chem. Sci. 13, 7143–7156 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  303. Colombo, A. V. et al. Microbiota-derived short chain fatty acids modulate microglia and promote Aβ plaque deposition. eLife 10, e59826 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  304. Sade, D., Shaham-Niv, S., Arnon, Z. A., Tavassoly, O. & Gazit, E. Seeding of proteins into amyloid structures by metabolite assemblies may clarify certain unexplained epidemiological associations. Open Biol. https://doi.org/10.1098/rsob.170229 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  305. Tavassoly, O. et al. Quinolinic acid amyloid-like fibrillar assemblies seed α-synuclein aggregation. J. Mol. Biol. 430, 3847–3862 (2018).

    Article  CAS  PubMed  Google Scholar 

  306. Zhu, G., Zhao, J., Zhang, H., Wang, G. & Chen, W. Gut microbiota and its metabolites: bridge of dietary nutrients and Alzheimer’s disease. Adv. Nutr. 14, 819–839 (2023).

    Article  PubMed Central  PubMed  Google Scholar 

  307. Rising, A. et al. AA amyloid in human food chain is a possible biohazard. Sci. Rep. 11, 21069 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  308. Rahman, M. M. et al. Food protein-derived amyloids do not accelerate amyloid β aggregation. Sci. Rep. 13, 985 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  309. Vaneyck, J., Segers-Nolten, I., Broersen, K. & Claessens, M. M. A. E. Cross-seeding of α-synuclein aggregation by amyloid fibrils of food proteins. J. Biol. Chem. 296, 100358 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  310. Monge-Morera, M. et al. Heating wheat gluten promotes the formation of amyloid-like fibrils. ACS Omega 6, 1823–1833 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  311. Lambrecht, M. A. et al. Hydrothermal treatments cause wheat gluten-derived peptides to form amyloid-like fibrils. J. Agric. Food Chem. 69, 1963–1974 (2021).

    Article  CAS  PubMed  Google Scholar 

  312. Lambrecht, M. A. et al. Conditions governing food protein amyloid fibril formation. Part II: milk and legume proteins. Compr. Rev. Food Sci. Food Saf. 18, 1277–1291 (2019).

    Article  CAS  PubMed  Google Scholar 

  313. Jansens, K. J. A. et al. Conditions governing food protein amyloid fibril formation—part I: egg and cereal proteins. Compr. Rev. Food Sci. Food Saf. 18, 1256–1276 (2019).

    Article  CAS  PubMed  Google Scholar 

  314. Cao, Y. & Mezzenga, R. Food protein amyloid fibrils: origin, structure, formation, characterization, applications and health implications. Adv. Colloid Interface Sci. 269, 334–356 (2019).

    Article  CAS  PubMed  Google Scholar 

  315. Ye, X. et al. High‐temperature and chemically resistant foams from sustainable nanostructured protein. Adv. Sustain. Syst. https://doi.org/10.1002/adsu.202100063 (2021).

    Article  Google Scholar 

  316. Ezzat, K. et al. The viral protein corona directs viral pathogenesis and amyloid aggregation. Nat. Commun. 10, 2331 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  317. Yu, H. & Wu, J. Amyloid-β: a double agent in Alzheimer’s disease? Biomed. Pharmacother. 139, 111575 (2021).

    Article  CAS  PubMed  Google Scholar 

  318. Semerdzhiev, S. A., Fakhree, M. A. A., Segers-Nolten, I., Blum, C. & Claessens, M. M. A. E. Interactions between SARS-CoV-2 N-protein and α-synuclein accelerate amyloid formation. ACS Chem. Neurosci. 13, 143–150 (2022).

    Article  CAS  PubMed  Google Scholar 

  319. Bhardwaj, T. et al. Amyloidogenic proteins in the SARS-CoV and SARS-CoV-2 proteomes. Nat. Commun. 14, 945 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  320. Nyström, S. & Hammarström, P. Amyloidogenesis of SARS-CoV-2 spike protein. J. Am. Chem. Soc. 144, 8945–8950 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  321. Nilsson, J. F. et al. Molecular determinants of fibrillation in a viral amyloidogenic domain from combined biochemical and biophysical studies. Int. J. Mol. Sci. 24 (2023).

  322. Leblanc, P. & Vorberg, I. M. Viruses in neurodegenerative diseases: more than just suspects in crimes. PLoS Pathog. 18, e1010670 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  323. Liu, S. et al. Highly efficient intercellular spreading of protein misfolding mediated by viral ligand–receptor interactions. Nat. Commun. 12, 5739 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  324. Damy, T. et al. Efficacy and safety of tafamidis doses in the Tafamidis in Transthyretin Cardiomyopathy Clinical Trial (ATTR-ACT) and long-term extension study. Eur. J. Heart Fail. 23, 277–285 (2021).

    Article  CAS  PubMed  Google Scholar 

  325. Torres, L. & Conran, N. Emerging pharmacotherapeutic approaches for the management of sickle cell disease. Expert. Opin. Pharmacother. 20, 173–186 (2019).

    Article  CAS  PubMed  Google Scholar 

  326. van Dyck, C. H. et al. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 388, 9–21 (2022).

    Article  PubMed  Google Scholar 

  327. Mullard, A. Anti-tau antibody failures stack up. Nat. Rev. Drug Discov. 20, 888 (2021).

    PubMed  Google Scholar 

  328. Piller, C. Blots on a field? Science 377, 358–363 (2022).

    Article  CAS  PubMed  Google Scholar 

  329. Niu, Z. et al. Structural insight into IAPP-derived amyloid inhibitors and their mechanism of action. Angew. Chem. Int. Ed. Engl. 59, 5771–5781 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  330. Perchiacca, J. M., Ladiwala, A. R., Bhattacharya, M. & Tessier, P. M. Structure-based design of conformation- and sequence-specific antibodies against amyloidβ. Proc. Natl Acad. Sci. USA 109, 84–89 (2012).

    Article  CAS  PubMed  Google Scholar 

  331. Limbocker, R. et al. Rationally designed antibodies as research tools to study the structure-toxicity relationship of amyloid-β oligomers. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21124542 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  332. Aprile, F. A. et al. Rational design of a conformation-specific antibody for the quantification of Aβ oligomers. Proc. Natl Acad. Sci. USA 117, 13509–13518 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  333. Taglialegna, A., Lasa, I. & Valle, J. Amyloid structures as biofilm matrix scaffolds. J. Bacteriol. 198, 2579–2588 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  334. Levkovich, S. A., Gazit, E. & Laor Bar-Yosef, D. Two decades of studying functional amyloids in microorganisms. Trends Microbiol. 29, 251–265 (2021).

    Article  CAS  PubMed  Google Scholar 

  335. Louros, N. N. et al. A common ‘aggregation-prone’ interface possibly participates in the self-assembly of human zona pellucida proteins. FEBS Lett. 590, 619–630 (2016).

    Article  CAS  PubMed  Google Scholar 

  336. Louros, N. N., Iconomidou, V. A., Giannelou, P. & Hamodrakas, S. J. Structural analysis of peptide-analogues of human zona pellucida ZP1 protein with amyloidogenic properties: insights into mammalian zona pellucida formation. PLoS ONE 8, e73258 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  337. Louros, N. N. et al. Structural studies of “aggregation-prone” peptide-analogues of teleostean egg chorion ZPB proteins. Biopolymers 102, 427–436 (2014).

    Article  CAS  PubMed  Google Scholar 

  338. Maji, S. K. et al. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325, 328–332 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  339. Nasi, G. I. et al. Arabidopsis thaliana plant natriuretic peptide active domain forms amyloid-like fibrils in a pH-dependent manner. Plants https://doi.org/10.3390/plants11010009 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  340. Wickner, R. B. et al. Yeast prions: structure, biology, and prion-handling systems. Microbiol. Mol. Biol. Rev. 79, 1–17 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  341. Si, K., Lindquist, S. & Kandel, E. R. A neuronal isoform of the aplysia CPEB has prion-like properties. Cell 115, 879–891 (2003).

    Article  CAS  PubMed  Google Scholar 

  342. Kajava, A. V. & Steven, A. C. β-Rolls, β-helices, and other β-solenoid proteins. Adv. Protein Chem. 73, 55–96 (2006).

    Article  CAS  PubMed  Google Scholar 

  343. Louros, N. N., Baltoumas, F. A., Hamodrakas, S. J. & Iconomidou, V. A. A β-solenoid model of the Pmel17 repeat domain: insights to the formation of functional amyloid fibrils. J. Comput. Aided Mol. Des. 30, 153–164 (2016).

    Article  CAS  PubMed  Google Scholar 

  344. Van Melckebeke, H. et al. Atomic-resolution three-dimensional structure of HET-s(218−289) amyloid fibrils by solid-state NMR spectroscopy. J. Am. Chem. Soc. 132, 13765–13775 (2010).

    Article  PubMed  Google Scholar 

  345. Tsiolaki, P. L., Louros, N. N. & Iconomidou, V. A. Hexapeptide tandem repeats dictate the formation of silkmoth chorion, a natural protective amyloid. J. Mol. Biol. 430, 3774–3783 (2018).

    Article  CAS  PubMed  Google Scholar 

  346. Louros, N. N. & Iconomidou, V. A. Identification of an amyloid fibril forming segment of human Pmel17 repeat domain (RPT domain). Biopolymers 106, 133–139 (2016).

    Article  CAS  PubMed  Google Scholar 

  347. Sleutel, M., Pradhan, B. & Remaut, H. Structural analysis of the bacterial amyloid curli. Nat. Commun. 14, 2822 (2022).

    Article  Google Scholar 

  348. Louros, N. N., Bolas, G. M. P., Tsiolaki, P. L., Hamodrakas, S. J. & Iconomidou, V. A. Intrinsic aggregation propensity of the CsgB nucleator protein is crucial for curli fiber formation. J. Struct. Biol. 195, 179–189 (2016).

    Article  CAS  PubMed  Google Scholar 

  349. Ragonis-Bachar, P. & Landau, M. Functional and pathological amyloid structures in the eyes of 2020 cryo-EM. Curr. Opin. Struct. Biol. 68, 184–193 (2021).

    Article  CAS  PubMed  Google Scholar 

  350. Garcia-Pardo, J. et al. Cryo-EM structure of hnRNPDL-2 fibrils, a functional amyloid associated with limb-girdle muscular dystrophy D3. Nat. Commun. 14, 239 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  351. Lu, J. et al. CryoEM structure of the low-complexity domain of hnRNPA2 and its conversion to pathogenic amyloid. Nat. Commun. 11, 4090 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  352. Hervas, R. et al. Cryo-EM structure of a neuronal functional amyloid implicated in memory persistence in Drosophila. Science 367, 1230–1234 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  353. Seuring, C. et al. The three-dimensional structure of human β-endorphin amyloid fibrils. Nat. Struct. Mol. Biol. 27, 1178–1184 (2020).

    Article  CAS  PubMed  Google Scholar 

  354. Liu, Y., Liu, J. & He, X. Different pKa shifts of internal GLU8 in human β-endorphin amyloid revealing a coupling of internal ionization and stepwise fibril disassembly. J. Phys. Chem. B https://doi.org/10.1021/acs.jpcb.2c06706 (2023).

    Article  PubMed Central  PubMed  Google Scholar 

  355. Noji, M. et al. Breakdown of supersaturation barrier links protein folding to amyloid formation. Commun. Biol. 4, 120 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  356. Hardy, J. Expression of normal sequence pathogenic proteins for neurodegenerative disease contributes to disease risk: ’permissive templating’ as a general mechanism underlying neurodegeneration. Biochem. Soc. Trans. 33, 578–581 (2005).

    Article  CAS  PubMed  Google Scholar 

  357. Ciryam, P., Tartaglia, G. G., Morimoto, R. I., Dobson, C. M. & Vendruscolo, M. Widespread aggregation and neurodegenerative diseases are associated with supersaturated proteins. Cell Rep. 5, 781–790 (2013).

    Article  CAS  PubMed  Google Scholar 

  358. Ciryam, P. et al. A transcriptional signature of Alzheimer’s disease is associated with a metastable subproteome at risk for aggregation. Proc. Natl Acad. Sci. USA 113, 4753–4758 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  359. Freer, R. et al. Supersaturated proteins are enriched at synapses and underlie cell and tissue vulnerability in Alzheimer’s disease. Heliyon 5, e02589 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  360. Ciryam, P. et al. Spinal motor neuron protein supersaturation patterns are associated with inclusion body formation in ALS. Proc. Natl Acad. Sci. USA 114, E3935–E3943 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  361. Walther, D. M. et al. Widespread proteome remodeling and aggregation in aging C. elegans. Cell 161, 919–932 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  362. Kundra, R., Ciryam, P., Morimoto, R. I., Dobson, C. M. & Vendruscolo, M. Protein homeostasis of a metastable subproteome associated with Alzheimer’s disease. Proc. Natl Acad. Sci. USA 114, E5703–E5711 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  363. Huiting, W. et al. Targeting DNA topoisomerases or checkpoint kinases results in an overload of chaperone systems, triggering aggregation of a metastable subproteome. eLife 11, e70726 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  364. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  365. Akdel, M. et al. A structural biology community assessment of AlphaFold2 applications. Nat. Struct. Mol. Biol. 29, 1056–1067 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  366. Ma, P., Li, D.-W. & Brüschweiler, R. Predicting protein flexibility with AlphaFold. Proteins Struct. Funct. Bioinforma. 91, 847–855 (2023).

    Article  CAS  Google Scholar 

  367. Guo, H.-B. et al. AlphaFold2 models indicate that protein sequence determines both structure and dynamics. Sci. Rep. 12, 10696 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  368. Terwilliger, T. C. et al. Improved AlphaFold modeling with implicit experimental information. Nat. Methods 19, 1376–1382 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  369. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  370. Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  371. Wang, W., Peng, Z. & Yang, J. Single-sequence protein structure prediction using supervised transformer protein language models. Nat. Comput. Sci. 2, 804–814 (2022).

    Article  CAS  Google Scholar 

  372. Richard, E. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  373. Bryant, P., Pozzati, G. & Elofsson, A. Improved prediction of protein–protein interactions using AlphaFold2. Nat. Commun. 13, 1265 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  374. Bryant, P. et al. Predicting the structure of large protein complexes using AlphaFold and Monte Carlo tree search. Nat. Commun. 13, 6028 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  375. Hekkelman, M. L., de Vries, I., Joosten, R. P. & Perrakis, A. AlphaFill: enriching AlphaFold models with ligands and cofactors. Nat. Methods 20, 205–213 (2023).

    Article  CAS  PubMed  Google Scholar 

  376. Minkyung, B., Ryan, M., Ivan, A., David, B. & Frank, D. Accurate prediction of nucleic acid and protein-nucleic acid complexes using RoseTTAFoldNA. Preprint at bioRxiv https://doi.org/10.1101/2022.09.09.507333 (2022).

    Article  Google Scholar 

  377. Madani, A. et al. Large language models generate functional protein sequences across diverse families. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01618-2 (2023).

    Article  PubMed Central  PubMed  Google Scholar 

  378. Pinheiro, F., Santos, J. & Ventura, S. AlphaFold and the amyloid landscape. J. Mol. Biol. 433, 167059 (2021).

    Article  CAS  PubMed  Google Scholar 

  379. Wojciechowski, J. W. & Kotulska, M. PATH—prediction of amyloidogenicity by threading and machine learning. Sci. Rep. 10, 7721 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  380. Navarro, S. & Ventura, S. Computational methods to predict protein aggregation. Curr. Opin. Struct. Biol. 73, 102343 (2022).

    Article  CAS  PubMed  Google Scholar 

  381. Meng, F. & Chung, H. S. Kinetics of amyloid β from deep learning. Nat. Comput. Sci. 1, 20–21 (2021).

    Article  Google Scholar 

  382. Huda, A. et al. A machine learning model for identifying patients at risk for wild-type transthyretin amyloid cardiomyopathy. Nat. Commun. 12, 2725 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  383. Kim, N. H. et al. PET-validated EEG-machine learning algorithm predicts brain amyloid pathology in pre-dementia Alzheimer’s disease. Sci. Rep. 13, 10299 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  384. Tang, Z. et al. Interpretable classification of Alzheimer’s disease pathologies with a convolutional neural network pipeline. Nat. Commun. 10, 2173 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  385. Zozulia, O., Dolan, M. A. & Korendovych, I. V. Catalytic peptide assemblies. Chem. Soc. Rev. 47, 3621–3639 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  386. Li, J. & Zhang, F. Amyloids as building blocks for macroscopic functional materials: designs, applications and challenges. Int. J. Mol. Sci. https://doi.org/10.3390/ijms221910698 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  387. Li, J. et al. Microbially synthesized polymeric amyloid fiber promotes β-nanocrystal formation and displays gigapascal tensile strength. ACS Nano 15, 11843–11853 (2021).

    Article  CAS  PubMed  Google Scholar 

  388. Sackewitz, M. et al. A folded and functional protein domain in an amyloid-like fibril. Protein Sci. 17, 1044–1054 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  389. Pilkington, S. M., Roberts, S. J., Meade, S. J. & Gerrard, J. A. Amyloid fibrils as a nanoscaffold for enzyme immobilization. Biotechnol. Prog. 26, 93–100 (2010).

    Article  CAS  PubMed  Google Scholar 

  390. Goswami, S., Reja, A., Pal, S., Singh, A. & Das, D. Nonequilibrium amyloid polymers exploit dynamic covalent linkage to temporally control charge-selective catalysis. J. Am. Chem. Soc. 144, 19248–19252 (2022).

    Article  CAS  PubMed  Google Scholar 

  391. Zozulia, O., Marshall, L. R., Kim, I., Kohn, E. M. & Korendovych, I. V. Self-assembling catalytic peptide nanomaterials capable of highly efficient peroxidase activity. Chemistry 27, 5388–5392 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  392. Zozulia, O. & Korendovych, I. V. Semi-rationally designed short peptides self-assemble and bind hemin to promote cyclopropanation. Angew. Chem. Int. Ed. Engl. 59, 8108–8112 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  393. Sarkhel, B., Chatterjee, A. & Das, D. Covalent catalysis by cross β amyloid nanotubes. J. Am. Chem. Soc. 142, 4098–4103 (2020).

    Article  CAS  PubMed  Google Scholar 

  394. Heerde, T., Bansal, A., Schmidt, M. & Fandrich, M. Cryo-EM structure of a catalytic amyloid fibril. Sci. Rep. 13, 4070 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  395. Huyst, A. M. R. et al. Impact of heat and enzymatic treatment on ovalbumin amyloid-like fibril formation and enzyme-induced gelation. Food Hydrocoll. 131, 107784 (2022).

    Article  CAS  Google Scholar 

  396. Monge-Morera, M. et al. Processing induced changes in food proteins: amyloid formation during boiling of hen egg white. Biomacromolecules 21, 2218–2228 (2020).

    Article  CAS  PubMed  Google Scholar 

  397. Jansens, K. J. A. et al. Rational design of amyloid-like fibrillary structures for tailoring food protein techno-functionality and their potential health implications. Compr. Rev. Food Sci. F. 18, 84–105 (2019).

    Article  CAS  Google Scholar 

  398. Luyckx, T. et al. Bioavailability and health impact of ingested amyloid-like protein fibrils and their link with inflammatory status: a need for more research? Mol. Nutr. Food Res. 66, e2101032 (2022).

    Article  PubMed  Google Scholar 

  399. Ganesan, A. et al. Selectivity of aggregation-determining interactions. J. Mol. Biol. 427, 236–247 (2015).

    Article  CAS  PubMed  Google Scholar 

  400. Wu, G. et al. Investigating the mechanism of action of aggregation-inducing antimicrobial Pept-ins. Cell Chem. Biol. 28, 524–536.e4 (2021).

    Article  CAS  PubMed  Google Scholar 

  401. Bednarska, N. G. et al. Protein aggregation as an antibiotic design strategy. Mol. Microbiol. https://doi.org/10.1111/mmi.13269 (2015).

    Article  PubMed  Google Scholar 

  402. Siemons, M. et al. Synthetic Pept-ins as a generic amyloid-like aggregation-based platform for in vivo PET imaging of intracellular targets. Bioconjug. Chem. 32, 2052–2064 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made a substantial contribution to discussion of content, and wrote and reviewed/edited the manuscript before submission.

Corresponding authors

Correspondence to Joost Schymkowitz or Frederic Rousseau.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Tessa Sinnige; Olga Gursky, who co-reviewed with Emily Lewkowicz; and Halfmann, who co-reviewed with Shriram Venkatesan and Alex Von Schulze for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louros, N., Schymkowitz, J. & Rousseau, F. Mechanisms and pathology of protein misfolding and aggregation. Nat Rev Mol Cell Biol 24, 912–933 (2023). https://doi.org/10.1038/s41580-023-00647-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-023-00647-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing